JPS61285356A - Metallic hydride utilizing air-conditioning hot-water supplydevice - Google Patents

Metallic hydride utilizing air-conditioning hot-water supplydevice

Info

Publication number
JPS61285356A
JPS61285356A JP12653185A JP12653185A JPS61285356A JP S61285356 A JPS61285356 A JP S61285356A JP 12653185 A JP12653185 A JP 12653185A JP 12653185 A JP12653185 A JP 12653185A JP S61285356 A JPS61285356 A JP S61285356A
Authority
JP
Japan
Prior art keywords
metal hydride
heat
temperature
hydrogen
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12653185A
Other languages
Japanese (ja)
Other versions
JPH0311392B2 (en
Inventor
敬 井波
功 竹下
実 田頭
努 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12653185A priority Critical patent/JPS61285356A/en
Publication of JPS61285356A publication Critical patent/JPS61285356A/en
Publication of JPH0311392B2 publication Critical patent/JPH0311392B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は特に工場廃熱等により駆動される金属水素化物
を利用した冷暖房給湯装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention particularly relates to an air-conditioning, heating, and water-heating system using a metal hydride that is driven by factory waste heat or the like.

従来の技術 TiMn系合金に代表される金属水素化物は、ある温度
・圧力条件のもとて水素ガスを吸蔵して発熱反応を行な
い、別の温度・圧力条件のもとては水素ガスを放出して
吸熱反応を行なう。金属水素化物の上記の特性を利用し
て金属水素化物が水素と反応する際の反応熱を適当な熱
媒により熱交換することによって外部に取シ出し、温熱
発生時には暖房給湯用として、冷熱発生時には冷房用と
して利用することができる。このような冷暖房装置の従
来の構成例を第6図、第6図に示す。
Conventional technology Metal hydrides, represented by TiMn alloys, absorb hydrogen gas and undergo an exothermic reaction under certain temperature and pressure conditions, and release hydrogen gas under other temperature and pressure conditions. to perform an endothermic reaction. Utilizing the above-mentioned properties of metal hydrides, the reaction heat when metal hydrides react with hydrogen is extracted to the outside by heat exchange with an appropriate heating medium, and when hot heat is generated, it is used for heating and hot water supply, and cold heat is generated. Sometimes it can be used for cooling purposes. An example of a conventional configuration of such a heating and cooling device is shown in FIGS.

2つの異なる水素平衡圧力を有する金属水素化物1(以
後MHIと呼ぶ)及び金属水素化物2(MH2)は第6
図に示すように金属水素化物収容容器3および4内に充
填されておシ、金属水素化物収容容器3および4は水素
導管5によって連通しており、導管6の途中にパルプ9
が設けられている◇金属水素化物収容容器3及び4には
それぞれ熱媒体流路7および8が設けられ金属水素化物
が水素を吸蔵、解離する際の反応熱を熱交換によシ熱媒
体に伝達するように構成されている。さらに金属水素化
物収容容器3は廃熱源10よシ高温に加熱されるように
なっている。廃熱源1oは工場等から排出される高温の
廃ガス、あるいは燃焼ガス等が相当する。
Metal hydride 1 (hereinafter referred to as MHI) and metal hydride 2 (MH2) with two different hydrogen equilibrium pressures
As shown in the figure, the metal hydride storage containers 3 and 4 are filled with hydrogen.
◇The metal hydride storage containers 3 and 4 are provided with heating medium channels 7 and 8, respectively, so that the heat of reaction when the metal hydride absorbs and dissociates hydrogen is transferred to the heating medium through heat exchange. configured to communicate. Further, the metal hydride container 3 is heated to a higher temperature than the waste heat source 10. The waste heat source 1o corresponds to high-temperature waste gas discharged from factories or the like, or combustion gas.

今、MHIからMB2へ水素を移動させる場合を考える
。廃熱源10よj5MH1は高温に加熱され、水素平衡
圧力が一方のMB2の水素平衡圧力よシ高くなシ、パル
プ9を開くことによって水素はMHIからMB2へ移動
する0このときMB2は水素を吸蔵するため発熱反応を
起こし、発生した熱は熱媒体によシ外部へ取りだされる
Now, consider the case where hydrogen is transferred from MHI to MB2. Since the waste heat source 10, MH1 is heated to a high temperature and the hydrogen equilibrium pressure is higher than that of one MB2, hydrogen moves from MHI to MB2 by opening the pulp 9.At this time, MB2 absorbs hydrogen. This causes an exothermic reaction, and the generated heat is extracted to the outside by a heat medium.

ここで金属水素化物収容容器1が廃熱源1oよシ加熱さ
れる際、第2図aに示すように、前記収容容器3内に充
填されたMHIの層の厚みは極めて厚く、かつMHIは
微粉化しているため熱伝導率の悪い層を形成しているの
で、廃熱源1oに近接した部分のMHIの温度が一番高
くなり、廃熱源から遠ざかるにつれてMIllの温度は
低くなる。
Here, when the metal hydride storage container 1 is heated by the waste heat source 1o, as shown in FIG. Since it forms a layer with poor thermal conductivity, the temperature of MHI is the highest in the vicinity of the waste heat source 1o, and the temperature of MIll becomes lower as it moves away from the waste heat source.

第6図のようにMHIが多数の管状の金属水素化物収容
容器3に分割されて収容されている場合でも第2図aの
場合はど温度差は大きくつかないが廃熱源1oから遠ざ
かるにつれて1目との熱交換により高温気体の温度が低
下していくため、収容容器a内のMHIの温度は低くな
る。
Even if the MHI is divided and housed in a large number of tubular metal hydride containers 3 as shown in Fig. 6, the temperature difference does not increase significantly in the case of Fig. 2a, but as it moves away from the waste heat source 1o, Since the temperature of the high-temperature gas decreases due to heat exchange with the eyes, the temperature of the MHI in the container a decreases.

以上、従来例のいづれの場合でもMHlの温度の均一性
が得られず、また得られるとしても非常に長い時間を要
することになり、従って水素移動量の減少、冷暖房出力
の低下、単位時間当りの反応サイクルの減少等の悪影響
がでてくる。
As described above, in any of the conventional examples, uniformity of the MHL temperature cannot be obtained, and even if it can be obtained, it will take a very long time, resulting in a decrease in the amount of hydrogen transfer, a decrease in the cooling and heating output, and a decrease in the heating and cooling output per unit time. This results in negative effects such as a reduction in the reaction cycle.

発明が解決しようとする問題点 以上述べたように、気体等の高温廃熱によって金属水素
化物を加熱する場合、金属水素化物の極めて低い熱伝導
率と、高温廃熱気体の極めて低い熱伝達率とによって金
属水素化物の温度を均一に素早く上昇させることが難し
く、このことが冷暖房給湯装置の出力を低下させる原因
となっていた。
Problems to be Solved by the Invention As mentioned above, when metal hydrides are heated with high-temperature waste heat such as gas, there are two problems: the extremely low thermal conductivity of the metal hydride and the extremely low heat transfer coefficient of the high-temperature waste heat gas. This makes it difficult to uniformly and quickly raise the temperature of the metal hydride, which causes a decrease in the output of air-conditioning, heating, and hot-water supply systems.

問題点を解決するための手段 本発明は上記問題点を解決するため、連通した2種の金
属水素化物収容容器のうち加熱される方にヒートパイプ
流路を設け、このヒートパイプ流路の中に適当な作動媒
体を封入して作動させるものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a heat pipe flow path in the heated one of the two communicating metal hydride containers, and It is operated by enclosing a suitable working medium in it.

作用 本発明は上記した構成により、気体等の高温廃熱によっ
て金属水素化物収容容器内の金属水素化物を加熱する際
、前記収容容器内に設けたヒートパイプを作動させて廃
熱源に近接し高温になった部分の金属水素化物の熱を廃
熱源より遠ざかったより低い温度の部分の金属水素化物
へ移送し金属水素化物全体の温度を均一に素早く上昇さ
せることができる。
According to the above-described configuration, when the metal hydride in the metal hydride storage container is heated by high-temperature waste heat such as gas, the heat pipe provided in the storage container is operated to bring the heat pipe close to the waste heat source and generate high-temperature waste heat. The heat of the metal hydride in the waste heat source is transferred to the metal hydride in a lower temperature part farther away from the waste heat source, and the temperature of the entire metal hydride can be uniformly and quickly raised.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。第1図は本発明の一実施例を示した冷暖房給湯装置
の構成図である。金属水素化物1(MHl)及び金属水
素化物2 (MB2 )は金属水素化物収容容器3及び
4に充填されている。前記金属水素化物収容容器3と4
は水素導管6によって連通しており、導管6の途中にパ
ルプ9が設けられている。金属水素化物収容容器3及び
4にはそれぞれ熱媒体流路7及び8が設けられ、金属水
素化物が水素を吸蔵解離する際の反応熱を熱交換により
熱媒体に伝達し外部に取り出せるように構成されている
。金属水素化物収容容器3にはヒートパイプ流路6が上
下2段設けられ、それらはお互いに連通している。金属
水素化物収容容器3の下方には廃熱源10が位置してお
シ、廃熱源1oより高温の気体が上昇し金属水素化物収
容容器3を加熱する。前記ヒートパイプ流路6の内部に
は廃熱源1oの温度レベルに適応したヒートパイプ作動
液が封入されている。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings. FIG. 1 is a block diagram of an air-conditioning, heating, and hot-water supply apparatus showing an embodiment of the present invention. Metal hydride 1 (MHl) and metal hydride 2 (MB2) are filled in metal hydride storage containers 3 and 4. The metal hydride storage containers 3 and 4
are connected by a hydrogen conduit 6, and a pulp 9 is provided in the middle of the conduit 6. The metal hydride storage containers 3 and 4 are provided with heat medium channels 7 and 8, respectively, so that the heat of reaction when the metal hydride absorbs and dissociates hydrogen can be transferred to the heat medium through heat exchange and taken out to the outside. has been done. The metal hydride storage container 3 is provided with two heat pipe passages 6, upper and lower, which communicate with each other. A waste heat source 10 is located below the metal hydride container 3, and high temperature gas rises from the waste heat source 1o to heat the metal hydride container 3. A heat pipe working fluid adapted to the temperature level of the waste heat source 1o is sealed inside the heat pipe flow path 6.

上記した構成の冷暖房給湯装置において、金属水素化物
1 (MHI )から金属水素化物2(MB2)へ水素
を移動させMB2が水素を吸蔵する際の反応熱を熱媒体
流路8内の熱媒体に伝達し外部に増シ出して暖房あるい
は給湯として利用しようとする場合を考える。金属水素
化物収容容器3内のMHIは廃熱源10により加熱され
るが、MHIは極めて熱伝導率が低いため、廃熱源に近
接した部分のMHI(下部)と遠い部分のMHI(上部
)との間に温度差が生じる。そのとき温度の高い部分の
MHIと接している下側のヒートパイプ流路6内で作動
媒体が沸騰し、沸騰して気化したガス状の作動媒体は温
度の低い部分のMHIと接した上側のヒートパイプ流路
に移動し、そこで凝縮して再び液体となシ重力落下して
下側のヒートパイプ流路に戻り、さらに沸騰・凝縮のサ
イクルを繰りかえす。このとき、廃熱源に近接した1l
H1の下部ではヒートパイプ作動媒体の沸騰によシ熱が
奪われ温度が低下する。反対に廃熱源から遠い側のMH
Iの上部ではヒートパイプ作動媒体の凝縮によりMHI
への入熱が起こり温度が上昇するOMHlの上部と下部
とに温度差がある限りヒートパイプは作動して温度差を
減少させるように働くが、MHIの上下の温度差がなく
なればヒートパイプの作動は停止する。一般にヒートパ
イプ作動媒体の沸騰あるいは凝縮は極めて熱の伝達係数
が高く、ヒートパイプによる熱の移送は、金属水素化物
層の熱伝導によるよりもはるかに効率的で迅速である。
In the air-conditioning/heating water supply system having the above configuration, hydrogen is transferred from metal hydride 1 (MHI) to metal hydride 2 (MB2), and the reaction heat generated when MB2 absorbs hydrogen is transferred to the heat medium in the heat medium flow path 8. Let's consider a case where the amount of heat is transmitted to the outside and used for space heating or hot water supply. The MHI in the metal hydride storage container 3 is heated by the waste heat source 10, but since the thermal conductivity of the MHI is extremely low, the MHI in the part close to the waste heat source (lower part) and the MHI in the part far away from the waste heat source (upper part) are separated. A temperature difference occurs between them. At that time, the working medium boils in the lower heat pipe flow path 6 that is in contact with the MHI in the high temperature part, and the gaseous working medium that has boiled and vaporized is transferred to the upper heat pipe flow path 6 that is in contact with the MHI in the low temperature part. It moves to the heat pipe flow path, where it condenses and becomes a liquid again, falls by gravity and returns to the lower heat pipe flow path, where the cycle of boiling and condensation is repeated. At this time, 1 liter near the waste heat source
At the lower part of H1, heat is removed by boiling of the heat pipe working medium and the temperature decreases. On the other hand, the MH on the side far from the waste heat source
At the top of I, MHI is generated due to condensation of the heat pipe working medium.
As long as there is a temperature difference between the top and bottom of the OMHL where heat input occurs and the temperature rises, the heat pipe will operate to reduce the temperature difference, but if the temperature difference between the top and bottom of the MHI disappears, the heat pipe will Operation stops. Generally, boiling or condensation of a heat pipe working medium has a very high heat transfer coefficient, and heat transfer by a heat pipe is much more efficient and rapid than by heat conduction through a metal hydride layer.

本実施例ではヒートパイプは上下2段に設置されている
が、さらに段数を増やして設置すれば金属水素化物層の
等温性が一層向上し効果的である〇上記のように、廃熱
源1oにより金属水素化物収容容器3が加熱されると、
ヒートパイプの働きにより収容容器3内部の金属水素化
物1の温度は均一に素早く上昇して吸蔵していた水素を
放出することによシ金属水素化物収容容器3内部の水素
圧力が上昇する。
In this example, the heat pipes are installed in two stages, upper and lower, but if the number of stages is further increased, the isotherm of the metal hydride layer will be further improved and it will be more effective. When the metal hydride storage container 3 is heated,
Due to the action of the heat pipe, the temperature of the metal hydride 1 inside the container 3 rises uniformly and quickly, and the hydrogen pressure inside the metal hydride container 3 increases by releasing the stored hydrogen.

一方、金属水素化物収容容器4内のMB2は熱媒体によ
シ適当な温度に保持されその水素圧力は金属水素化物収
容容器3内の水素圧力よシ低くなっている。そこで、二
つの金属水素化物収容容器間を連通している水素導管6
に設けられたバルブ9を開けると水素は金属水素化物収
容容器3から金属水素化物収容容器4へ移動し、金属水
素化物2に吸蔵され、反応熱が熱媒体により外部へ取り
だされ、暖房給湯に使用される。
On the other hand, MB2 in the metal hydride storage container 4 is maintained at an appropriate temperature by the heat medium, and its hydrogen pressure is lower than the hydrogen pressure in the metal hydride storage container 3. Therefore, the hydrogen conduit 6 that communicates between the two metal hydride storage containers
When the valve 9 provided in used for.

従来例として第6図で示したように、金属水素化物収容
容器3が多数の管に分割されて管の内部に金属水素化物
が充てんされている場合でも第2図に示すように分割さ
れた管の全てをヒートパイプで連通ずることにより、廃
熱源による加熱時のMHIの温度ムラをなくすことがで
き、ヒートパイプによる収容容器3内部からのMHIの
加熱と、高温気体による収容容器3外部からの対流加熱
とによって、MHIを所定の温度まで素早く上昇させる
ことができる。
As shown in FIG. 6 as a conventional example, even when the metal hydride storage container 3 is divided into a number of tubes and the insides of the tubes are filled with metal hydride, the metal hydride container 3 is divided as shown in FIG. 2. By connecting all of the tubes with heat pipes, it is possible to eliminate temperature irregularities in the MHI when heated by the waste heat source, and the MHI is heated from inside the container 3 by the heat pipe, and the MHI is heated from the outside of the container 3 by high temperature gas. The MHI can be quickly raised to a predetermined temperature by convection heating.

また第3図、第4図のようにヒートパイプ流路6と熱媒
体流路7を共用して、MHlが高温に加熱され水素を放
出する際にはバルブ11及び12を閉じてヒートパイプ
を作動させ、反対にMHIが水素を吸蔵し発熱する場合
にはバルブ11及び12を開いて熱媒体流路として用い
反応熱を外部に取り出すようにすることもできる。
In addition, as shown in Figs. 3 and 4, the heat pipe passage 6 and the heat medium passage 7 are shared, and when the MHL is heated to a high temperature and releases hydrogen, the valves 11 and 12 are closed and the heat pipe is closed. On the other hand, when the MHI absorbs hydrogen and generates heat, the valves 11 and 12 can be opened and used as a heat medium flow path to take out the reaction heat to the outside.

なお本実施例では水素平衡圧力の低い方のみを加熱する
構成としたが金属水素化物収容容器3゜4をともに加熱
する構成であってもよい0発明の効果 本発明は以上のように、水素吸蔵平衡圧の異なる2種の
金属水素化物を内蔵した一対の金属水素化物収容容器を
互いに連通させて相互に水素の移動を行なわせて、金属
水素化物が水素を吸蔵(あるいは放出)する際の反応熱
を暖房・給湯(あるいは冷房)に利用する冷暖房給湯装
置において、少くとも一方の金属水素化物収容容器に複
数段のヒートパイプ流路を設け、それらを互いに連通さ
せることにより、金属水素化物の温度を均一に素早く所
定の温度まで変化させることができ、その結果、冷暖房
出力の増大、単位時間あたシの反応サイクルの増加を図
ることができる。
In this embodiment, only the one with the lower equilibrium hydrogen pressure is heated, but it is also possible to use a structure in which both the metal hydride storage containers 3 and 4 are heated. A pair of metal hydride storage containers containing two types of metal hydrides with different absorption equilibrium pressures are communicated with each other to allow hydrogen to move between them, and the metal hydride absorbs (or desorbs) hydrogen. In an air-conditioning/water supply system that uses reaction heat for space heating and hot water supply (or cooling), at least one metal hydride storage container is provided with multiple stages of heat pipe passages, and these are communicated with each other. The temperature can be uniformly and quickly changed to a predetermined temperature, and as a result, the heating and cooling output can be increased and the number of reaction cycles per unit time can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による金属水素化物利用冷暖
房給湯装置の構成図、第2図、第3図。 第4図は本発明の他の実施例による同装置の構成図、第
5図、第6図は従来の金属水素化物利用冷暖房給湯装置
の構成図である。 1.2・・・・・・金属水素化物、3.4・・・・・・
金属水素化物収容容器、6・・・・・・ヒートパイプ流
路、7,8・・・・・・熱媒体流路、1o・・・・・・
廃熱源、9,11゜12・川・・バルブ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名IO
・・・奏然孫 第2図 第 3 図 第5図 窮6図
FIG. 1 is a block diagram of an air conditioning, heating, and hot water supply system using metal hydrides according to an embodiment of the present invention, and FIGS. 2 and 3 are diagrams. FIG. 4 is a block diagram of the same apparatus according to another embodiment of the present invention, and FIGS. 5 and 6 are block diagrams of a conventional air-conditioning, heating, and hot-water supply apparatus using metal hydrides. 1.2...Metal hydride, 3.4...
Metal hydride storage container, 6... Heat pipe channel, 7, 8... Heat medium channel, 1o...
Waste heat source, 9,11゜12・river...valve. Name of agent: Patent attorney Toshio Nakao and one other IO
・・・Sakuran Son Figure 2 Figure 3 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 水素平衡圧力の異なる2種の金属水素化物を内蔵した一
対の金属水素化物収容容器を、互いに連通させ、前記金
属水素化物収容容器のうち少なくとも水素平衡圧力の低
い方を加熱する構成とし、この加熱される金属水素化物
収容容器内に、内部に作動媒体を有する複数段のヒート
パイプ流路を設け、それらを互いに連通させた金属水素
化物利用冷暖房給湯装置。
A pair of metal hydride storage containers containing two types of metal hydrides having different hydrogen equilibrium pressures are communicated with each other, and at least the one having a lower hydrogen equilibrium pressure of the metal hydride storage containers is heated, and this heating A heating, cooling, and hot water supply system using a metal hydride, in which a metal hydride storage container is provided with a plurality of heat pipe passages each having a working medium therein, and these passages are communicated with each other.
JP12653185A 1985-06-11 1985-06-11 Metallic hydride utilizing air-conditioning hot-water supplydevice Granted JPS61285356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12653185A JPS61285356A (en) 1985-06-11 1985-06-11 Metallic hydride utilizing air-conditioning hot-water supplydevice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12653185A JPS61285356A (en) 1985-06-11 1985-06-11 Metallic hydride utilizing air-conditioning hot-water supplydevice

Publications (2)

Publication Number Publication Date
JPS61285356A true JPS61285356A (en) 1986-12-16
JPH0311392B2 JPH0311392B2 (en) 1991-02-15

Family

ID=14937507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12653185A Granted JPS61285356A (en) 1985-06-11 1985-06-11 Metallic hydride utilizing air-conditioning hot-water supplydevice

Country Status (1)

Country Link
JP (1) JPS61285356A (en)

Also Published As

Publication number Publication date
JPH0311392B2 (en) 1991-02-15

Similar Documents

Publication Publication Date Title
US4510759A (en) Metalhydride container and metal hydride heat storage system
JPS61285356A (en) Metallic hydride utilizing air-conditioning hot-water supplydevice
JPS6249163A (en) Metallic-hydride utilizing air-conditioning hot-water supplydevice
JP2643235B2 (en) Metal hydride heating and cooling equipment
JPH02259374A (en) Cooling apparatus using metal hydride
JPS6183847A (en) Intermittent operation type heat pump device
JPS61134551A (en) Metallic hydride heat pump device
JPS62202971A (en) Intermittent operation type heat pump device
JP2573862B2 (en) Heat storage device
JPH0429949B2 (en)
JPH06194077A (en) Heat-exchanging device
JPS5892746A (en) Hot water supply device
JPS591947B2 (en) Heat exchange system using hydrogen storage metal and its operation method
JPS6331702Y2 (en)
JPS62258972A (en) Intermittent operation type heat pump device
JPS6329185B2 (en)
JPS62202970A (en) Intermittent operation type heat pump device
JPS5943720B2 (en) Heat storage and heat extraction method
JPS62202969A (en) Intermittent operation type heat pump device
JPS62106291A (en) Air-conditioning and hot-water supplying device utilizing hydrogenated metal
JPH0316594B2 (en)
JPS638393B2 (en)
JPS62237262A (en) Intermittent heat pump device
JPS61285357A (en) Heat pump device
JPS62276373A (en) Intermittent operation type heat pump device