JPS6249163A - Metallic-hydride utilizing air-conditioning hot-water supplydevice - Google Patents

Metallic-hydride utilizing air-conditioning hot-water supplydevice

Info

Publication number
JPS6249163A
JPS6249163A JP18694085A JP18694085A JPS6249163A JP S6249163 A JPS6249163 A JP S6249163A JP 18694085 A JP18694085 A JP 18694085A JP 18694085 A JP18694085 A JP 18694085A JP S6249163 A JPS6249163 A JP S6249163A
Authority
JP
Japan
Prior art keywords
metal hydride
hydrogen
heating
amount
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18694085A
Other languages
Japanese (ja)
Other versions
JPH0313503B2 (en
Inventor
敬 井波
努 原田
功 竹下
実 田頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18694085A priority Critical patent/JPS6249163A/en
Publication of JPS6249163A publication Critical patent/JPS6249163A/en
Publication of JPH0313503B2 publication Critical patent/JPH0313503B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は工場廃熱等により駆動される金属水素化物を利
用した冷暖房給湯装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an air-conditioning, heating and water-heating system using metal hydride, which is driven by factory waste heat or the like.

従来の技術 TiMn系合金に代表される金属水素化物は、ある温度
、圧力条件のもとて水素ガスを吸蔵して発熱反応を行な
い、別の温度、圧力条件のもとでは水素ガスを放出して
吸熱反応を行なう。金属水素化物の上記の特性を利用し
て金属水素化物が水素と反応する際の反応熱を適当な熱
媒により熱交換することによって外部に取り出し、温熱
発生時には暖房給湯用として、冷熱発生時には冷房用と
して利用することができる。このような冷暖房装置の従
来の構成例を第3図に示す。
Conventional technology Metal hydrides, represented by TiMn alloys, absorb hydrogen gas and undergo an exothermic reaction under certain temperature and pressure conditions, and release hydrogen gas under other temperature and pressure conditions. An endothermic reaction is carried out. Utilizing the above-mentioned properties of metal hydrides, the reaction heat when metal hydrides react with hydrogen is extracted to the outside by heat exchange with an appropriate heat medium, and is used for heating and hot water supply when hot heat is generated, and for cooling when cold heat is generated. It can be used for any purpose. An example of a conventional configuration of such a heating and cooling device is shown in FIG.

2つの異なる水素平衡圧力を有する金属水素化物1(以
後MH,と呼ぶ)及び金属水素化物2(MH2)は第3
図に示すように金属水素化物収容容器3および4内に充
てんされており、金属水素化物収容容器3および4は水
素導管6によって連通しており、前記導管6の途中にバ
ルブ12が設けらねている。金属水素化物収容容器3及
び4にはそれぞれ熱媒体流路6および7が設けられ、金
属水素化物が水素を吸蔵、解離する際の反応熱を熱交換
により熱媒体に伝達ずSように構成されている。さらに
金属水素化物収容容器3は廃熱源11より高温に加熱さ
れるようになっている。廃熱源11は工場等から排出さ
れる高温の廃ガス、あるいは燃焼ガス等が相当する。
Metal hydride 1 (hereinafter referred to as MH) and metal hydride 2 (MH2) with two different hydrogen equilibrium pressures are
As shown in the figure, the metal hydride storage containers 3 and 4 are filled with hydrogen, and the metal hydride storage containers 3 and 4 are communicated with each other by a hydrogen pipe 6, and a valve 12 is provided in the middle of the pipe 6. ing. The metal hydride storage containers 3 and 4 are provided with heat medium channels 6 and 7, respectively, and are configured so that the heat of reaction when the metal hydride absorbs and dissociates hydrogen is not transferred to the heat medium by heat exchange. ing. Furthermore, the metal hydride storage container 3 is heated to a higher temperature than the waste heat source 11. The waste heat source 11 corresponds to high-temperature waste gas discharged from factories or the like, combustion gas, or the like.

今、MH,からMH2へ水素を移動させる場合を考える
。廃熱源11よりMH,は高温に加熱され、水素平衡圧
力が一方のMH2の水素平衡圧力より高くなり、パルプ
9を開くことによって水素はMH,からMH2へ移動す
る。このときMH2は水素を吸蔵するだめ発熱反応を起
こし、発生[7だ熱は熱媒体により外部へ取りだされる
Now, consider the case where hydrogen is transferred from MH, to MH2. MH, is heated to a high temperature by the waste heat source 11, the hydrogen equilibrium pressure becomes higher than the hydrogen equilibrium pressure of one MH2, and by opening the pulp 9, hydrogen moves from MH, to MH2. At this time, MH2 absorbs hydrogen and causes an exothermic reaction, and the generated heat is taken out by the heat medium.

ここで、金属水素化物収容容器3が廃熱源11より加熱
される際、第3図に示すようにMH,が少くとも一以上
の管状の金属水素化物収容容器3に分割されて収容され
ている場合、廃熱g11に最も近接した最下段のMH,
の温度が高く、廃熱源から遠ざかるにつれてMHlとの
熱交換により高温気体の温度が低下していくため、収容
容器3内のMH,の温度は低くなる。このようにMH,
の温度に均一性が得られず、温度分布を有するときには
、水素解離平衡圧にも高低差が生じ、バルブ12をあけ
てMH,からMH2へ水素を移動させた場合、水素の移
動は圧力差で起こるため水素解離平衡圧の高い部分(温
度の高い部分)のMH,からの水素移動量が最も多く、
水素解離平衡圧の低い部分(温度の低い部分)のMH,
からの水素移動量が最も少なくなる。つまり、同重量の
MH4を分割された金属水素化物収容容器3に等分に充
てんしても、加熱温度の不均一性により、水素移動量が
異なり、合金の利用度に差が生じて、温度の低い部分の
MH,は利用度が悪いという欠点があった。
Here, when the metal hydride storage container 3 is heated by the waste heat source 11, as shown in FIG. 3, the MH is divided and stored in at least one or more tubular metal hydride storage containers 3. In this case, the lowest MH closest to the waste heat g11,
The temperature of the high temperature gas is high, and as it moves away from the waste heat source, the temperature of the high temperature gas decreases due to heat exchange with the MH1, so the temperature of the MH in the container 3 decreases. In this way, MH,
When the temperature of MH is not uniform and has a temperature distribution, there will be a height difference in the hydrogen dissociation equilibrium pressure, and when the valve 12 is opened and hydrogen is moved from MH, to MH2, the movement of hydrogen will be due to the pressure difference. Since this occurs at
MH in the area where the hydrogen dissociation equilibrium pressure is low (the area where the temperature is low),
The amount of hydrogen transferred from is the smallest. In other words, even if the same weight of MH4 is filled equally into the divided metal hydride container 3, the amount of hydrogen transferred will differ due to the non-uniformity of the heating temperature, resulting in a difference in the degree of utilization of the alloy. The MH in the lower part had the disadvantage of being poorly utilized.

また金属水素化物収容容器3が複数に分割されていても
金属水素化物の温度分布が比較的少ない場合や、金属水
素化物収容容器が複数に分割されずに一体となっている
場合でも、水素移動量が吸蔵、解離時に一定にならず、
金属水素化物中の吸蔵水素量(濃度)が反応を繰り返す
うちにあらかじめ設計した動作点からずれて、安定なサ
イクル運転ができない欠点があった。
Furthermore, even if the metal hydride storage container 3 is divided into multiple parts, the temperature distribution of the metal hydride is relatively small, or even if the metal hydride storage container 3 is not divided into multiple parts but is integrated, hydrogen transfer The amount is not constant during occlusion and dissociation,
There was a drawback that the amount (concentration) of absorbed hydrogen in the metal hydride deviated from the pre-designed operating point as the reaction was repeated, making stable cycle operation impossible.

発明が解決しようとする問題点 以上述べたように気体等の高温廃熱によって金属水素化
物を加熱するとき、金属水素化物が多数の管状の金属水
素化物収容容器に分割されている場合金属水素化物に温
度分布が生じる。温度が低い部分の金属水素化物はその
水素解離平衡圧が低くなり、対になった他の金属水素化
物へ水素を移動させる場合水素移動量は温度の高い部分
の金属水素化物に較べて少なくなり、利用度が悪くなる
という問題点かあ一つだ。
Problems to be Solved by the Invention As stated above, when metal hydride is heated by high-temperature waste heat such as gas, if the metal hydride is divided into a number of tubular metal hydride storage containers, metal hydride temperature distribution occurs. The hydrogen dissociation equilibrium pressure of the metal hydride in the lower temperature area is lower, and when hydrogen is transferred to the other metal hydride in the pair, the amount of hydrogen transferred is smaller than in the metal hydride in the high temperature area. , The other problem is that the usage rate is poor.

また、金属水素化物収容容器が複数に分割されていても
金属水素化物の温度分布が比・鮫的少ない場合や、金属
水素化物収容容器が複数に分割されず一体となっている
場合に、水素移動量が吸蔵。
In addition, even if the metal hydride storage container is divided into multiple parts, the temperature distribution of the metal hydride is relatively small, or if the metal hydride storage container is not divided into multiple parts but is integrated, the hydrogen The amount of movement is occluded.

解離時に一定にならず、安定したサイクルを構成するこ
とができず、安定した冷暖房出力を得られないという問
題点もあ−)だ。
Another problem is that it does not become constant during dissociation, making it impossible to form a stable cycle, making it impossible to obtain stable heating and cooling output.

問題点を解決するだめの手段 本発明は上記問題点を解決するため、2種の金属水素化
物収容容器を連通する配管途中に水素流計の債幻値が既
定値(で到達したことを検知して自動的に管路を閉止す
る手段を設けるものである。
Means for Solving the Problems In order to solve the above problems, the present invention detects that the phantom value of a hydrogen flowmeter has reached a predetermined value (at a predetermined value) in the middle of the piping that communicates two types of metal hydride containers. A means for automatically closing the pipe is provided.

作用 本発明は上記した構成により、気体等の高温廃熱によっ
て金属水素化物収容容器内の金属水素化物を加熱して水
素を放出させる際、金属水素化物収容容器が分割されて
おり金属水素化物に温度分布が生じても各分割要素にお
ける水素放出量を一定にすることができ、合金の利用率
の均一化がはかれる。また二種類の金属水素化物収容容
器間で交互に水素の移動を行なわせる場合にも、水素移
動量が一定になり、繰り返し運転の安定性向上、冷暖房
出力の均一化が図れる。
Effect of the present invention With the above-described configuration, when the metal hydride in the metal hydride storage container is heated to release hydrogen by high-temperature waste heat such as gas, the metal hydride storage container is divided and the metal hydride is heated. Even if temperature distribution occurs, the amount of hydrogen released in each dividing element can be kept constant, and the utilization rate of the alloy can be made uniform. Furthermore, even when hydrogen is transferred alternately between two types of metal hydride storage containers, the amount of hydrogen transfer becomes constant, improving the stability of repeated operations and making the cooling and heating output uniform.

実施例 以下本発明の一実施例を添付図面にもとづいて説明する
。第1図は本発明の一実施例を示した冷暖房給湯装置の
構成図である。金属水素化物1(MH,)は3分割され
た金属水素化物収容容器3(で等量ずつ充てんされてい
る。金属水素化物2(MH2)は金属水素化物収容容器
4に充てんされている。
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings. FIG. 1 is a block diagram of an air-conditioning, heating, and hot-water supply apparatus showing an embodiment of the present invention. Metal hydride 1 (MH,) is filled in equal amounts in three divided metal hydride storage containers 3. Metal hydride 2 (MH2) is filled in metal hydride storage container 4.

前記金属水素化物収容容器3と4は水素導管5によって
連通しており、金属水素化物収容容器3側では水素導管
は3つに分岐し、そのそれぞれに、水素移動量の積算値
を検知して、所定の値になれば水素の移動を閉止する弁
8,9.10が設けられている。金属水素化物収容容器
3及び4には、それぞれ熱媒体流路6及び7が設けられ
、金属水素化物が水素を吸蔵解離する際の反応熱を熱交
換により熱媒体に伝達し、外部に取り出せるように構成
されている。また゛金属水素化物収容容器3は高温気体
等の廃熱源11により加熱されるように構成されている
The metal hydride storage containers 3 and 4 are communicated with each other by a hydrogen pipe 5, and on the metal hydride storage container 3 side, the hydrogen pipe branches into three parts, and the integrated value of the amount of hydrogen transferred is detected in each of the three parts. , valves 8, 9, and 10 are provided which close the movement of hydrogen when a predetermined value is reached. The metal hydride storage containers 3 and 4 are provided with heat medium channels 6 and 7, respectively, so that the reaction heat when the metal hydride absorbs and dissociates hydrogen is transferred to the heat medium by heat exchange and taken out to the outside. It is composed of Further, the metal hydride storage container 3 is configured to be heated by a waste heat source 11 such as high-temperature gas.

上記した構成の冷暖房給湯装置において、金属水素化物
1(MH,)から金属水素化物2(MH2)へ水素を移
動させMH2が水素を吸蔵する際の反応熱を熱媒体流路
T内の熱媒体に伝達し外部に取り出して暖房あるいは給
湯として利用しようとする場合を考える。金属水素化物
収容容器3は廃熱源11によシ加熱され金属水素化物1
の温度は上昇するが、分割された金属水素化物収容容器
3の廃熱源9に近接した最下段の部分の温度が最も高く
、廃熱源から遠ざかるjt(つれて温度は低くなる。水
素解離平衡圧力は水素吸蔵量が同じ場合温度に比例する
ので、金属水素化物収容容器3内の圧力は最下段が最も
高く最上段が最も低くなっている。このときパルプ8〜
1oを開けて水素をMH,からMH2へ移動させると、
水素移動量はMH,とMH2の圧力差に比例するので、
最下段から移動する水素の量がまず最初に既定値に到達
しパルプ1oは自動的に閉止し、水素の移動は停止し最
下段の金属水素化物1の水素残存吸蔵量はある一定値に
保たれる。
In the air-conditioning/heating water supply system having the above configuration, hydrogen is transferred from metal hydride 1 (MH, ) to metal hydride 2 (MH2), and the reaction heat when MH2 absorbs hydrogen is transferred to the heat medium in the heat medium flow path T. Consider the case where the air is transmitted to the outside and used for space heating or hot water supply. The metal hydride storage container 3 is heated by a waste heat source 11 and the metal hydride 1 is heated.
The temperature of the lowermost portion of the divided metal hydride container 3 that is close to the waste heat source 9 is the highest, and as it moves away from the waste heat source, the temperature decreases.Hydrogen dissociation equilibrium pressure is proportional to the temperature when the amount of hydrogen storage is the same, so the pressure inside the metal hydride storage container 3 is highest at the bottom stage and lowest at the top stage.
If you open 1o and move hydrogen from MH, to MH2,
The amount of hydrogen transferred is proportional to the pressure difference between MH and MH2, so
The amount of hydrogen moving from the bottom stage first reaches a predetermined value, the pulp 1o automatically closes, the movement of hydrogen stops, and the remaining hydrogen storage capacity of the metal hydride 1 in the bottom stage is kept at a certain constant value. dripping

さらに時間が経過し、温度が上昇した中間段の金属水素
化物1から移動する水素量も既定値に達するのでパルプ
9は閉止し中間段の金属水素化物1の水素残存吸蔵量は
最下段と同じ値に保たれる。
Further time passes, and the amount of hydrogen transferred from the metal hydride 1 in the middle stage, where the temperature has increased, reaches the predetermined value, so the pulp 9 is closed and the remaining hydrogen storage capacity of the metal hydride 1 in the middle stage is the same as that in the bottom stage. value is kept.

同様に最上段の金属水素化物1から移動する水素量も最
終的に既定値に達しパルプ8は閉止する。
Similarly, the amount of hydrogen transferred from the metal hydride 1 in the uppermost stage eventually reaches a predetermined value and the pulp 8 closes.

同様に最上段の金属水素化物1の水素残存吸蔵量は最下
段、中間段と同じである。以上のように水素流量の積算
値が既定値に達すると自動的に水素の流動を閉止するパ
ルプ8〜10を分割された金属水素化物収容容器3それ
ぞれに設けることにより、温度条件に関わらず水素放出
量は一定であり、金属水素化物の水素吸蔵放出能力を分
割された金属水素化物全体にわたって平均的に利用する
ことができる。またこの種の冷暖房給湯装置はMHlと
MH2との間で交互に水素を移動させてサイクリックに
冷熱あるいは温熱を得ようとするものであるから、 M
H2からMH,へ水素を移動させてMHlから温熱を、
 MH2から冷熱を得ようとする場合にも、パルプ8〜
10の作用により、分割された金属水素化物1は均等に
水素を吸蔵するはずである。即ち1吸蔵・放出のサイク
ルを繰り返してもMWlとMH2との間を移動する水素
の量は常に一定であるから水素残存吸蔵量が変化するこ
となく安定したサイクルを構成することができる。
Similarly, the remaining hydrogen storage capacity of the metal hydride 1 in the uppermost stage is the same as that in the lowermost stage and the middle stage. As described above, by providing each of the divided metal hydride storage containers 3 with pulps 8 to 10 that automatically close the flow of hydrogen when the integrated value of the hydrogen flow rate reaches a predetermined value, it is possible to The release amount is constant, and the hydrogen storage and release ability of the metal hydride can be utilized evenly over the entire divided metal hydride. In addition, this type of air-conditioning/heating/water heating system attempts to cyclically obtain cold or warm heat by transferring hydrogen alternately between MHL and MH2.
Transfer hydrogen from H2 to MH, and heat from MHL,
When trying to obtain cold energy from MH2, pulp 8~
Due to the action of 10, the divided metal hydride 1 should absorb hydrogen evenly. That is, even if one occlusion/desorption cycle is repeated, the amount of hydrogen moving between MWl and MH2 is always constant, so a stable cycle can be constructed without any change in the remaining hydrogen storage amount.

また第2図のように金属水素化物1が分割されていない
場合でも、水素流量の積算値が既定値に達すると自動的
に水素の流動を閉止するパルプ13を設けることにより
、MH,とMH2の2つの金属水素化物収容容器間を移
動する水素量は一定になるだめ、金属水素化物中の吸蔵
水素量(濃度)が吸蔵時と解離時とで各々同じ値をとゆ
、安定したサイクルを構成することができる。
Furthermore, even if the metal hydride 1 is not divided as shown in FIG. The amount of hydrogen that moves between the two metal hydride storage containers must be constant, so the amount (concentration) of absorbed hydrogen in the metal hydride remains the same during occlusion and dissociation, and a stable cycle is maintained. Can be configured.

発明の効果 本発明は以上のように、水素吸蔵平衡圧の異なる2種の
金属水素化物を内蔵した一対の金属水素化物収容容器を
互いに連通させて相互に水素の移動を行なわせて、金属
水素化物が水素を吸蔵(あるいは放出)する際の反応熱
を加熱(あるいは冷却)に利用する金属水素化物利用冷
暖房給湯装置において、一対の金属水素化物収容容器を
連通ずる配管途中に水素流量の積算値が既定値に到達し
たことを検知して自動的に管路を閉止する手段を設ける
ことにより一対の金属水素化物収容容器間を交互に移動
する水素量が一定になり、従って金属水素化物中の吸蔵
水素量(濃度)が吸蔵時とブ・F随時とで各々同じ値を
とる安定したサイクルを+1.−成することができ、安
定した冷暖房出力を得ることができる。まだ金属水素化
物収容容器が複数に分割されてお互いが管路で連結され
、前記管路に分割数に応じた数歌の前記閉止手段を設け
ることにより1分割さilだ各部分での温度分布の有無
に関わらず、水素放出鼠が一定になり、合金(“)利用
率の均一化がはかれ、安定したサイクルを構成すること
ができる。
Effects of the Invention As described above, the present invention enables a pair of metal hydride storage containers containing two types of metal hydrides with different hydrogen storage equilibrium pressures to be communicated with each other to mutually transfer hydrogen. In a metal hydride heating/cooling/water supply system that utilizes the reaction heat generated when a metal hydride absorbs (or releases) hydrogen for heating (or cooling), the integrated value of the hydrogen flow rate is calculated in the middle of the piping that connects a pair of metal hydride storage containers. By providing a means to automatically close the pipeline by detecting that the amount of hydrogen has reached a predetermined value, the amount of hydrogen that alternately moves between the pair of metal hydride containers becomes constant, and therefore the amount of hydrogen in the metal hydride is A stable cycle in which the amount of absorbed hydrogen (concentration) takes the same value during storage and during B/F is +1. - It is possible to achieve stable heating and cooling output. The metal hydride storage container is divided into a plurality of parts, which are connected to each other by pipes, and the pipes are provided with a number of closing means corresponding to the number of divisions, so that the temperature distribution in each part is divided into one part. Regardless of the presence or absence of hydrogen, the hydrogen release rate becomes constant, the alloy utilization rate becomes uniform, and a stable cycle can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における金属水素化物利用冷
暖房給湯装置の原理図、第2図は本発明の他の実施例の
冷暖房給湯装置の原理図、第3図は従来の冷暖房給湯装
置の原理図で選る。 1.2・・・・・・金属水素化物、3,4・・・・・・
金属水素化物収容容器、5・・・・・・水素導管、6,
7・・・・・・熱媒体流路、8,9.10・・・・バル
ブ、11・・・・・・廃熱源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−、圭属木系化笥I ?−−−金屓水幸化勾2 δ、9.10−−−ハ゛ルフ゛ n−−一廃黙源
Fig. 1 is a principle diagram of an air conditioning/heating water heater using metal hydride according to an embodiment of the present invention, Fig. 2 is a principle diagram of an air conditioning/heating water heater according to another embodiment of the invention, and Fig. 3 is a conventional air conditioning/heating water heater. Select based on the principle diagram. 1.2...Metal hydride, 3,4...
Metal hydride storage container, 5...Hydrogen conduit, 6,
7... Heat medium flow path, 8,9.10... Valve, 11... Waste heat source. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--, Kei Genki-kei Kasu I? --- Kinpei Suiko Kagaku 2 δ, 9.10 --- Half n -- Ichihaimokugen

Claims (1)

【特許請求の範囲】[Claims] 水素吸蔵平衡圧の異なる2種の金属水素化物を内蔵した
一対の金属水素化物収容容器を互いに連通させ、相互に
水素の移動を行なわせて金属水素化物が水素を吸蔵(あ
るいは解離)する際の反応熱を加熱(あるいは冷却)に
利用する金属水素化物利用冷暖房給湯装置において、一
対の金属水素化物収容容器を連通する配管途中に水素流
量の積算値が規定値に到達したことを検知し自動的に管
路を閉止する手段を設けることを特徴とする金属水素化
物利用冷暖房給湯装置。
A pair of metal hydride storage containers containing two types of metal hydrides with different hydrogen storage equilibrium pressures are communicated with each other, and hydrogen is transferred between them, so that the metal hydride absorbs (or dissociates) hydrogen. In a metal hydride heating/cooling/water supply system that uses reaction heat for heating (or cooling), it automatically detects that the integrated hydrogen flow rate has reached a specified value in the middle of the piping that connects a pair of metal hydride containers. 1. A heating, cooling, and hot water supply system using a metal hydride, characterized in that a means for closing a pipe is provided in the water supply system.
JP18694085A 1985-08-26 1985-08-26 Metallic-hydride utilizing air-conditioning hot-water supplydevice Granted JPS6249163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18694085A JPS6249163A (en) 1985-08-26 1985-08-26 Metallic-hydride utilizing air-conditioning hot-water supplydevice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18694085A JPS6249163A (en) 1985-08-26 1985-08-26 Metallic-hydride utilizing air-conditioning hot-water supplydevice

Publications (2)

Publication Number Publication Date
JPS6249163A true JPS6249163A (en) 1987-03-03
JPH0313503B2 JPH0313503B2 (en) 1991-02-22

Family

ID=16197381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18694085A Granted JPS6249163A (en) 1985-08-26 1985-08-26 Metallic-hydride utilizing air-conditioning hot-water supplydevice

Country Status (1)

Country Link
JP (1) JPS6249163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149690A (en) * 1988-11-30 1990-06-08 Shimadzu Corp Gaseous hydrogen feeder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511960Y2 (en) * 1992-05-01 1996-09-25 小島プレス工業株式会社 Switch device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149690A (en) * 1988-11-30 1990-06-08 Shimadzu Corp Gaseous hydrogen feeder

Also Published As

Publication number Publication date
JPH0313503B2 (en) 1991-02-22

Similar Documents

Publication Publication Date Title
EP0071271B1 (en) Metal hydride heat pump system
JPS6249163A (en) Metallic-hydride utilizing air-conditioning hot-water supplydevice
US4589479A (en) Hot water supply unit
JPS61285356A (en) Metallic hydride utilizing air-conditioning hot-water supplydevice
JPS62202971A (en) Intermittent operation type heat pump device
JP2643235B2 (en) Metal hydride heating and cooling equipment
JPH0429949B2 (en)
Michel et al. Thermochemical Heat Tranformer for Waste Heat Recovery: consideration of dynamic aspects for design
JPH0316594B2 (en)
JPS62202970A (en) Intermittent operation type heat pump device
JP2000346483A (en) Heat pump
JPS62217096A (en) Continuous operation system of heat storage type heat exchanger
JPS6183847A (en) Intermittent operation type heat pump device
JPH0355749B2 (en)
JPH0745992B2 (en) Control method for air conditioning system using metal hydride
JPS6329185B2 (en)
JPS62202969A (en) Intermittent operation type heat pump device
JPS62276373A (en) Intermittent operation type heat pump device
JPH0646154B2 (en) Cooling and heating water heater using metal hydride
JPS62196597A (en) System utilizing heat
JPS61134551A (en) Metallic hydride heat pump device
JPS638393B2 (en)
JPS62276372A (en) Intermittent operation type heat pump device
JPS60245974A (en) Multiple effect heat pump device
JPS63143466A (en) Heat pump utilizing metallic hydride and control method thereof