JP2643235B2 - Metal hydride heating and cooling equipment - Google Patents

Metal hydride heating and cooling equipment

Info

Publication number
JP2643235B2
JP2643235B2 JP63045640A JP4564088A JP2643235B2 JP 2643235 B2 JP2643235 B2 JP 2643235B2 JP 63045640 A JP63045640 A JP 63045640A JP 4564088 A JP4564088 A JP 4564088A JP 2643235 B2 JP2643235 B2 JP 2643235B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
heat
storage alloy
hydrogen
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63045640A
Other languages
Japanese (ja)
Other versions
JPH01219455A (en
Inventor
冽 石橋
隆 三ッ本
ケッヒャー ヴォルフガング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP63045640A priority Critical patent/JP2643235B2/en
Publication of JPH01219455A publication Critical patent/JPH01219455A/en
Application granted granted Critical
Publication of JP2643235B2 publication Critical patent/JP2643235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、低公害、無騒音、高効率のメタルハイドラ
イド加熱冷却装置に関するものであり、ヒートポンプと
して、家庭用空調器分野等に適用され得る。
The present invention relates to a low-pollution, noise-free, high-efficiency metal hydride heating and cooling apparatus, and as a heat pump, a home air conditioner. Etc. can be applied.

(従来の技術) 本発明に係る水素吸蔵合金の水素の放出・吸蔵に伴う
吸熱・発熱をヒートポンプに応用した技術は、この水素
吸蔵合金の種類の相違を中心に多数報告されている。2
種類の水素吸蔵合金を用いた、最も基本的ヒートポンプ
サイクルの例として、例えば、特公昭62−1189号の「加
熱、冷却方法」がある。これはTiMn系合金を使用した冷
暖房装置に関するものである。さらにヒートポンプ効率
を高める方法として、例えば、[増補・金属水素化物−
その特性と応用」大角泰章著、化学工業社昭和61年発刊
の121・2・5節、「金属水素化物ヒートポンプ」に2
重効果型冷房サイクルを含めた記述がある。
(Prior Art) Many techniques for applying heat absorption and heat generation of a hydrogen storage alloy according to the present invention to heat pumps due to release and storage of hydrogen have been reported mainly for differences in the types of hydrogen storage alloys. 2
As an example of the most basic heat pump cycle using various kinds of hydrogen storage alloys, there is, for example, a "heating and cooling method" of Japanese Patent Publication No. 62-1189. This relates to a cooling and heating device using a TiMn-based alloy. As a method for further improving the heat pump efficiency, for example, [Enhancement / metal hydride-
"Characteristics and Applications", written by Yasumasa Osumi, published in Chemical Industry Co., Ltd. in 1986, Section 122.5, "Metal hydride heat pump"
There is description including heavy-effect cooling cycle.

前者を説明すると以下の通りである。すなわち、それ
以前既に提案されていた、LaNi5,MmCo5,MmNi5等の水素
吸蔵合金が高価で経済性に劣つているとし、安価で水素
化特性が優れたTiMn合金を使用することにより、実用的
な冷暖房装置が得られると記述している。ヒートポンプ
として運転する際の熱サイクルを第5図に示す。この中
でT1は水素吸蔵合金Bの水素放出時の保持温度(冷却温
度)、T2は水素吸蔵合金AおよびBの水素吸蔵時の保持
温度、T3は水素吸蔵合金Aの外部熱源による加熱温度で
ある。又P1は水素吸蔵合金Aの水素吸蔵圧力、P2はその
放出圧力、P3は水素吸蔵合金Bの水素吸蔵圧力、P4は放
出圧力である。今、水素吸蔵合金AにT3(150℃)の熱
源からQ1の熱量を加えると、圧力P2(40atm)の水素を
放出する。この水素を水素吸蔵合金Bに送り込むと、こ
の水素吸蔵合金Bは水素を吸蔵し、この時T2(50℃)の
温度レベルで熱Q2を発生する。次に水素吸蔵合金AをT4
(50℃)で冷却すると、平衡水素圧力は約4atmに減少
し、これと連通している水素吸蔵合金Bは、熱量Q3をT1
(=9℃)の外気から吸収しながら、P4(約5atm)の水
素を放出し、この水素は水素吸蔵合金Aに吸蔵される。
この時、前述のT4において熱量Q4を放出する。こうして
T3(=150℃)の熱源で与えられた熱量Q1に対しT2T4
(=50℃)の温度の熱量Q2+Q4が得られ、室内暖房等に
利用できる。この時のヒートポンプ効率ηは、η=(Q2
+Q4)/Q1となり、例えば1.4程度が期待できる。
The former is as follows. That is, previously proposed before, LaNi 5 , MmCo 5 , and hydrogen storage alloys such as MmNi 5 are expensive and inferior in economics, and by using a TiMn alloy that is inexpensive and has excellent hydrogenation characteristics, It states that a practical cooling and heating system can be obtained. FIG. 5 shows a heat cycle when operating as a heat pump. T 1 in this holding temperature at the hydrogen release of the hydrogen storage alloy B (cooling temperature), T 2 is the holding temperature at the hydrogen storage of the hydrogen storage alloy A and B, T 3 is by an external heat source of the hydrogen storage alloy A Heating temperature. The P 1 is the hydrogen storage pressure of the hydrogen storage alloy A, P 2 is the discharge pressure, P 3 is hydrogen absorbing pressure of the hydrogen storage alloy B, P 4 is a discharge pressure. Now, the addition of heat for Q 1 from the heat source of T 3 (150 ℃) in the hydrogen storage alloy A, releases hydrogen pressure P 2 (40atm). When this hydrogen is fed into the hydrogen storage alloy B, the hydrogen storage alloy B stores hydrogen, and at this time, generates heat Q 2 at a temperature level of T 2 (50 ° C.). Next, hydrogen storage alloy A was added to T 4
When cooled at (50 ° C.), the equilibrium hydrogen pressure decreases to about 4 atm, and the hydrogen storage alloy B communicating therewith reduces the calorific value Q 3 by T 1
While absorbing from outside air (= 9 ° C.), hydrogen of P 4 (about 5 atm) is released, and this hydrogen is stored in the hydrogen storage alloy A.
At this time, it releases an amount of heat Q 4 in T 4 above. In this way
T 2 T 4 for the heat quantity Q 1 given by the heat source of T 3 (= 150 ° C)
A calorific value Q 2 + Q 4 at a temperature of (= 50 ° C.) can be obtained and can be used for room heating and the like. The heat pump efficiency η at this time is η = (Q 2
+ Q 4) / Q 1 becomes, for example, about 1.4 can be expected.

更にヒートポンプの効率を高める方法として後者の、
2重効果型サイクルを第6図を用いて説明する。M1H,M2
H,M3Hはそれぞれ平衡水素解離温度の異なる水素吸蔵合
金である。平衡水素解離温度が最も高い、水素吸蔵合金
M1Hに、熱源からThの温度で加熱QAが行われると、M1Hは
この熱を吸収しP1の圧力の水素を放出する。発生した水
素は平衡水素解離温度の最も低いM3Hに送られここで、M
3Hに吸蔵され、その際、Tmの温度の熱量QBを発生する。
次にM2Hが、Tmの温度で外から冷却されるとそこでの圧
力はP2′となり、この時、M3HとM2Hを連通させると、M3
Hに吸蔵されていた水素は、Tlの温度の熱を外部より吸
収しながら解離し、M2Hにおいて、Tmの温度の熱量QD
放出しながら吸蔵される。更にM1HがやはりTmの温度で
外から冷却されると、その水素圧力はP3′となり、ここ
でM1HとM2Hを連通させると、M2HからM1Hに向つて水素か
流れ、この時M2Hでは水素放出に伴うTl温度の吸熱が、
一方M1Hでは水素吸蔵に伴うTm温度の放熱QD′が発生す
る。こうして、M1Hを熱源からThの温度の熱QAで再び加
熱する事により熱サイクルが一巡する。ヒートポンプと
してこの熱サークルの効率ηは η=(QB+QD+QD′)/QA2 が期待される。
As a method to further increase the efficiency of the heat pump,
The double effect cycle will be described with reference to FIG. M 1 H, M 2
H and M 3 H are hydrogen storage alloys having different equilibrium hydrogen dissociation temperatures. Hydrogen storage alloy with the highest equilibrium hydrogen dissociation temperature
To M 1 H, the heating Q A is carried out at a temperature of T h from the heat source, M 1 H releases hydrogen at a pressure of P 1 absorbs this heat. The generated hydrogen is sent to M 3 H, which has the lowest equilibrium hydrogen dissociation temperature, where M 3 H
3 H occluded in, this time, to generate a heat quantity Q B temperature T m.
Then M 2 H is, the pressure therein when cooled from the outside at the temperature of the T m P 2 ', and the time, when the communicating the M 3 H and M 2 H, M 3
Hydrogen was stored in H is dissociated while absorbing from the outside temperature of the heat T l, the M 2 H, and are inserted while emitting heat Q D temperature T m. Further, when M 1 H is also cooled from the outside at the temperature of T m , the hydrogen pressure becomes P 3 ′. Here, when M 1 H and M 2 H are connected, M 2 H flows from M 2 H to M 1 H. flow connexion either hydrogen, endothermic T l temperatures associated with this time M 2 H at the hydrogen release,
On the other hand, in M 1 H, a heat radiation Q D ′ at the T m temperature is generated due to the occlusion of hydrogen. Thus, the thermal cycle is round by heating again with hot Q A temperature T h the M 1 H from the heat source. This heat circle efficiency eta of η = (Q B + Q D + Q D ') / Q A 2 is expected as a heat pump.

(発明が解決しようとする課題) 従来の2重効果型サイクルは、確かにヒートポンプ効
率を2近くまで高める可能性を持つているが以下の欠点
がある。すなわち、このサイクルを冬期の暖房用に使用
する時、外気から吸熱するために、水素吸蔵合金自身、
外気温以下に下がらなければならない(例えば0℃〜−
10℃)。更に室内を暖房するためには水素吸蔵に伴う放
熱過程は室温以上(例えば30℃以上)の必要がある。現
在使用できる水素吸蔵合金(例えばTiFe,MmMi5,TiMm1.5
等)で、上記の温度条件を満たすよう、ヒートポンプサ
イクルを実現すると、最低圧力を取り扱いやすい1気圧
に選んだ時、最高圧力は約20気圧の高圧になる。逆に最
高圧を高圧ガス規制以下の10気圧に選べば、最低作動水
素圧力は0.2〜0.3気圧の負圧になる。このように上述の
2重効果型サイクルは、水素の作動ガス圧力範囲が広
く、水素ガス回路を、高圧仕様にしたり、負圧仕様にす
る必要があり、取り扱い上不便である。すなわち、高圧
仕様では、高圧ガス規制に基づく耐圧処理が必要とな
り、又負圧仕様の場合は外部から作動ガス回路への空気
等の混入を防ぐためシール処理が必要となる。
(Problems to be Solved by the Invention) The conventional double-effect type cycle has a possibility to increase the heat pump efficiency to nearly 2, but has the following disadvantages. That is, when this cycle is used for heating in winter, in order to absorb heat from the outside air, the hydrogen storage alloy itself,
It must fall below the outside temperature (for example, 0 ° C-
10 ° C). Furthermore, in order to heat the room, the heat radiation process accompanying the occlusion of hydrogen needs to be at room temperature or higher (for example, 30 ° C. or higher). Currently available hydrogen storage alloys (eg TiFe, MmMi 5 , TiMm 1.5
If the heat pump cycle is implemented to satisfy the above temperature conditions, the highest pressure will be about 20 atm when the lowest pressure is selected to be 1 atm for easy handling. Conversely, if the maximum pressure is selected to be 10 atm below the high pressure gas regulation, the minimum working hydrogen pressure will be 0.2 to 0.3 atm. As described above, the double-effect cycle described above has a wide working gas pressure range of hydrogen, and requires a high-pressure specification or a negative-pressure specification of the hydrogen gas circuit, which is inconvenient in handling. That is, the high pressure specification requires a pressure treatment based on the high pressure gas regulation, and the negative pressure specification requires a sealing treatment to prevent air or the like from entering the working gas circuit from the outside.

更に、水素ガスを負圧で使用する時は、水素吸蔵合金
からの水素の放出速度が極端に遅くなり(水素吸蔵合金
毎に異なるが、例えばLaNi5で25℃の時、2気圧で既に
吸蔵した水素を半分放出するのに20分かかる)ヒートポ
ンプとして使えない。
Furthermore, when hydrogen gas is used at a negative pressure, the rate of release of hydrogen from the hydrogen storage alloy becomes extremely slow (depending on the hydrogen storage alloy, for example, when LaNi 5 is used at 25 ° C, it is already stored at 2 atm. (It takes 20 minutes to release half of the generated hydrogen.) It cannot be used as a heat pump.

又、この2重効果型サイクルで、上記のように最高圧
を10気圧、又は最低圧を1気圧に選定すると、熱源の温
度が制約され前者で100℃前後、後者で150℃前後に限定
される。
In addition, in this double effect cycle, if the maximum pressure is selected to be 10 atmospheres or the minimum pressure to 1 atmosphere as described above, the temperature of the heat source is restricted and the former is limited to around 100 ° C, and the latter is limited to around 150 ° C. You.

本発明は、水素ガス回路を、高圧使用にしたり、負圧
使用にしたりする必要のない、取り扱い容易で構造の簡
単な加熱冷却装置を提供することにあり、また熱源の温
度を広い範囲で制約しない加熱冷却装置を提供すること
にある。
An object of the present invention is to provide a heating / cooling device which is easy to handle and has a simple structure without using a hydrogen gas circuit under a high pressure or under a negative pressure, and restricts the temperature of a heat source in a wide range. It is an object of the present invention to provide a heating and cooling device that does not require any heating.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 前記の課題を解決するために講じた手段は以下の通り
である。第1水素吸蔵合金を収容した第1容器(1):
前記第1水素吸蔵合金より平衡水素解離温度の低い第2
水素吸蔵合金を収容した第2容器(3):前記第1容器
(1)と前記第2容器(3)との間の水素移動を制御す
る第1配管手段(5・6):第3水素吸蔵合金を収容し
た第3容器(7):前記第3水素吸蔵合金より平衡水素
解離温度の低い第4水素吸蔵合金を収容した第4容器
(9):前記第3容器(7)と前記第4容器(9)との
間の水素移動を制御する第2配管手段(11・12):前記
第1容器(1)内の前記第1水素吸蔵合金と前記第3容
器(7)内の前記第3水素吸蔵合金との間の熱的連結を
制御する熱連結手段(16・26)を備え、前記第1配管手
段(5・6)、前記第1水素吸蔵合金の加熱(Q1)の
後、前記熱連結手段(16・26)および前記第2配管手段
(11・12)を適宜制御して、前記第2水素吸蔵合金の放
熱(Q2)、前記第3水素吸蔵合金の放熱(Q4′)および
前記4水素吸蔵合金の放熱(Q2′)を順次別々に行っ
て、逐次加熱源として利用される前記第1水素吸蔵合金
の加熱(Q1)、前記第2水素吸蔵合金の放熱(Q2)、前
記第3水素吸蔵合金の放熱(Q4′)および前記第4水素
吸蔵合金の放熱(Q2′)をして一つのサイクルならし
め、前記各放熱(Q2/Q4′/Q2′)を、前記第2水素吸蔵
合金、前記第3水素吸蔵合金および前記第4水素吸蔵合
金と択一的に熱連結される共通の熱交換器(22)から取
り出すようにした、メタルハイドライド加熱冷却装置を
構成したことである。
(Means for Solving the Problems) The measures taken to solve the above problems are as follows. First container (1) containing first hydrogen storage alloy:
A second equilibrium hydrogen dissociation temperature lower than that of the first hydrogen storage alloy;
Second container (3) containing hydrogen storage alloy: first piping means (5.6) for controlling hydrogen transfer between first container (1) and second container (3): third hydrogen Third container (7) containing the storage alloy: fourth container (9) containing a fourth hydrogen storage alloy having an equilibrium hydrogen dissociation temperature lower than that of the third hydrogen storage alloy: the third container (7) and the fourth container Second piping means (11, 12) for controlling the transfer of hydrogen to and from the four containers (9): the first hydrogen storage alloy in the first container (1) and the second hydrogen storage device in the third container (7). Thermal connection means (16, 26) for controlling thermal connection with the third hydrogen storage alloy, after the first piping means (5.6), after heating (Q1) the first hydrogen storage alloy; The heat connection means (16, 26) and the second piping means (11, 12) are appropriately controlled to release heat (Q2) of the second hydrogen storage alloy and the third hydrogen storage alloy. The heat release (Q4 ') of gold and the heat release (Q2') of the 4-hydrogen storage alloy are sequentially performed separately, and the heating (Q1) of the first hydrogen storage alloy used as a sequential heating source and the second hydrogen storage are performed. The heat release of the alloy (Q2), the heat release of the third hydrogen storage alloy (Q4 ') and the heat release of the fourth hydrogen storage alloy (Q2') are made into one cycle, and the heat release (Q2 / Q4 '/ Q2 ′) is extracted from a common heat exchanger (22) that is selectively thermally connected to the second hydrogen storage alloy, the third hydrogen storage alloy, and the fourth hydrogen storage alloy. That is, a heating and cooling device is configured.

(作用) しかして、このメタルハイドライド加熱冷却装置にお
いて、共通の熱交換器(22)から放熱される熱量は、1
サイクルの間にQ2、Q4′、Q2′と変化する。したがっ
て、メタルハイドライド加熱冷却装置の熱効率は、全体
として、放熱熱量/加熱熱量=(Q2+Q4′+Q2′)/Q1
となり、諸条件を適宜設定することにより、熱効率を1
以上にすることが可能となる。
(Operation) In this metal hydride heating and cooling apparatus, the amount of heat radiated from the common heat exchanger (22) is 1
Change during the cycle to Q2, Q4 ', Q2'. Therefore, the thermal efficiency of the metal hydride heating / cooling device is calculated as follows: heat dissipation / heating heat = (Q2 + Q4 '+ Q2') / Q1
By setting various conditions appropriately, the thermal efficiency can be reduced to 1
The above can be achieved.

(実施例) 第1図に多段カスケード式ヒートポンプのうち、2段
の場合の実施例を示す。容器(1)に、加熱源の温度に
適した水素吸蔵合金▲MH ▼(2)を収容し、別の容
器(3)には、該水素吸蔵合金▲MHA 1▼(2)とともに
ヒートポンプサイクルを形成できる適当な水素吸蔵合金
(4)を収容する。これら2つの容器を、水素ガスが移
動できるよう配管(5)で連結し、途中に水素ガスの流
れを制御するバルブ(6)を設ける。同様に容器(7)
に、前述水素吸蔵合金▲MHA 1▼(2)の水素吸蔵時発熱
過程での温度▲TA H2▼より低い温度で、水素放出によ
る吸熱を行う水素吸蔵合金▲MHB 1▼(8)を収容し、さ
らに別の容器(9)に該水素吸蔵合金▲MHB 1▼(8)と
ともにヒートポンプサイクルを形成できる適当な水素吸
蔵合金▲MHB 2▼(10)を収容し、これらを水素ガスが移
動できるように配管(11)で連結し、その途中に、水素
ガスの流れを制御するバルブ(12)を設ける。
(Embodiment) FIG. 1 shows an embodiment of a multi-stage cascade heat pump having two stages. The container (1), the hydrogen storage alloy suitable for the temperature of the heat source ▲ MH A 1 accommodates ▼ (2), to another container (3), the hydrogen storage alloy ▲ MH A 1 ▼ with (2) It contains a suitable hydrogen storage alloy (4) that can form a heat pump cycle. These two containers are connected by a pipe (5) so that the hydrogen gas can move, and a valve (6) for controlling the flow of the hydrogen gas is provided on the way. Similarly container (7)
, At a temperature ▲ T A H2 ▼ lower temperatures in a hydrogen-absorbing time of heat generation process described above the hydrogen storage alloy ▲ MH A 1 ▼ (2) , the hydrogen storage alloy ▲ MH B 1 performs heat absorption of hydrogen release ▼ (8) houses, further housing a separate container (9) to the hydrogen storage alloy ▲ MH B 1 ▼ (8) it is possible to form a heat pump cycle suitable hydrogen absorbing alloy ▲ MH B 2 ▼ (10) , these hydrogen A pipe (11) is connected so that the gas can move, and a valve (12) for controlling the flow of the hydrogen gas is provided on the way.

容器(1)には外部の高熱源から加熱できる熱交換器
(13)を備え、容器(3)及び(9)には、大気から吸
熱するための熱交換器(14)及び(15)をそれぞれ設け
る。
The container (1) is provided with a heat exchanger (13) capable of heating from an external high heat source, and the containers (3) and (9) are provided with heat exchangers (14) and (15) for absorbing heat from the atmosphere. Each is provided.

容器(1)と容器(7)とは、容器(1)内の水素吸
蔵合金▲MHA 1▼(2)が水素吸蔵時に発生する熱を、容
器(7)内の水素吸蔵合金▲MHB 1▼(8)に伝達するた
めの熱伝達回路(16)で結ばれ、容器(3),(7),
(9)には、水素吸蔵時に発生する熱を、外部に取り出
すための熱交換器(17),(18),(19)が備えられ、
これらは、同時切り換え弁(20),(21)を介し、さら
に別の熱交換器(22)と連通し、該発生熱を空調等に利
用できるようにしている。
The container (1) and the container (7) are configured to transfer heat generated when the hydrogen storage alloy [MH A 1 ] (2) in the container (1) stores hydrogen to the hydrogen storage alloy [MH B] in the container (7). 1 ▼ Connected by a heat transfer circuit (16) for transferring to (8), and containers (3), (7),
(9) is provided with heat exchangers (17), (18), and (19) for extracting heat generated during hydrogen storage to the outside,
These are communicated with another heat exchanger (22) via the simultaneous switching valves (20) and (21) so that the generated heat can be used for air conditioning and the like.

各熱交換器(13),(14),(15),(16)には、こ
のヒートポンプの熱サイクルの必要な時期にのみ熱を伝
え、不必要な時には、熱の移動を禁止する制御弁(2
3),(24),(25),(26)を設ける。
A control valve that transmits heat to each of the heat exchangers (13), (14), (15), and (16) only when the heat cycle of the heat pump is necessary, and prohibits the transfer of heat when unnecessary. (2
3), (24), (25), and (26) are provided.

高温熱源からの熱Q1は、弁(23)が開の時、熱交換器
(13)を介して水素吸蔵合金▲MHA 1▼(2)に送られ
る。この熱Q1により水素吸蔵合金▲MHA 1▼(2)は水素
を放出し、この時弁(26),(6)が閉じてあれば、圧
力は、熱源の温度で定められる平衡水素解離圧まで増加
する。平衡水素解離圧に達してからは、弁(6)を開
け、高圧の水素又は配管(5)を通り容器(3)内の水
素吸蔵合金▲MHA 2▼(4)に吸蔵され、この時水素吸蔵
熱Q2を発生する。同時切り換え弁(20),(21)の1の
側に開いておくと、発生熱Q2は熱交換器(22)を通して
暖房に使われる。
Heat to Q 1 from the hot heat source, when the valve (23) is open, is sent to a hydrogen absorbing alloy ▲ MH A 1 ▼ (2) via the heat exchanger (13). This heat Q 1 causes the hydrogen storage alloy ▲ MH A 1 ((2) to release hydrogen. At this time, if the valves (26) and (6) are closed, the pressure will be the equilibrium hydrogen dissociation determined by the temperature of the heat source. Increase to pressure. From reaching equilibrium hydrogen dissociation pressure, open the valve (6), it is inserted in the high-pressure hydrogen or pipe (5) the street container (3) in the hydrogen absorbing alloy ▲ MH A 2 ▼ (4) , when this generating a hydrogen absorbing heat Q 2. Simultaneous switching valve (20), leaving open one side of (21), the generated heat Q 2 is used for heating through a heat exchanger (22).

次に同時切り換え弁(20),(21)を2の側に開き、
容器(7)内の水素吸蔵合金▲MHB 1▼(8)から熱交換
器(18)を通して吸熱Q4を行う。この時弁(12)を制御
して、所定の圧力で水素を水素吸蔵合金▲MHB 1▼(8)
を吸着させると、容器(9)内の水素吸蔵合金(10)は
圧力差により水素を放出しこの際弁(25)を開にすれ
ば、熱交換器(15)を介して、大気から熱Q3′を吸収す
る。
Next, open the simultaneous switching valves (20) and (21) to the side 2
Performing heat absorption Q 4 through a heat exchanger (18) from the container (7) of the hydrogen storage alloy ▲ MH B 1 ▼ (8) . At this time, the valve (12) is controlled to store hydrogen at a predetermined pressure in the hydrogen storage alloy MHMH B 1 ((8)
When the hydrogen is absorbed, the hydrogen storage alloy (10) in the container (9) releases hydrogen due to the pressure difference. At this time, when the valve (25) is opened, heat is released from the atmosphere through the heat exchanger (15). Absorbs Q 3 ′.

次に弁(26)を開け、熱交換器(16)を介して容器
(1)内の水素吸蔵合金▲MHA 1▼(2)から、容器
(7)内の水素吸蔵合金▲MHB 1▼(8)へ熱を移動させ
ると、容器(1)内では放熱に伴う水素吸蔵合金▲MHA 1
▼(2)への水素の吸蔵が起き、弁(6)を開けて容器
(3)内の水素吸蔵合金▲MHA 2▼(4)に吸蔵されてい
た水素を放出させると吸熱が起こる。ここで弁(24)を
開ければ、大気よりQ3の吸熱が行われる。一方容器
(7)では、熱の流入(Q4)に伴い水素吸蔵合金▲MHB 1
▼(8)に吸蔵されていた水素は解離し、弁(12)を開
けると、この解離した水素は、容器(9)に移動し、こ
の容器内の水素吸蔵合金▲MHB 2▼(10)に吸着される。
この時、吸蔵吸熱(Q2′)が発生し、同時切り換え弁
(20),(21)を3にすると、熱交換器(22)を介し
て、この吸蔵熱(Q2′)は暖房に使われる。
Then open the valve (26), through the heat exchanger (16) from the container (1) in the hydrogen absorbing alloy ▲ MH A 1 ▼ (2), the container (7) the hydrogen storage alloy ▲ MH B 1 in ▼ When the heat is transferred to (8), the hydrogen storage alloy ▲ MH A 1 accompanying the heat release in the container (1)
▼ (2) occurs occlusion of hydrogen into and to release hydrogen that was stored in the container (3) in the hydrogen storage alloy ▲ MH A 2 ▼ (4) of opening the valve (6) an endothermic occurs. In this case it opens the valve (24), the heat absorption of the Q 3 is performed above atmospheric. In contrast container (7), with the inflow of heat (Q 4) hydrogen storage alloy ▲ MH B 1
▼ The hydrogen absorbed in (8) is dissociated, and when the valve (12) is opened, the dissociated hydrogen moves to the container (9), and the hydrogen storage alloy MHMH B 2 ▼ (10 ).
At this time, occlusion heat absorption (Q 2 ′) occurs, and when the simultaneous switching valves (20) and (21) are set to 3, the occlusion heat (Q 2 ′) is supplied to the heating via the heat exchanger (22). used.

こうして再び高温熱源から熱Q1を水素吸蔵合金▲MHA 1
▼(2)に供給して、サイクルは一巡する。
In this way, heat Q 1 is again transferred from the high-temperature heat source to the hydrogen storage alloy ▲ MH A 1
▼ (2), the cycle goes around.

これを第2図に示す熱サイクル図で説明すると、平衡
水素解離温度の異なる水素吸蔵合金MH1,▲MHA 2▼を各々
別の容器に収容し、この容器を配管にて連通し水素の移
動を可能にする。水素の解離温度がより高い水素吸蔵合
金▲MHA 1▼を外部の熱源で、▲TA H1▼の温度が加熱す
ると、▲MHA 1▼は熱量QA1を吸熱して▲PA H▼の圧力の
水素を放出する(図中A1)。この水素は、連通配管を通
つて、解離温度がより低い水素吸蔵合金▲MHA 2▼にほぼ
▲PA H▼の圧力で吸蔵される。この時▲TA L1▼の温度
の熱QA2を発生する(図中A2)。次に前述の水素吸蔵合
金▲MHA 1▼を別の水素吸蔵合金▲MHB 1▼で冷却し、▲T
A H2▼の温度まで下げると、この容器内の圧力は▲PA H
▼から、平衡水素解離圧曲線に沿つて下がり、▲PA L
に達する。
Explaining this with the thermal cycle diagram shown in FIG. 2, hydrogen storage alloys MH 1 and MHMH A 2の having different equilibrium hydrogen dissociation temperatures are housed in separate containers, respectively, Enable movement. Dissociation temperature of the hydrogen is higher hydrogen storage alloy ▲ MH A 1 ▼ with an external heat source, ▲ T when A H1 ▼ temperature of heating, ▲ MH A 1 ▼ is absorbs the heat quantity Q A1 ▲ P A H ▼ It releases hydrogen at a pressure of (A1 in the figure). This hydrogen is stored in the hydrogen storage alloy MHMH A 2が with a lower dissociation temperature at a pressure of ▲ P A Hて through the communication pipe. At this time ▲ T A L1 ▼ generates heat Q A2 of temperature (figure A2). Next, the above-mentioned hydrogen storage alloy MHMH A 1冷却 was cooled with another hydrogen storage alloy MHMH B 1 、, and ▲ T
A H2 When the temperature is lowered to ▼, the pressure in this container becomes ▲ P A H
From ▼, along connexion dropped to the equilibrium hydrogen dissociation pressure curve, ▲ P A L
Reach

この後、▲MHA 2▼と連通せしめると、▲MHA 2▼に吸蔵
されていた水素は解離し、▲PA 1▼の圧力で▲MHA 1▼に
吸蔵される。この時、▲MHA 2▼側では▲TA L2▼の温度
で吸熱QA3が生じ(図中A3)、同時に▲MHA 1▼側では▲
A H2▼の温度で発熱QA4が生じる。(図中A4)。この熱
量QA4は前述の別の水素吸蔵合金▲MHA 1▼の圧力は▲PA
L▼に留まり、温度も一定値▲TA H2▼を保つ。次に外部
より▲TA H1▼の温度で加熱し、熱量QA1を加えると、▲
MHA 1▼は再び吸熱して▲PA H▼の圧力の水素を発生し、
サイクルは一巡する。
Thereafter, ▲ MH A 2 ▼ and if allowed to communicate, ▲ MH A 2 ▼ hydrogen that was stored dissociates to, ▲ P A 1 ▼ occluded ▲ MH A 1 ▼ to a pressure of. In this, ▲ MH A 2 ▼ The side ▲ T A L2 ▼ temperature heat absorption Q A3 occurs at the (in the drawing A3), is simultaneously ▲ MH A 1 ▼ side ▲
Exothermic Q A4 occurs at the temperature of T A H2 ▼. (A4 in the figure). The heat quantity Q A4 another hydrogen absorbing alloy ▲ MH A 1 ▼ pressures described above ▲ P A
L ▼ remain in, the temperature also remains constant value ▲ T A H2 ▼. Then heated externally from ▲ T A H1 ▼ temperature, the addition of heat Q A1,
MH A 1 ▼ absorbs heat again to generate hydrogen at a pressure of ▲ P A H ▼,
The cycle goes around.

ところで、▲MHA 1▼で発生した温度▲TA H2▼の熱量Q
A4を吸収した水素吸蔵合金▲MHB 1▼は、より解離温度の
低い水素吸蔵合金▲MHB 2▼と各々別の容器に収容され、
しかも、水素が移動可能なように、弁を介し配管にて連
通している。さて、熱量QA4を得た水素貯蔵合金▲MHB 1
▼は、▲TA H2▼よりやや低い温度▲TB H1▼で、吸蔵し
ていた水素を▲PB H▼の圧力で解離する。この水素圧力
は▲MHB 1▼の平衡水素解離圧力曲線上にある。▲MHB 1
と▲MHB 2▼の間の弁を開くと水素は▲MHB 2▼側に流れ込
み、ここで吸蔵され、この時▲TB L1▼の温度の熱量QB2
を放出する。次に▲MHB 1▼を冷却すると▲MHB 1▼は放熱
しながら水素を吸蔵し平衡水素解離圧力曲線に沿つて、
温度は▲TB L1▼の温度の熱量QB2を放出する。次に▲MH
B 1▼を冷却すると▲MHB 1▼は放熱しながら水素を吸蔵
し、平衡水素解離圧力曲線に沿つて、温度は▲TB H1
から▲TB H2▼まで、圧力は▲PB H▼から▲PB L▼まで
それぞれ減少し、さらにこの温度▲TB H2▼及び圧力▲
B L▼で水素を吸蔵しつづける。この際、全体として熱
量QB4を放出(図中B4)。一方▲MHB 2▼より解離温度の
低い▲MHB 2▼では▲PB L▼とほぼ等しい圧力で、吸蔵し
ていた水素の解離が起き、この時▲TB L2▼の温度で外
部よりQB3の吸熱をする。次に再び、▲MHA 1▼からの水
素吸蔵熱QA4を得て、▲MHB 1▼は水素を解離し、圧力は
▲PB L▼から▲PB H▼まで増加し、サイクルは一巡す
る。
Incidentally, ▲ MH A 1 ▼ temperature generated by ▲ T A H2 ▼ of heat Q
The hydrogen storage alloy ▲ MH B 1 ▼ that has absorbed A4 is stored in a separate container from the hydrogen storage alloy ▲ MH B 2 ▼ with a lower dissociation temperature,
In addition, the pipes communicate with each other via a valve so that hydrogen can move. Now, the hydrogen storage alloy ▲ MH B 1 which obtained the calorific value Q A4
▼ is, ▲ T A H2 ▼ slightly lower temperature ▲ T B H1 and ▼ than dissociates hydrogen was occluded with ▲ P B H ▼ pressure. This hydrogen pressure is on the equilibrium hydrogen dissociation pressure curve of MHMH B 1 ▼. ▲ MH B 1
When the valve between ▲ MH B 2 ▼ and the valve is opened, hydrogen flows into ▲ MH B 2 ▼ side, where it is occluded, and at this time, the heat quantity Q B2 at the temperature of ▲ T B L1
Release. Next, when ▲ MH B 1 ▼ is cooled, ▲ MH B 1 ▼ absorbs hydrogen while releasing heat, and follows the equilibrium hydrogen dissociation pressure curve,
Temperature emits ▲ T B L1 ▼ temperature heat Q B2 of. Then ▲ MH
When B 1 ▼ is cooled, MH B 1 ▼ absorbs hydrogen while releasing heat, and the temperature is ▲ T B H1 ▼ along the equilibrium hydrogen dissociation pressure curve.
From ▲ T B H2 until ▼, pressure decreased by ▲ P B H from ▼ ▲ P B L to ▼, further temperature ▲ T B H2 ▼ and pressure ▲
Continue to absorb hydrogen at P B L ▼. At this time, the calorific value QB4 is released as a whole ( B4 in the figure). Meanwhile ▲ MH B 2 lower dissociation temperature than the ▼ ▲ MH B 2 ▼ In ▲ in P B L ▼ substantially equal pressure, occur dissociation of hydrogen was occluded, from the outside in this case ▲ T B L2 ▼ temperature Endothermic Q B3 . Next, again, the heat of hydrogen storage Q A4 from MHMH A 1 is obtained, MHMH B 1解 dissociates hydrogen, the pressure increases from PP B Lか ら to PP B H , and the cycle Go around once.

▲MHA 1▼−▲MHA 2▼及び▲MHB 1▼−▲MHB 2▼の2対の
水素吸蔵合金ヒートポンプ回路の全熱収支を考えると、
外部から、▲TA H1▼の温度での加熱QA1に対し、▲TA
L1▼でQA2,▲TB L1▼でQB2,▲TB H2▼でQB4の放熱が起
き、この放熱量は、▲TA L1▼及び▲TB L1▼を例えば30
度程度に選び、▲TB H2▼をそれ以上に選定すれば全て
暖房用に利用できる。尚、▲TA L2▼での吸熱QA3及び▲
B L2▼での吸熱QB3は、温度▲TA L2▼及び▲TB L2▼を
例えば−10度程度に選べば、冬期、外気温が零下になつ
ても、この外気からQA3+QB3の吸熱が可能であることを
示している。
Considering the total heat balance of two pairs of hydrogen storage alloy heat pump circuits, ▲ MH A 1 ▼-▲ MH A 2 ▼ and ▲ MH B 1 ▼-▲ MH B 2
Externally to ▲ T A H1 heat Q A1 at a temperature of ▼, ▲ T A
L1 ▼ in Q A2, ▲ T B L1 ▼ at Q B2, ▲ T B H2 ▼ in occurs heat dissipation Q B4, the heat radiation amount, ▲ T A L1 ▼ and ▲ T B L1 ▼ eg 30
Select about degrees, ▲ T B H2 ▼ the available for all be selected heating it above. Incidentally, ▲ T A L2 endothermic Q A3 and in ▼ ▲
T B L2 ▼ endotherm Q B3 at a temperature ▲ T A L2 ▼ and ▲ T be selected B L2 ▼ to, for example, about -10 degrees, winter, connexion outside temperature, such below zero even, Q A3 + Q from the outside air This indicates that endothermic B3 is possible.

更にこの時圧力の変動範囲▲PA L▼〜▲PA H▼は水素
吸蔵合金の材質を選ぶことにより独立に設定できるの
で、両者とも1〜10気圧内におさめることが可能で、従
来技術のように圧力範囲が20気圧近くあるいはそれ以上
に高くなつて取り扱いが不便になつたり、逆に1気圧以
下の負圧になつて反応速度が極端に遅くなることがな
い。
Further since this time variation range of the pressure ▲ P A L ▼ ~ ▲ P A H ▼ can be set independently by choosing the material of the hydrogen storage alloy, both can fall within 1-10 atmospheres, prior art As described above, the handling becomes inconvenient when the pressure range is increased to about 20 atm or more, and conversely, the reaction rate does not become extremely slow when the negative pressure is 1 atm or less.

この時、ヒートポンプ全体の熱効率ηは、 η=(発生熱量)/(加熱熱量) =(QA2+QB2+QB4)/QA1 となり、単段のヒートポンプの効率に比べ大きく改良さ
れる(単段での効率は普通1.4程度だが、このカスケー
ド方式では2段の時約2.0となる)。
At this time, the heat efficiency η of the entire heat pump becomes η = (heat generated) / (heat generated) = (Q A2 + Q B2 + Q B4 ) / Q A1 , which is greatly improved compared to the efficiency of the single-stage heat pump (single-stage). The efficiency is usually about 1.4, but in this cascade method it is about 2.0 for two stages.)

更に第3図、多段カスケード式ヒートポンプに示した
ように、▲MHB 1▼の水素吸蔵過程で発生した熱QB4をす
ぐに暖房として使用してしまうのではなく、▲TB H2
よりわずかに低い温度で水素を解離する別の水素吸蔵合
金▲MHC 1▼の加熱に利用し、この水素吸蔵合金▲MHC 1
と、これより解離温度が低い水素合金▲MHC 2▼とを弁を
介した配管で連用せしめ、もう一対のヒートポンプ回路
を構成することもできる。
Further, as shown in FIG. 3, the multi-stage cascade heat pump, the heat QB4 generated in the hydrogen storage process of BMH B 1の is not used immediately for heating, but ▲ T B H2
It is used to heat another hydrogen storage alloy ▲ MH C 1 ▼ that dissociates hydrogen at a slightly lower temperature, and this hydrogen storage alloy ▲ MH C 1
And a hydrogen alloy (MH C 2) having a lower dissociation temperature than this, can be used continuously by piping via a valve, so that another pair of heat pump circuits can be formed.

この第3図の実施例は第1図及び第2図で述べた2容
器対を多数に増加連結したものであるため、基本は2容
器対に準ずるので詳細は省略する。
Since the embodiment shown in FIG. 3 is obtained by connecting a large number of the two container pairs described in FIGS. 1 and 2 in large numbers, the details are omitted because the basics are the same as the two container pairs.

次に第4図に示す縮退型カスケード式ヒートポンプを
説明する。前述の実施例のような2対あるいはそれに以
上の水素吸蔵合金対において、より水素解離温度の低い
水素吸蔵合金(▲MHA 2▼,▲MHB 2▼,▲MHC 2▼,・・
・)をすべて同種の水素吸蔵合金に置き換えると同じ圧
力範囲で、水素ガスを利用する際には暖房用に利用する
放熱量QA2,QB2の発生温度▲TA L1▼,▲TB L1▼,が等
しくなり、同様に外気からの吸熱温度▲TA L1▼,▲TB
L2▼も等しくでき、ヒートポンプとしての制御が容易に
なる。
Next, the degenerate cascade heat pump shown in FIG. 4 will be described. In two or more pairs of hydrogen storage alloys as in the above embodiment, the hydrogen storage alloys with lower hydrogen dissociation temperature (▲ MH A 2 , MHMH B 2 ▼, ▲ MH C 2 ,...)
At the same pressure range when ·) all replaced with hydrogen storage alloy of the same type, heat radiation amount utilized for heating the when using hydrogen gas Q A2, Q generation temperature of B2 ▲ T A L1 ▼, ▲ T B L1 ▼, are equal, the heat absorption temperature from the outside air as well ▲ T a L1 ▼, ▲ T B
L2 ▼ can be equalized, and control as a heat pump becomes easy.

〔発明の効果〕〔The invention's effect〕

300℃〜400℃程度の比較的高温の熱源を利用してヒー
トポンプサイクルを実現させる時には、従来の2重効果
型サイクルは実現できない。すなわち第6図で示したよ
うに図中のB,D,D′における放熱温度を等しく30℃付近
に設定すると、A点で示される熱源の温度はせいぜい15
0℃である。従つてA点の温度を例えば350℃に設定する
と、D′点をB,Dで示される温度Tmより更に高温の例え
ば280℃前後にする必要がある。この事は、暖房時に30
℃の熱と280℃の熱が次々に得られることを意味し、こ
の高温の熱の処理が難しい。
When a heat pump cycle is realized using a relatively high temperature heat source of about 300 ° C. to 400 ° C., a conventional double effect cycle cannot be realized. That is, as shown in FIG. 6, if the heat radiation temperatures at B, D, and D 'in FIG. 6 are set at about 30 ° C., the temperature of the heat source indicated by the point A is at most 15 ° C.
0 ° C. Setting the temperature of the sub connexion point A for example, 350 ° C., D 'point B, there still needs to be before and after the example 280 ° C. temperature higher than T m represented by D. This means that during heating 30
This means that heat of ° C and heat of 280 ° C are obtained one after another, and it is difficult to treat this high-temperature heat.

本発明のカスケード方式では、第2図に示されるよう
に、上述の比較的高温の熱源を利用する水素貯蔵合金ヒ
ートポンプに適している。すなわち、第2図において、
A1点で外部から▲TA H1▼350℃の熱が供給されると、
A2において▲TA L1▼30℃の熱を放出しA3で外気から
▲TA L2▼−10℃の吸熱をする。このサイクルは更にA
4において、▲TA H2▼280℃付近の熱を発生する。と
ころでこの約280℃の熱は、このカスケード方式では、
すぐに室内を暖めるのに使われるのではなく図中B1点で
示されるように水素吸蔵合金ヒートポンプの熱源として
使われる。この次のステツプのサイクルでもB2点で▲T
B L1▼30℃の放熱が起き、B3点で▲TB L2▼−10℃の
熱を外部から吸収し、B4点で約80〜100℃の熱を放出す
る。従つて全体で1サイクルが完了した時暖房用として
約30℃の熱及び約90℃の熱が得られ、前記の2重効果型
サイクルのように高温の発生熱の処理に困ることがな
い。
As shown in FIG. 2, the cascade method of the present invention is suitable for the above-mentioned hydrogen storage alloy heat pump using a relatively high-temperature heat source. That is, in FIG.
Externally ▲ When T A H1 ▼ 350 ℃ of heat is supplied at point A1,
In A2 ▲ at T A L1 ▼ 30 ℃ of heat release A3 from the outside air ▲ T A L2 ▼ to -10 ° C. endothermic. This cycle is A
In 4, generating heat in the vicinity ▲ T A H2 ▼ 280 ℃. By the way, this 280 ° C heat is
It is not used to warm the room immediately, but as a heat source for the hydrogen storage alloy heat pump as shown by point B1 in the figure. ▲ T at B2 point in the next step cycle
B L1 ▼ Heat radiation of 30 ° C. occurs. At point B3, heat of ▲ T B L2 -10 ° C. is absorbed from the outside, and at B4, heat of about 80-100 ° C. is released. Therefore, when one cycle as a whole is completed, about 30 ° C. heat and about 90 ° C. heat are obtained for heating, so that there is no trouble in processing the high-temperature generated heat as in the above-mentioned double effect cycle.

更に本発明のカスケード式ヒートポンプは従来の2重
効果型ヒートポンプに比べ以下の特有の効果を持つ。す
なわち、2重効果型ヒートポンプでは第6図のD′,D及
びB点で示されるように、暖房温度Tmにおいて各水素吸
蔵合金M1H,M2H,M3Hより放熱が起こる。ところでこの放
熱はそれぞれ別々の時間に起きるので、このヒートポン
プが1サイクル完了する時間は、およそ、それぞれの反
応時間の和となり、各水素吸蔵合金の放熱反応時間がほ
ぼ同じとすれば1回の反応時間の約3倍となる。
Further, the cascade heat pump of the present invention has the following specific effects as compared with the conventional double effect heat pump. That is, a double-effect heat pump D in FIG. 6 ', as indicated by D and point B, the heating temperature T m at each of the hydrogen storage alloy M 1 H, M 2 H, M 3 H from the heat radiation occurs. By the way, since this heat release occurs at different times, the time required for this heat pump to complete one cycle is approximately the sum of the respective reaction times. If the heat release reaction times of the respective hydrogen storage alloys are almost the same, one reaction takes place. It is about three times the time.

カスケード式ヒートポンプでは、第2図で示されるよ
うに、▲MHA 1▼と▲MHA 2▼,▲MHB 1▼と▲MHB 2▼がそれ
ぞれ独立の作動ガス回路を構成しているので、暖房用放
熱のうち、Q2及びQ4′,Q4及びQ2′はそれぞれ同時に起
きる。上記の2重効果型ヒートポンプと同様放熱反応時
間が、材質に寄らずほぼ等しいとすれば、1サイクルが
完了するのに要する時間は、1回の反応時間の約2倍で
ある。
In the cascade heat pump, as shown in FIG. 2, ▲ MH A 1 ▼ and MHMH A 2 ▼, and MHMH B 1 and MHMH B 2 ▼ constitute independent working gas circuits. Of the heat radiation for heating, Q 2 and Q 4 ′, Q 4 and Q 2 ′ occur simultaneously. Assuming that the heat radiation reaction time is almost the same regardless of the material as in the above-described double effect heat pump, the time required to complete one cycle is about twice as long as one reaction time.

こうして原理的に、本発明のヒートポンプは従来の2
重効果型ヒートポンプに比べ、サイクル時間が2/3に短
くでき、同一時間内での周力は1.5倍にできる可能性を
持つ。
Thus, in principle, the heat pump of the present invention is the same as the conventional heat pump.
Compared to heavy-effect heat pumps, the cycle time can be reduced to 2/3, and the peripheral force within the same time can be increased 1.5 times.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を利用した2段カスケード式ヒートポン
プの実施例、第2図は第1図の熱サイクル図、第3図は
本発明を利用した多段カスケード式ヒートポンプの熱サ
イクル図、第4図は本発明を利用した縮退型カスケード
式ヒートポンプの熱サイクル図、第5図は本発明に係る
従来技術であるTiMn系合金ハイドライドヒートポンプの
熱サイクル図、第6図は本発明に係る他の従来技術であ
る2重効果型サイクルの熱サイクル図である。 1,3,7,9……容器, 2,4,8,10……水素吸蔵合金, 5,11……配管, 6,12……水素ガス流量制御バルブ, 13,14,15,16,17,18,19,22……熱交換器, 20,21……流路同時切り換え弁, 23,24,25,26……熱の移動制御弁。
FIG. 1 is an embodiment of a two-stage cascade heat pump utilizing the present invention, FIG. 2 is a heat cycle diagram of FIG. 1, FIG. 3 is a heat cycle diagram of a multi-stage cascade heat pump utilizing the present invention, FIG. FIG. 5 is a thermal cycle diagram of a degenerate cascade heat pump utilizing the present invention. FIG. 5 is a thermal cycle diagram of a conventional TiMn-based alloy hydride heat pump according to the present invention. FIG. 6 is another conventional thermal pump according to the present invention. It is a thermal cycle diagram of the double effect type cycle which is a technique. 1,3,7,9 …… Container, 2,4,8,10 …… Hydrogen storage alloy, 5,11… Piping, 6,12 …… Hydrogen gas flow control valve, 13,14,15,16, 17, 18, 19, 22 ... heat exchanger, 20, 21 ... simultaneous flow switching valve, 23, 24, 25, 26 ... heat transfer control valve.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1水素吸蔵合金を収容した第1容器
(1):前記第1水素吸蔵合金より平衡水素解離温度の
低い第2水素吸蔵合金を収容した第2容器(3):前記
第1容器(1)と前記第2容器(3)との間の水素移動
を制御する第1配管手段(5・6):第3水素吸蔵合金
を収容した第3容器(7):前記第3水素吸蔵合金より
平衡水素解離温度の低い第4水素吸蔵合金を収容した第
4容器(9):前記第3容器(7)と前記第4容器
(9)との間の水素移動を制御する第2配管手段(11・
12):前記第1容器(1)内の前記第1水素吸蔵合金と
前記第3容器(7)内の前記第3水素吸蔵合金との間の
熱的連結を制御する熱連結手段(16・26)を備え、前記
第1配管手段(5・6)、前記第1水素吸蔵合金の加熱
(Q1)の後、前記熱連結手段(16・26)および前記第2
配管手段(11・12)を適宜制御して、前記第2水素吸蔵
合金の放熱(Q2)、前記第3水素吸蔵合金の放熱(Q
4′)および前記第4水素吸蔵合金の放熱(Q2′)を順
次別々に行って、逐次加熱源として利用される前記第1
水素吸蔵合金の加熱(Q1)、前記第2水素吸蔵合金の放
熱(Q2)、前記第3水素吸蔵合金の放熱(Q4′)および
前記第4水素吸蔵合金の放熱(Q2′)をして一つのサイ
クルならしめ、前記各放熱(Q2/Q4′/Q2′)を、前記第
2水素吸蔵合金、前記第3水素吸蔵合金および前記第4
水素吸蔵合金と択一的に熱連結される共通の熱交換器
(22)から取り出すようにした、メタルハイドライド加
熱冷却装置。
1. A first container (1) containing a first hydrogen storage alloy: a second container (3) containing a second hydrogen storage alloy having an equilibrium hydrogen dissociation temperature lower than that of the first hydrogen storage alloy. First piping means (5.6) for controlling hydrogen transfer between one container (1) and the second container (3): a third container (7) containing a third hydrogen storage alloy: the third A fourth container (9) containing a fourth hydrogen storage alloy having an equilibrium hydrogen dissociation temperature lower than that of the hydrogen storage alloy: a fourth container (9) for controlling hydrogen transfer between the third container (7) and the fourth container (9). 2 piping means (11.
12): Thermal connection means (16 ·) for controlling thermal connection between the first hydrogen storage alloy in the first container (1) and the third hydrogen storage alloy in the third container (7). 26), after the first piping means (5.6) and the heating of the first hydrogen storage alloy (Q1), the thermal coupling means (16.26) and the second
Appropriately controlling the piping means (11 and 12) to release heat (Q2) of the second hydrogen storage alloy and release heat (Q2) of the third hydrogen storage alloy
4 ′) and the heat release (Q2 ′) of the fourth hydrogen storage alloy are sequentially performed separately, and the first hydrogen storage alloy is sequentially used as a heating source.
Heating of the hydrogen storage alloy (Q1), heat release of the second hydrogen storage alloy (Q2), heat release of the third hydrogen storage alloy (Q4 '), and heat release of the fourth hydrogen storage alloy (Q2') Each cycle, the heat radiation (Q2 / Q4 '/ Q2') is transferred to the second hydrogen storage alloy, the third hydrogen storage alloy and the fourth
A metal hydride heating and cooling device which is taken out from a common heat exchanger (22) which is selectively thermally connected to the hydrogen storage alloy.
JP63045640A 1988-02-26 1988-02-26 Metal hydride heating and cooling equipment Expired - Lifetime JP2643235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045640A JP2643235B2 (en) 1988-02-26 1988-02-26 Metal hydride heating and cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045640A JP2643235B2 (en) 1988-02-26 1988-02-26 Metal hydride heating and cooling equipment

Publications (2)

Publication Number Publication Date
JPH01219455A JPH01219455A (en) 1989-09-01
JP2643235B2 true JP2643235B2 (en) 1997-08-20

Family

ID=12724967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045640A Expired - Lifetime JP2643235B2 (en) 1988-02-26 1988-02-26 Metal hydride heating and cooling equipment

Country Status (1)

Country Link
JP (1) JP2643235B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351493A (en) * 1991-12-10 1994-10-04 Sanyo Electric Co., Ltd. Thermally driven refrigeration system utilizing metal hydrides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226677A (en) * 1984-04-24 1985-11-11 松下電器産業株式会社 Intermittent operation type multistage double effect coolingdevice
JPS60243462A (en) * 1984-05-17 1985-12-03 松下電器産業株式会社 Intermittent operation type multistage double effect second class heat pump device

Also Published As

Publication number Publication date
JPH01219455A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
EP0168062B1 (en) Metal hydride heat pump assembly
US4085590A (en) Hydride compressor
JP2643235B2 (en) Metal hydride heating and cooling equipment
Gambini Metal hydride energy systems performance evaluation. Part B: performance analysis model of dual metal hydride energy systems
JPH02130360A (en) Cooling and heating apparatus utilizing metal hydride
JPH109709A (en) Metal hydride adsorption type thermally driven refrigerating machine
JP2642830B2 (en) Cooling device
JPH07243717A (en) Hydrogen absorbing alloy heat pump
JP3518963B2 (en) Operating method of heat storage system using hydrogen storage alloy
JPS60171370A (en) Heat transfer device
JPS5819955B2 (en) Air conditioning equipment
JPS5819956B2 (en) Cooling device using metal hydride
JPS638391B2 (en)
JPH0316594B2 (en)
JPS61134551A (en) Metallic hydride heat pump device
JPS58173358A (en) Metal hydride device
JPS6249163A (en) Metallic-hydride utilizing air-conditioning hot-water supplydevice
JPH01210768A (en) Regenerating type heat pump
JP3133442B2 (en) Heat driven cold heat generation method and apparatus using metal hydride
JPS621188B2 (en)
KR20030062910A (en) hydride reactor for controling hydrogen gas flow using hydrogen storage alloy
JPS61285356A (en) Metallic hydride utilizing air-conditioning hot-water supplydevice
JPS6183847A (en) Intermittent operation type heat pump device
JP2000097513A (en) Cold/hot air supplying device and method for controlling the same
JPS591947B2 (en) Heat exchange system using hydrogen storage metal and its operation method