JPS58173358A - Metal hydride device - Google Patents
Metal hydride deviceInfo
- Publication number
- JPS58173358A JPS58173358A JP5682182A JP5682182A JPS58173358A JP S58173358 A JPS58173358 A JP S58173358A JP 5682182 A JP5682182 A JP 5682182A JP 5682182 A JP5682182 A JP 5682182A JP S58173358 A JPS58173358 A JP S58173358A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- metal hydride
- heat
- filled
- working
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 本発明は金属水素化物装置に関する。[Detailed description of the invention] The present invention relates to metal hydride devices.
ある種の金属や合金が発熱的に水素を吸蔵して金属水素
化物を形成し、また、この金属水素化物が可逆的に水素
を放出することが知られており、近年、このような金属
水素化物の特性を利用したヒートポンプ等、種々の金属
水素化物装置が提案されている。従来は、異なる示衡分
解圧を有する第1の金属水素化物(MHI)とII2の
金属水素化物(Ml2)をそれぞれ熱媒と熱交換し得る
密閉容器に充填すると共に、容器間で水素が移動し得る
ように連通して作動対となし、いわゆる4ボンベ型と称
される金属水素化物装置の場合には、上記作動対を2対
設けて、金属水素化物装置を構成している。It is known that certain metals and alloys absorb hydrogen exothermically to form metal hydrides, and that these metal hydrides reversibly release hydrogen. Various metal hydride devices have been proposed, such as heat pumps that utilize the properties of metal hydrides. Conventionally, a first metal hydride (MHI) and a second metal hydride (Ml2), which have different equilibrium decomposition pressures, are each filled in a closed container that can exchange heat with a heating medium, and hydrogen is transferred between the containers. In the case of a so-called four-cylinder type metal hydride apparatus, two working pairs are provided to constitute the metal hydride apparatus.
このような金属水素化物装置の作動を、いわゆる右回り
サイクールによって冷熱出力得る場合について、第1図
に示すサイクル線図に基づいて説明する。
1′□
図面において、横軸は絶対温度の逆数を示し、縦軸は金
属水素化物の平衡分解圧の対数を示す。The operation of such a metal hydride device will be explained based on the cycle diagram shown in FIG. 1 in the case where the cold output is obtained by a so-called clockwise cycle.
1'□ In the drawing, the horizontal axis shows the reciprocal of absolute temperature, and the vertical axis shows the logarithm of the equilibrium decomposition pressure of metal hydride.
当初、MHIは十分に水素を吸蔵した状態(点D)にあ
り、Ml2は十分に水素を放出した状態(点C)にある
とする。先ず、作動温度領域において平衡分解圧の大き
いMHIを温度TI(の高温駆動熱源により加熱し、平
衡分解圧の小さいMl2を例えば外気のような温度TM
の中温熱媒に接続すると、Ml−IIは吸熱的に水素を
放出しく点A)、この水素をMl2が発熱的に吸蔵する
(B)。水素移動が完了した後、MHIを中温熱媒に切
換えて接続すると共に、Ml2を冷水のような冷却負荷
用の温度TLの低温熱媒に切換えて接続すると、Ml2
が吸熱的に水素を放出しく点c)、この水素をMHIが
発熱的に吸蔵する(点D)。ここに、低温熱媒において
冷熱出力を得ることができ(点C)、また、必要に応じ
て中温熱媒(点B及びD)において温熱出力を得ること
ができる。再び、MHIを高温駆動熱源に接続し、Ml
2を中温熱媒に接続すれば、新しいサイクルが開始され
る。Initially, it is assumed that MHI is in a state in which it has sufficiently absorbed hydrogen (point D), and Ml2 is in a state in which it has sufficiently released hydrogen (point C). First, MHI, which has a high equilibrium decomposition pressure in the operating temperature range, is heated by a high temperature drive heat source at a temperature TI, and Ml2, which has a low equilibrium decomposition pressure, is heated to a temperature TM, such as the outside air.
When connected to a medium temperature heating medium, Ml-II endothermically releases hydrogen at point A), and Ml2 absorbs this hydrogen exothermically (B). After hydrogen transfer is completed, when MHI is switched to a medium temperature heat medium and connected, and Ml2 is switched to and connected to a low temperature heat medium of temperature TL for cooling load such as chilled water, Ml2
The MHI releases hydrogen endothermically (point c), and MHI absorbs this hydrogen exothermically (point D). Here, a cold output can be obtained in the low-temperature heating medium (point C), and a thermal output can be obtained in the medium-temperature heating medium (points B and D) as required. Again, connect the MHI to a high temperature driven heat source and
2 to a medium temperature heating medium, a new cycle is started.
従って、別の作動対に上記と同じサイクルを半サイクル
遅れで行わせれば、Ml2の水素放出に伴う冷熱出力を
各作動対から交互に得ることができ、例えば冷房に利用
することができる。また、温熱出力は、例えば暖房や給
湯に利用することができる。Therefore, by causing another working pair to perform the same cycle as above with a half-cycle delay, the cooling output associated with the hydrogen release of Ml2 can be obtained alternately from each working pair, and can be used, for example, for cooling. Further, the thermal output can be used for space heating or hot water supply, for example.
しかし、このように平衡分解圧の異なる2種の金属水素
化物からなる同一の作動対を複数対用いる従来の金属水
素化物装置においては、用いるMHlとMl2の種類に
よって、駆動熱源の温度が予め固定されているので、例
えば、都市ガスのような高価な熱源と、太陽熱や廃熱の
ような低廉若しくは無償の熱源とのように、温度の真な
る2種若しくはそれ以上の熱源を利用し得る場合におい
ても、予め設定された作動温度に応じていずれか一方の
熱源のみを駆動熱源として用いざるを得す、特に低廉若
しくは無償の熱源を第2の熱源として利用し得ない場合
、装置の成績係数が低く、熱経済性に劣るものである。However, in conventional metal hydride equipment that uses multiple pairs of the same working pairs made of two types of metal hydrides with different equilibrium decomposition pressures, the temperature of the driving heat source is fixed in advance depending on the types of MHL and Ml2 used. For example, when two or more types of heat sources with different temperatures can be used, such as an expensive heat source such as city gas and a cheap or free heat source such as solar heat or waste heat. In some cases, it is necessary to use only one of the heat sources as the drive heat source depending on the preset operating temperature, especially when a low-cost or free heat source cannot be used as the second heat source, the coefficient of performance of the device may decrease. is low, and its thermoeconomic efficiency is poor.
本発明はこのような問題を解決するためになされたもの
であって、異なる温度の複数の熱源を同時に効率よく駆
動熱源として利用でき、従って、熱源利用の経済性にす
ぐれ、高い成績係数を有する金属水素化物装置を提供す
ることを目的とするものである。The present invention has been made to solve these problems, and is capable of efficiently using multiple heat sources at different temperatures as drive heat sources at the same time. Therefore, it is highly economical to use the heat sources and has a high coefficient of performance. The object is to provide a metal hydride device.
本発明による第1の金属水素化物装置は、作動温度領域
において平衡分解圧の異なる3種の金属水素化物を用い
、平衡分解圧の翼なる2種の金属水素化物を充填した2
個の密閉容器を水素が移動し得るように連通して作動対
となし、この作動対を少なくとも2対設け、平衡分解圧
の小さい第1の金属水素化物を第1の作動対の一方の密
閉容器に充填し、平衡分解圧の次に小さい第2の金属水
素化物を第2の作動対の一方の密閉容器に充填し、平衡
分解圧の大きい第3の金属水素化物を第1及び第2の作
動対の残る密閉容器に充填してなるこ □と
を特徴とするものである。The first metal hydride device according to the present invention uses three types of metal hydrides having different equilibrium decomposition pressures in the operating temperature range, and a two-metal hydride device filled with two types of metal hydrides that have different equilibrium decomposition pressures in the operating temperature range.
At least two closed containers are connected to each other so that hydrogen can move to form a working pair, and at least two working pairs are provided, and a first metal hydride having a low equilibrium decomposition pressure is sealed in one of the first working pairs. A second metal hydride having the next lowest equilibrium decomposition pressure is charged into one closed container of the second working pair, and a third metal hydride having the highest equilibrium decomposition pressure is charged into the first and second closed containers. It is characterized in that it is made by filling the remaining airtight container with the working pair of □.
以下に実施例を示す図面に基づいて本発明の第1の金属
水素化物装置を説明する。EMBODIMENT OF THE INVENTION The 1st metal hydride apparatus of this invention is demonstrated based on the drawing which shows an Example below.
第2図は、作動温度領域において平衡分解圧の異なる3
種の金属水素化物MHIMH2及びMH3を用いる第1
の金属水素化物装置の実施例を示し、平衡分解圧の小さ
いMHIと次に小さし讐MH2とが熱交換器をなす密閉
容器1及び3にそれぞれ充填され、また、平衡分解圧の
大きいMB2が熱交換器をなす密閉容器2及び4にそれ
ぞれ充填されていると共に、容11と2は水素が移動し
得るように連通管9により連通されて第1の作動対をな
し、同様に容I3と4も連通管10により連通されて第
2の作動対をなす。各連通管には電磁弁のような制御弁
11及び12がそれぞれ設けられており、後述するサイ
クルに応じて各連通管を開閉制御する。Figure 2 shows three different equilibrium decomposition pressures in the operating temperature range.
The first using seed metal hydrides MHIMH2 and MH3
An example of a metal hydride apparatus is shown in which MHI with a small equilibrium decomposition pressure and MH2 with the next smallest equilibrium decomposition pressure are filled in closed containers 1 and 3 forming a heat exchanger, respectively, and MB2 with a high equilibrium decomposition pressure is filled with Closed containers 2 and 4 forming a heat exchanger are filled with each other, and the containers 11 and 2 are communicated with each other by a communication pipe 9 so that hydrogen can move, forming a first working pair. 4 are also communicated through the communication pipe 10 to form a second working pair. Each communication pipe is provided with control valves 11 and 12 such as electromagnetic valves, and each communication pipe is opened and closed according to a cycle described later.
また、容器lは高温THIの第1の駆動熱源5と温度T
Mの中温熱媒6にそれぞれ管路13及び14により熱交
換可能にかつ切換え可能に接続され、容器3は上記第1
の駆動熱源と興なる高温TH2(<THI)の第2の駆
動熱源7と中温熱媒6にそれぞれ管路15及び16によ
り熱交換可能かつ切換え可能に接続されている。一方、
第1の作動対において平衡分解圧の大きいMB2を充填
した容器2は管路17及び18によりそれぞれ温度TL
の低温熱媒8と中温熱媒6とに熱交換可能かつ切換え可
能に接続され、同様に第2の作動対においてMB2を充
填した容器4も管路19及び20によりそれぞれ低温熱
媒8と中温熱媒6に熱交換可能かつ切換え可能に接続さ
れている。Further, the container l is connected to the first driving heat source 5 at a high temperature THI and at a temperature T
The medium temperature heating medium 6 of
It is connected to a second driving heat source 7 of high temperature TH2 (<THI) and a medium temperature heat medium 6 through conduits 15 and 16, respectively, so as to be able to exchange heat and to switch. on the other hand,
In the first working pair, the container 2 filled with MB2 having a high equilibrium decomposition pressure is connected to the temperature TL by pipes 17 and 18, respectively.
The container 4 filled with MB2 in the second working pair is connected to the low temperature heat medium 8 and the medium temperature heat medium 6 by conduits 19 and 20 in a heat exchangeable and switchable manner. It is connected to the heating medium 6 in a heat exchangeable and switchable manner.
各容器と熱源又は熱媒の接続の切換えは、図示しない電
磁弁のような制御弁によりなされる。この装置は2対の
作動対を有する4ボンベ型装置である。The connection between each container and the heat source or heating medium is switched by a control valve such as a solenoid valve (not shown). The device is a four-cylinder device with two working pairs.
上記の装置の作動を第3図に示すサイクル線図によって
説明する。なお、第2図においては単一の中温熱媒6が
示され、容器1.2.3及び4はすべてこの単一の中温
熱媒に接続されているが、中温熱媒は何ら単一である必
要はなく、例えば、第1の作動対において容器1が温度
TMIの中温熱媒に接続され、容器2がTMIと異なる
温度TM2の中温熱媒に接続されていると共に、第2の
作動対において容器3及び4が共に温度TM2の中温熱
媒に接続されていてもよい。第3図は各容器がこのよう
に各中温熱媒に接続されているサイタル線図を示す。The operation of the above device will be explained with reference to the cycle diagram shown in FIG. In addition, in FIG. 2, a single medium-temperature heating medium 6 is shown, and the vessels 1, 2, 3, and 4 are all connected to this single medium-temperature heating medium, but there is no single medium-temperature heating medium. For example, in the first working pair, vessel 1 is connected to a medium-temperature heating medium at a temperature TMI, vessel 2 is connected to a medium-temperature heating medium at a temperature TM2 different from TMI, and in the second working pair Both containers 3 and 4 may be connected to a medium-temperature heating medium at a temperature TM2. FIG. 3 shows a cytal diagram in which each vessel is thus connected to a respective intermediate temperature heating medium.
先ず、第1の作動対において、容11を第1の高温駆動
熱源に接続してMHIを温度THIに加熱し、$器2を
中温熱媒に接続してMB2を温度TM2に保つと、MH
Iは水素を吸熱的に駿出しく点A)、この水素は連通管
9によって容器2に到り、MB2がこれを発熱的に吸蔵
する(点B)。First, in the first working pair, when the container 11 is connected to the first high temperature driving heat source to heat the MHI to the temperature THI, and the dollar container 2 is connected to the medium temperature heating medium to maintain the MB2 at the temperature TM2, the MH
Point I endothermically expels hydrogen (point A), this hydrogen reaches the container 2 through the communication pipe 9, and MB2 exothermically stores it (point B).
同時に、第2の作動対において、容!3を温度TM2の
中温熱媒に接続し、容14を温度TLの低温熱媒に接続
して、MB2から吸熱的に水素を放出させ(点C)、こ
れを連通管10によって容器3に到らしめて、MB2に
発熱的に吸蔵させれば(点H)、低温熱媒(点C)にお
いて冷熱出力を得ることができる。この冷熱出力は例え
ば冷房に供することができる。また、MB2の水素吸蔵
による温熱出力(点B)及びMB2の水素吸蔵による温
熱出力(点H)は必要に応じて、例えば給湯に利用する
ことができる。At the same time, in the second working pair, Yong! 3 is connected to a medium-temperature heating medium at a temperature of TM2, and a container 14 is connected to a low-temperature heating medium at a temperature of TL to endothermically release hydrogen from MB2 (point C), which reaches the container 3 through a communication pipe 10. If the MB2 is exothermically occluded (point H), cold output can be obtained in the low temperature heat medium (point C). This cold output can be used for cooling, for example. Further, the thermal output (point B) due to hydrogen storage of MB2 and the thermal output (point H) due to hydrogen storage of MB2 can be used, for example, for hot water supply, as necessary.
次に、各作動対において水素移動が完了した後に、第1
の作動対において、容器1を温度TMIの中温熱媒に接
続し、容器2を低温熱媒に接続すると、容器内のMHI
とMB2の平衡分解圧の差圧によって、MB2は水素を
吸熱的に放出しく点C)、この水素をMHIが発熱的に
吸蔵する(点D)、従って、MB2の水壽放出による吸
熱により、低温熱媒(点C)において冷熱出方を得るこ
とができ、また、MHIの水素吸蔵←よる発熱によって
、中温熱媒(点D)において温熱出方を得ることができ
る。冷熱出力は例えば冷房に利用することができ、温熱
出力は例えば暖房又は給湯に利用することができる。Next, after hydrogen transfer is completed in each working pair, the first
In the working pair, when vessel 1 is connected to a medium-temperature heat medium at a temperature TMI and vessel 2 is connected to a low-temperature heat medium, the MHI in the vessel
Due to the pressure difference between the equilibrium decomposition pressures of Cold heat output can be obtained in the low-temperature heat medium (point C), and hot heat output can be obtained in the medium-temperature heat medium (point D) due to heat generation due to hydrogen absorption of MHI. The cold output can be used, for example, for cooling, and the thermal output can be used, for example, for heating or hot water supply.
同時に、第2の作動対において、容器3を第2の高温駆
動熱源に接続してMB2を温度TH2に加熱すると共に
、容84を温度TM2の中温熱媒に接続して冷却すると
、MB2は吸熱的に水素を放出しく点E)、この水素を
MB2が発熱的に吸蔵する(点B)。MB2の水素吸蔵
に伴う発熱も必要ならば、中温熱媒(点B)において温
熱出方として得ることができる。At the same time, in the second working pair, when the vessel 3 is connected to a second high-temperature driving heat source to heat MB2 to a temperature TH2, and the vessel 84 is connected to a medium-temperature heat medium at a temperature TM2 to cool it, MB2 absorbs heat. MB2 exothermically absorbs this hydrogen (point B). If the heat generated by hydrogen absorption in MB2 is also required, it can be obtained as heat output in the intermediate temperature heat medium (point B).
0
このようにして右回りのサイクルが完了し、各容器を当
初の熱源又は熱媒に接続すれば、再び新しいサイクルが
開始される。0 The clockwise cycle is thus completed and a new cycle begins again by connecting each container to the original heat source or heat transfer medium.
以上のように、本発明の第1の金属水素化物装置によれ
ば、上記のように温度の興なる2種の高温熱源を利用し
て、冷熱出力及び/又は温熱出力を得ることができる。As described above, according to the first metal hydride device of the present invention, it is possible to obtain cold output and/or thermal output by using two types of high-temperature heat sources with varying temperatures as described above.
なお、本発明においては、第1の作動対においてMHI
からMH3への水素移動(A−B)が完了し、第2の作
動対においてMH3からMH2への水素移動(C−+H
)が完了したとき、温度TH1のMHIと温度TM2の
MH2との閏で適宜の熱媒を管路21により循環させて
熱交換を行い、MH2を温度THIと7M2の中間温度
付近まで予熱すれば、次の段階でMH2を温度TH2に
まで加熱するための駆動熱源からの熱供給を削減できる
ので熱経済的に有利である。同時に、MHIの予冷もな
し得るので、冷熱出力の取得効率も高まる。同様に、平
衡分解圧の高い金属水素化物についても、温度TM2の
MH3と温度TLのMHI1
3との間に管路22により適宜の熱媒を循環させて熱交
換を行い、それぞれのMH3を次の段階に備えて予熱又
は予冷するのが熱経済的に有利である。In addition, in the present invention, the MHI in the first working pair
The hydrogen transfer from MH3 to MH3 (A-B) is completed, and the hydrogen transfer from MH3 to MH2 (C-+H
) is completed, heat exchange is performed by circulating an appropriate heat medium through the pipe 21 between MHI at temperature TH1 and MH2 at temperature TM2, and MH2 is preheated to around the intermediate temperature between THI and 7M2. This is thermoeconomically advantageous because the heat supply from the driving heat source for heating MH2 to temperature TH2 in the next step can be reduced. At the same time, since the MHI can be pre-cooled, the efficiency of acquiring cold output is also increased. Similarly, for metal hydrides with a high equilibrium decomposition pressure, heat exchange is performed by circulating an appropriate heating medium between MH3 at temperature TM2 and MHI13 at temperature TL through the pipe 22, and each MH3 is transferred to the next It is thermoeconomically advantageous to preheat or precool the water in preparation for this step.
また、第1の作動対において、MH3からMHIへの水
素移動(C−D)が完了し、第2の作動対においてMH
2からMH3への水素移動(E→B)が完了したときも
、温度TH2のMH2と温度TMlのMHIとの間で熱
交換させると共に、温度TM2のMH3と温度TLのM
H3との間で熱交換させ、それぞれの金属水素化物を予
熱又は予冷するのが有利である。Also, in the first working pair, hydrogen transfer (CD) from MH3 to MHI is completed, and in the second working pair, MH
When the hydrogen transfer from 2 to MH3 (E→B) is completed, heat is exchanged between MH2 at temperature TH2 and MHI at temperature TML, and MH3 at temperature TM2 and M at temperature TL are exchanged.
It is advantageous to preheat or precool the respective metal hydride by exchanging heat with H3.
以上に説明した装置温度サイクルにおいて、MHIとし
てLaNi AI MH2として4.7ツ
O,λ11
LaNi、、 At、、5、また、MH3としてL a
N t r、4を用いるとき、熱源及び熱媒の温度は
1よぼ次のとおりに設定できる。In the device temperature cycle explained above, the MHI is 4.7 T as LaNi AI MH2.
O, λ11 LaNi,, At,, 5, and as MH3 La
When using N t r, 4, the temperature of the heat source and heating medium can be set to approximately 1 as follows.
入力 TH1=100℃(第1の高温駆動熱源)
TH2= 80℃(第2の高温駆動
2
熱源)
出力 TL1= 10℃(冷熱出力)TM1=
45℃(温熱出力)
7M2= 30℃(大気温度)
従って、約10℃の冷熱出力と約45℃の温熱出力を得
ることができ、冷房給湯システムに好適に用いることが
できる。Input TH1 = 100°C (first high temperature drive heat source) TH2 = 80°C (second high temperature drive 2 heat source) Output TL1 = 10°C (cold output) TM1 =
45° C. (thermal output) 7M2 = 30° C. (atmospheric temperature) Therefore, a cooling output of about 10° C. and a thermal output of about 45° C. can be obtained, and it can be suitably used in an air conditioning hot water supply system.
次に、本発明の装置を暖房給湯に利用する場合を第4図
に示すサイクル線図によって説明する。Next, the case where the device of the present invention is used for heating and hot water supply will be explained with reference to the cycle diagram shown in FIG.
装置は第2図と要部は同じであるが、駆動熱源として温
度TH(参照番号7は参照番号5と同じになる。)の高
温駆動熱源のほかに、温度TL2の例えば太陽熱と、温
度TLI (<TL2)の例えば大気との真なる2種
の低温熱源が用いられている。従って、この暖房給湯用
の装置では第2図における参照番号8は2種の低温熱源
を意味する。The main parts of the device are the same as those in Fig. 2, but in addition to the high-temperature drive heat source at temperature TH (reference number 7 is the same as reference number 5), there are also solar heat at temperature TL2 and temperature TLI. (<TL2), for example, two types of low-temperature heat sources are used, including the atmosphere. Therefore, in this apparatus for heating and hot water supply, the reference number 8 in FIG. 2 means two types of low-temperature heat sources.
この装置においては、平衡分解圧の小さいMHIと平衡
分解圧の大きいMH3が第1の作動対を構成し、平衡分
解圧の次に小さいMH2と平衡分解圧の大きいMH3が
第2の作動対を構成するこ3
とは第2図の装置と同じであり、従って、第1の作動対
は点A−4B→C−+Dのサイクルを構成し、第2の作
動対は点E−+F−40−Hのサイクルを構成する。こ
のサイクルによれば、第1の作動対において、MHIは
温度THの高温熱源により加熱されて、MHIからMH
3への水素移動が生じ、この際の発熱(点B)を暖房給
湯用の温熱出力として得ることができる。このようにし
て水素を吸蔵したMH3は、次に温度TLIの低温熱媒
に接続され、一方、水素を放出したMHIは温度TM1
の中温熱媒に接続され、ここで、MH3からMHIへの
水素移動が起り、MHIの水素吸蔵による温熱出力(点
D)を暖房給湯に利用することができる。In this device, MHI with a small equilibrium cracking pressure and MH3 with a large equilibrium cracking pressure constitute the first working pair, and MH2 with the next smallest equilibrium cracking pressure and MH3 with the highest equilibrium cracking pressure form the second working pair. The configuration 3 is the same as the device of FIG. 2, so that the first working pair constitutes a cycle from point A-4B→C-+D, and the second working pair forms a cycle from point E-+F-40. - Configure the H cycle. According to this cycle, in the first working pair, MHI is heated by a high temperature heat source at temperature TH, and from MHI to MH
Hydrogen transfer to No. 3 occurs, and the heat generated at this time (point B) can be obtained as thermal output for heating and hot water supply. MH3, which has absorbed hydrogen in this way, is then connected to a low-temperature heating medium at temperature TLI, while MHI, which has released hydrogen, is at temperature TM1.
Here, hydrogen transfer from MH3 to MHI occurs, and the thermal output (point D) due to hydrogen storage in MHI can be used for heating and hot water supply.
第2の作動対においては、同様に、MH2が温度THの
高温熱源によって加熱されて、MH2からMH3への水
素移動が生じ1.この結果、MH3から暖房給湯に供し
得る温熱出力(点F)を得ることができる。水素を吸蔵
したMH3は次いで温度TL2の低温熱源、例えば、太
陽熱により加熱4
され、一方、水素を放出したM、H2は温度TMIの中
温熱源により冷却されて、MB2からMB2への水素移
動が生じ、ここに、MB2の水素吸蔵によって得られる
温熱出力(点H)を暖房給湯に供することができる。In the second working pair, MH2 is similarly heated by a high temperature heat source at temperature TH, resulting in hydrogen transfer from MH2 to MH3. As a result, a thermal output (point F) that can be used for heating and hot water supply can be obtained from MH3. MH3, which has absorbed hydrogen, is then heated by a low-temperature heat source, such as solar heat, at a temperature TL2, while M and H2, which have released hydrogen, are cooled by a medium-temperature heat source at a temperature TMI, and hydrogen transfer from MB2 to MB2 is performed. Here, the thermal output (point H) obtained by hydrogen storage of MB2 can be provided for heating and hot water supply.
上記した装置において前記したと同じLa−Ni系の金
属水素化物の組合せを用いる場合、熱海及び熱媒の温度
は具体的にはほぼ次のとおりに設定できる。When using the same combination of La--Ni metal hydrides as described above in the above-described apparatus, the temperatures of the Atami and the heating medium can be specifically set approximately as follows.
入力 TH1=110℃(高温熱1l)TL2=
30℃(太陽熱)
TLl=、 0℃(大気)
出力 7M1= 50℃(暖房及び給湯)TM2
= 40℃(給湯)
なお、上記した第6図のサイクル線図に従って作動する
装置においては、温度の翼なる2櫨の低温熱源を用い、
いずれか一方によっていずれか一方の作動対を作動させ
ており、太陽熱のように低廉な熱エネルギーを有効に利
用できると共に、例えば大気からも熱を汲上げることが
できるために5
熱経済的に有利である。Input TH1=110℃ (high temperature heat 1l) TL2=
30℃ (solar heat) TLl=, 0℃ (atmosphere) Output 7M1= 50℃ (heating and hot water) TM2
= 40℃ (hot water supply) In the device that operates according to the cycle diagram shown in Figure 6 above, a low-temperature heat source of two poles, called temperature wings, is used.
Either one operates one of the actuating pairs, which makes it possible to effectively utilize inexpensive thermal energy such as solar heat, and also allows heat to be pumped up from the atmosphere, which is advantageous in terms of thermoeconomics. It is.
従来の装置においては、もしも、太陽熱が使用できない
ときは、G→Hの水素移動ができなくなっていたが、本
発明の装置によれば、温熱出力として質の劣る点Bから
の温度TM2の温熱を点GにおいてMB2に与えること
により、G−4Hの水素移動を行うことができる。In the conventional device, if solar heat could not be used, hydrogen transfer from G to H was not possible, but according to the device of the present invention, the thermal output at temperature TM2 from point B, which is inferior in quality as thermal output. By giving MB2 at point G, hydrogen transfer of G-4H can be performed.
次に、本発明の第1の金属水素化物装置により左1回り
サイクルを駆動する場合を説明する。MHIとMB2か
らなる第1の作動対は点A−4B→C−Dのサイクルを
行い、温度TMIの第1及び温度TM2の第2の中温熱
媒により駆動され、温度THの温熱出力(点A)を与え
る。一方、MB2とMB2からなる第2の作動対は点E
−F−4D→Hのサイクルを行い、温度TMIの第1及
び温度TM2の第2の中温熱媒により駆動され、温度T
Hの温熱出力(点E)を与える。Next, a case will be described in which the first metal hydride device of the present invention is driven in a counterclockwise cycle. The first working pair consisting of MHI and MB2 performs a cycle from point A-4B to C-D, and is driven by the first medium-temperature heating medium at temperature TMI and the second medium-temperature heating medium at temperature TM2, and produces a thermal output (point Give A). On the other hand, the second operating pair consisting of MB2 and MB2 is at point E
-F-4D → H cycle is carried out, driven by the first intermediate temperature heating medium at temperature TMI and the second intermediate temperature heating medium at temperature TM2, and the temperature T
Give the thermal output of H (point E).
この左回リサイクルでは、例えば低質の2種の中温駆動
熱源を使用して、高温の温熱出力を点A及び点Eから得
ることができる。In this left-turn recycle, high temperature thermal output can be obtained from points A and E using, for example, two low-quality medium-temperature driven heat sources.
1.6
なお、左回リサイクルでは、液化天然ガスのような低温
熱源を利用して、中温熱媒より大量の冷熱出力を取り出
すことも可能である。1.6 In left-turn recycling, it is also possible to use a low-temperature heat source such as liquefied natural gas to extract a larger amount of cold output than a medium-temperature heat medium.
以上の装置及びサイクルにおいては、2対の作動対は、
平衡分解圧の小さい211の翼なるMHIとMB2をそ
れぞれ平衡分解圧の大きいMB2と組み合せて構成され
ているが、平衡分解圧の小さいMB2を平衡分解圧の大
きい24mの真なるMHIとMB2とにそれぞれ組み合
せ、て2対の作動対を構成することもできる。In the above device and cycle, the two working pairs are:
It is constructed by combining 211 blades MHI and MB2 with small equilibrium cracking pressure with MB2 with large equilibrium cracking pressure, but MB2 with small equilibrium cracking pressure is combined with the true MHI and MB2 of 24 m with high equilibrium cracking pressure. They can also be combined to form two working pairs.
本発明の第2の金属水素化物装置は、作動温度領域にお
いて平衡分解圧の異なる3@の金属水素化物を用い、平
衡分解圧の異なる211の金属水素化物を充填した2個
の密閉容器を水素が移動し得るように連通して作動対と
なし、この作動対を少なくとも2対設け、平衡分解圧の
大きい第1の金属水素化物を第1の作動対の一方の密閉
容器に充填し、平衡分解圧の次に大きい第2の金属水素
化物を第2の作動対の一方の密閉容器に充填し、平衡分
解圧の小さい第3の金属水素化物を第1及び7
第2の作動対の残る密閉容器に充填してなることを特徴
とするものである。The second metal hydride device of the present invention uses 3@metal hydrides with different equilibrium decomposition pressures in the operating temperature range, and connects two closed containers filled with 211 metal hydrides with different equilibrium decomposition pressures to hydrogen. At least two working pairs are provided, and a first metal hydride having a large equilibrium decomposition pressure is filled into a closed container of one of the first working pairs, and the equilibrium A second metal hydride with the next highest decomposition pressure is filled into one closed container of the second working pair, and a third metal hydride with the lowest equilibrium decomposition pressure is charged into the remaining one of the first and seventh working pairs. It is characterized by being filled in a closed container.
この装置は、第2図において、容器1.2.3及び4に
それぞれMB2、MHI、MB2及びMB2が充填され
て構成され、熱源及び熱媒の接続は第2図と同じである
。This device is constructed in FIG. 2, with containers 1.2.3 and 4 filled with MB2, MHI, MB2, and MB2, respectively, and the heat source and heat medium connections are the same as in FIG.
第6図はこのような金属水素化物装置の右回りサイクル
を示し、MHIとMB2とからなる第1の作動対は温度
THIの高温の第1の駆動熱源により点A→B−C−D
のサイクルを行い、温度TLの冷熱出力(点C)と温度
TMIの温熱出方(点D)を与える。MB2からMHI
への水素移動ち伴うMHIの温熱出力も必要に応じて有
効に利用できるが、例えば温度TM2 (<TMI)の
大気に放出してもよい。また、MB2とMB2とからな
る第2の作動対は、温度TH2の高温の第2の駆動熱源
により点B−+F→G→Hのサイクルを行って、温度T
Lの冷熱出方を与える。MB2の水素吸蔵による温度T
M2における温熱出方(点F及びH)は上記同様に必要
に応じて有効に利用8
げきるが、系外に放出してもよい。このようにして温度
TLの冷熱出力は冷房に、また、温度TM1 (及び温
度TM2)における温熱出力は暖房給湯に利用すること
ができる。FIG. 6 shows a clockwise cycle of such a metal hydride device, in which the first working pair consisting of MHI and MB2 is moved from point A to B-C-D by the hot first driving heat source at temperature THI.
The cycle is performed to give the cold output at temperature TL (point C) and the thermal output at temperature TMI (point D). MB2 to MHI
The thermal output of the MHI that accompanies the hydrogen transfer to the hydrogen can be effectively used as needed, but it may also be released into the atmosphere at a temperature TM2 (<TMI), for example. Further, the second working pair consisting of MB2 and MB2 performs a cycle from point B-+F→G→H by the high temperature second drive heat source at temperature TH2, and the temperature T
Give the cold and heat output of L. Temperature T due to hydrogen absorption of MB2
The way the heat is released in M2 (points F and H) can be effectively used as described above, but it may also be released outside the system. In this way, the cold output at temperature TL can be used for cooling, and the thermal output at temperature TM1 (and temperature TM2) can be used for heating and hot water supply.
この本発明の第2の金属水素化物装置において、2種の
低温駆動熱源を使用した場合のサイクル線図を第7図に
示す。すなわち、第1の作動対は点A→B4C→Dのサ
イクルを行って、Mn3は温度THの高温駆動熱源(点
A)と温度TLIの第1の低温熱m(点C)により加熱
され、それぞれ中温熱媒(点りとB)において温熱出力
を与え、一方、第2の作動対は点A−4F−4G−+H
のサイクルを行って、Mn3は高温駆動熱ml(点A)
と温度TL2の第2の低温熱ml(点G)により加熱さ
れ、それぞれ中温熱媒(点HとF)において温熱出力を
与え、このようにして得られる温熱出力は暖房及び/又
は給湯に利用することができる。FIG. 7 shows a cycle diagram when two types of low-temperature driving heat sources are used in the second metal hydride apparatus of the present invention. That is, the first working pair performs a cycle of points A→B4C→D, and Mn3 is heated by the high temperature driving heat source (point A) at temperature TH and the first low temperature heat m (point C) at temperature TLI, Each provides a thermal output at a medium-temperature heating medium (points and B), while the second working pair provides a thermal output at points A-4F-4G-+H.
Mn3 is heated to high temperature drive heat ml (point A)
and a second low-temperature heat ml (point G) at temperature TL2, respectively, giving a thermal output in the medium-temperature heating medium (points H and F), the thermal output thus obtained being used for space heating and/or hot water supply. can do.
なお、第7図においては、第4図と同様に太陽熱を点G
で使用し、大気の有する熱を点Cで汲上げることができ
る。In addition, in Figure 7, solar heat is expressed at point G as in Figure 4.
The heat contained in the atmosphere can be pumped up at point C.
9
この第2の装置において、左回りサイクルを駆動する場
合を第8図によって説明する。先ず、第1の作動対にお
いて、容82を第1の中温駆動熱/′
漉に接続してMHIを温度TMIに加熱し、容器Iを高
温熱媒に接続してMn3を温度THに保つと、MHIは
水素を吸熱的に放出しく点D)、この水素をMn3が発
熱的に吸蔵する(点A)。一方、第2の作動対において
、容器4を温度TLの低温熱媒に接続し、容器3を中温
熱媒に接続して、Mn3から吸熱的に水素を放出させる
と(点F)、この水素をMn2が発熱的に吸蔵する(点
G)。9 The case of driving the counterclockwise cycle in this second device will be explained with reference to FIG. First, in the first working pair, the container 82 is connected to the first medium-temperature driving heat/' strainer to heat the MHI to the temperature TMI, and the container I is connected to the high-temperature heating medium to maintain the Mn3 at the temperature TH. , MHI releases hydrogen endothermically (point D), and Mn3 absorbs this hydrogen exothermically (point A). On the other hand, in the second working pair, when the container 4 is connected to a low-temperature heating medium at a temperature TL and the container 3 is connected to an intermediate-temperature heating medium to cause hydrogen to be released endothermically from Mn3 (point F), this hydrogen is exothermically occluded by Mn2 (point G).
次いで、第1の作動対において、MHIを低温熱媒に切
換えて接続し、Mn3を温度TM2の中温熱媒に切換え
て接続すると、Mn3は水素を吸熱的に放出しく点B)
、この水素をMHIが吸蔵する(点C)。一方、第2の
作動対において、Mn2を第2の中温熱媒に切換えて接
続して温度TM2に加熱すると共に、Mn3を高温熱媒
に切換えて接続すると、Mn2は水素を吸熱的に放出し
く点H)、この水素をMn3が発熱的に吸蔵する0
(点A)。従って、Mn3の水素吸蔵による温熱出力を
得ることができる。Next, in the first working pair, when MHI is switched to a low-temperature heating medium and connected, and Mn3 is switched to and connected to a medium-temperature heating medium at a temperature TM2, Mn3 endothermically releases hydrogen (point B).
, this hydrogen is occluded by MHI (point C). On the other hand, in the second working pair, when Mn2 is switched to the second medium-temperature heating medium and connected to heat it to temperature TM2, and Mn3 is switched to and connected to the high-temperature heating medium, Mn2 endothermically releases hydrogen. point H), and Mn3 absorbs this hydrogen exothermically (point A). Therefore, it is possible to obtain thermal output due to hydrogen absorption of Mn3.
このようにして左回りサイクルが完了したときに、各容
器を当初の熱源又は熱媒に接続することにより新しいサ
イクルが開始される0以上のように、温度の異なる2種
の中温熱源を利用して、より高温の温熱出力を得ること
ができる。Thus, when a counterclockwise cycle is completed, a new cycle is started by connecting each container to the original heat source or heating medium.Using two medium temperature heat sources with different temperatures, such as zero or more. As a result, higher temperature thermal output can be obtained.
この左回りサイクルにおいても、前記したように、容器
間で水素移動が完了した後、高温の容器と低温の容器と
の間で熱交換させ、低温の金属水車化物を予熱し、また
、高温の金属水素化物を予冷して、次の段階に備えるの
が有利である。In this counterclockwise cycle, as described above, after the hydrogen transfer between the containers is completed, heat is exchanged between the high temperature container and the low temperature container to preheat the low temperature metal turbine, and the high temperature It is advantageous to pre-cool the metal hydride in preparation for the next stage.
平衡分解圧の異なる4種の金属水素化物を用いる本発明
の第3の装置は、作動温度領域において平衡分解圧の異
なる4種の金属水素化物を用い、平衡分解圧の興なる2
411の金属水素化物を充填した2個の密閉容器を水素
が移動し得るように連通して作動対となし、この作動対
を少なくとも2対設け、平衡分解圧の最も小さい第1の
金属水素化物を第1の作動対の一方の密閉容器に充填し
、平1
衡分解圧の次に小さい第2の金属水素化物を第2の作動
対の一方の密閉容器に充填し、平衡分解圧の最も大きい
第3の金属水素化物を第1又は第2の作動対の残る密閉
容器に充填し、平衡分解圧の次に大きい第4の金属水素
化物を第2又は第1の作動対の残る密閉容器に充填して
なることを特徴とするものである。The third device of the present invention, which uses four types of metal hydrides with different equilibrium decomposition pressures, uses four types of metal hydrides with different equilibrium decomposition pressures in the operating temperature range.
Two sealed containers filled with metal hydrides of No. 411 are connected so that hydrogen can move to form a working pair, and at least two pairs of these working pairs are provided, and a first metal hydride having the lowest equilibrium decomposition pressure is formed. is charged into one closed container of the first working pair, and a second metal hydride, which has the next lowest equilibrium decomposition pressure, is charged into one closed container of the second working pair. A large third metal hydride is filled into the remaining closed container of the first or second working pair, and a fourth metal hydride having the next highest equilibrium decomposition pressure is charged into the remaining closed container of the second or first working pair. It is characterized by being filled with.
この装置の作動の一例としてのサイクル線図を第9図に
示す。図示した装置は、第2図において容量1.2.3
及rJ4にyHl、Mn3、Mn2及びMn4がそれぞ
れ充填されて構成され、熱源及び熱媒との接続は第2図
に示した場合と同じである。また、第1及び第2の作動
対のサイクル及び得られる出力も第6図の場合と同じで
あることは明らかであろう。また、第9図には、破線矢
印による水素移動(C’→D’ )を示したが、THl
、7M2、TL及びTL2の4種の駆動熱源を使用して
、同一温度TM2の温熱出力が点B、F、H及びDの4
点から得られることも容易に理解されるだろう。本発明
の金属水素化物装置によれば、2
以上のように、温度の異なる21i以上の駆動熱源を同
時に有効に利用して、温熱出力及/又は冷熱出力を得る
ことができ、従って、装置の成績係数が萬<、熱経済性
にすぐれるものである。A cycle diagram as an example of the operation of this device is shown in FIG. The illustrated device has a capacity of 1.2.3 in FIG.
and rJ4 are filled with yHl, Mn3, Mn2 and Mn4, respectively, and the connections with the heat source and heat medium are the same as in the case shown in FIG. It will also be clear that the cycles of the first and second actuating pairs and the resulting outputs are also the same as in FIG. In addition, in FIG. 9, the hydrogen transfer (C'→D') is shown by the dashed arrow;
, 7M2, TL and TL2, the thermal output at the same temperature TM2 is 4 at points B, F, H and D.
It will be easy to understand what can be derived from the points. According to the metal hydride device of the present invention, as described above, it is possible to effectively utilize driving heat sources of 21i or more having different temperatures at the same time to obtain thermal output and/or cold output. It has a coefficient of performance of 1,000,000 and excellent thermoeconomic efficiency.
第1図は従来の金属水素化物装置の作動を示すサイクル
線図、第2図は本発明の金属水素化物装置の実施例を示
す回路構成図、第3図ないし第9図は本発明の装置の作
動を示すサイクル線図である。
1.2.3.4・・・密閉容器、
5.6.7.8・・・熱源又は熱媒、
9.10・・・連通管、
1112・・・制御弁、
13.14.15.16.17.18.19.20.2
1.22・・・管路、
MHI、MH2、MH3、MH4・・・金属水素化物。
特許出願人 積水化学工業株式会社
11
代表者藤沼基利
3
第1図
第23図
’!
hγ Ti’li 7;412 ;17271
ブ砂
J々
各
TH7M2 μfI 7a2 TL1辞
φ
簸′
THl 刀/27M1 7M2
?Fig. 1 is a cycle diagram showing the operation of a conventional metal hydride device, Fig. 2 is a circuit configuration diagram showing an embodiment of the metal hydride device of the present invention, and Figs. 3 to 9 are device of the present invention. FIG. 2 is a cycle diagram showing the operation of FIG. 1.2.3.4... Sealed container, 5.6.7.8... Heat source or heat medium, 9.10... Communication pipe, 1112... Control valve, 13.14.15. 16.17.18.19.20.2
1.22...Pipeline, MHI, MH2, MH3, MH4...Metal hydride. Patent applicant: Sekisui Chemical Co., Ltd. 11 Representative: Mototoshi Fujinuma 3 Figure 1 Figure 23'! hγ Ti'li 7;412;17271
Busha J each TH7M2 μfI 7a2 TL1 φ Etch' THL Katana/27M1 7M2?
Claims (1)
金属水素化物を用い、平衡分解圧の異なる2檻の金属水
素化物を充填した2個の密閉容器を水素が移動し得るよ
うに連通して1作動対となし、この作動対を少なくとも
2対設け、平衡分解圧の小さい第1の金属水素化物を第
1の作動対の一方の密閉容器に充填し、平衡分解圧の次
に小さい第2の金属水素化物を第2の作動対の一方の密
閉容器に充填し、平衡分解圧の大きい第3の金属水素化
物を第1及び第2の作動対の残る密閉容器に充填してな
ることを特徴とする金属水素化物装置。 (2)作動温度領域において平衡分解圧の興なる3櫨の
金属水素化物を用い、平衡分解圧の異なる2、種の金属
水素化物を充填した2個の密閉容器を水素が移動し得る
ように連通して作動対となし、この作動対を少なくとも
2対設け、平衡分解圧の大きい第1の金属水素化物を第
1の作動対の一方の密閉容器に充填し、平衡分解圧の次
に大きい第2の金属水素化物を第2の作動対の一方の密
閉容器に充填し、平衡分解圧の小さい第3の金属水素化
物を第1及び第2の作動対の残る密閉容器に充填してな
ることを特徴とする金属水素化物装置。 (3)作動温度領域において平衡分解圧の異なる4種の
金属水嵩化物を用い、平衡分解圧の興なる2種の金属水
素化物を充填した2個の密閉容器を水素が移動し得るよ
うに連通して作動対となし、この作動対を少なくとも2
対設け、平衡分解圧の最も小さい第1の金属水素化物を
第1の作動対の一方の密閉容器に充填し、平衡分解圧の
次に小さい第2の金属水素化物を第2の作動対の一方の
密閉容器に充填し、平衡分解圧の最も大きい第3の金属
水素化物を第1又は第2の作動対の残る密閉容器に充填
し、平衡分解圧の次に大きい第4の金属水素化物を第2
又は第1の作動対の残る密閉容器に充填してなることを
特徴とする金属水素化物装置。[Claims] (Using three types of metal hydrides with equilibrium decomposition pressures in the 11 operating temperature range, hydrogen moves through two closed containers filled with two cages of metal hydrides with different equilibrium decomposition pressures. At least two working pairs are provided, and a first metal hydride having a low equilibrium decomposition pressure is filled into a sealed container of one of the first working pairs, and equilibrium decomposition is performed. A second metal hydride with the next lowest pressure is filled into one closed container of the second working pair, and a third metal hydride with a higher equilibrium decomposition pressure is filled into the remaining closed containers of the first and second working pairs. (2) Using three types of metal hydrides that have equilibrium decomposition pressures in the operating temperature range, two types of metal hydrides with different equilibrium decomposition pressures are used. Two filled closed containers are connected so that hydrogen can move to form a working pair, and at least two working pairs are provided, and a first metal hydride having a high equilibrium decomposition pressure is placed in the first working pair. A second metal hydride having the next highest equilibrium decomposition pressure is charged into one closed container of the second working pair, and a third metal hydride having the lowest equilibrium decomposition pressure is charged into the first closed container. A metal hydride device characterized in that the remaining closed container is filled with a second working pair and a second working pair. Two sealed containers filled with two different types of metal hydrides are communicated so that hydrogen can move to form a working pair, and this working pair is made up of at least two
A first metal hydride with the lowest equilibrium decomposition pressure is filled into one closed container of the first working pair, and a second metal hydride with the next lowest equilibrium decomposition pressure is charged into the second metal hydride with the lowest equilibrium decomposition pressure. One closed container is filled with a third metal hydride having the highest equilibrium decomposition pressure, and the remaining closed container of the first or second working pair is filled with a fourth metal hydride having the next highest equilibrium decomposition pressure. the second
Or a metal hydride device, characterized in that the remaining closed container of the first working pair is filled.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5682182A JPS58173358A (en) | 1982-04-05 | 1982-04-05 | Metal hydride device |
DE8282106871T DE3277930D1 (en) | 1981-07-31 | 1982-07-29 | Metal hydride heat pump system |
EP82106871A EP0071271B1 (en) | 1981-07-31 | 1982-07-29 | Metal hydride heat pump system |
US06/403,877 US4523635A (en) | 1981-07-31 | 1982-07-30 | Metal hydride heat pump system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5682182A JPS58173358A (en) | 1982-04-05 | 1982-04-05 | Metal hydride device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58173358A true JPS58173358A (en) | 1983-10-12 |
JPS6327623B2 JPS6327623B2 (en) | 1988-06-03 |
Family
ID=13038031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5682182A Granted JPS58173358A (en) | 1981-07-31 | 1982-04-05 | Metal hydride device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58173358A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6017669A (en) * | 1983-07-08 | 1985-01-29 | 松下電器産業株式会社 | Multiple effect heat pump device |
JPS61134551A (en) * | 1984-12-06 | 1986-06-21 | 松下電器産業株式会社 | Metallic hydride heat pump device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5122151A (en) * | 1974-08-16 | 1976-02-21 | Matsushita Electric Ind Co Ltd |
-
1982
- 1982-04-05 JP JP5682182A patent/JPS58173358A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5122151A (en) * | 1974-08-16 | 1976-02-21 | Matsushita Electric Ind Co Ltd |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6017669A (en) * | 1983-07-08 | 1985-01-29 | 松下電器産業株式会社 | Multiple effect heat pump device |
JP2568484B2 (en) * | 1983-07-08 | 1997-01-08 | 松下電器産業株式会社 | Multi-effect heat pump device |
JPS61134551A (en) * | 1984-12-06 | 1986-06-21 | 松下電器産業株式会社 | Metallic hydride heat pump device |
Also Published As
Publication number | Publication date |
---|---|
JPS6327623B2 (en) | 1988-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0071271B1 (en) | Metal hydride heat pump system | |
US4055962A (en) | Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles | |
JPS58173358A (en) | Metal hydride device | |
JPS634112B2 (en) | ||
JPH01305273A (en) | Metal hydride heat pump | |
JPS634111B2 (en) | ||
JPS6329183B2 (en) | ||
JPS6329184B2 (en) | ||
USRE30840E (en) | Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles | |
JPS6096802A (en) | Steam generator | |
JPS6329182B2 (en) | ||
JPS638394B2 (en) | ||
JPS6096801A (en) | Steam generator | |
JPH0472141B2 (en) | ||
JPS6037395B2 (en) | Portable heating or cooling device | |
JP3133442B2 (en) | Heat driven cold heat generation method and apparatus using metal hydride | |
JPS61134551A (en) | Metallic hydride heat pump device | |
JPH06265238A (en) | Refrigerating/cooling system by composite of peltier device and hydrogen-occluding alloy | |
JPH04165271A (en) | Cold-heat generating system | |
JP2703360B2 (en) | Heat-driven chiller using metal hydride | |
JPS636355A (en) | Heating or hot-water supply method | |
JPH0120346B2 (en) | ||
JPS6326832B2 (en) | ||
JPH04295108A (en) | Exhaust heat recovering power generataing device | |
JP2002168541A (en) | Heat utilizing system employing hydrogen occlusion material |