JPS6327623B2 - - Google Patents

Info

Publication number
JPS6327623B2
JPS6327623B2 JP57056821A JP5682182A JPS6327623B2 JP S6327623 B2 JPS6327623 B2 JP S6327623B2 JP 57056821 A JP57056821 A JP 57056821A JP 5682182 A JP5682182 A JP 5682182A JP S6327623 B2 JPS6327623 B2 JP S6327623B2
Authority
JP
Japan
Prior art keywords
metal hydride
temperature
filled
working
equilibrium decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57056821A
Other languages
Japanese (ja)
Other versions
JPS58173358A (en
Inventor
Michoshi Nishizaki
Minoru Myamoto
Kazuaki Myamoto
Takeshi Yoshida
Katsuhiko Yamaji
Yasushi Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Sekisui Chemical Co Ltd
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Shingijutsu Kaihatsu Jigyodan filed Critical Sekisui Chemical Co Ltd
Priority to JP5682182A priority Critical patent/JPS58173358A/en
Priority to EP82106871A priority patent/EP0071271B1/en
Priority to DE8282106871T priority patent/DE3277930D1/en
Priority to US06/403,877 priority patent/US4523635A/en
Publication of JPS58173358A publication Critical patent/JPS58173358A/en
Publication of JPS6327623B2 publication Critical patent/JPS6327623B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は金属水素化物装置に関する。[Detailed description of the invention] The present invention relates to metal hydride devices.

ある種の金属の合金が発熱的に水素を吸蔵して
金属水素化物を形成し、また、この金属水素化物
が可逆的に水素を放出することが知られており、
近年、このような金属水素化物の特性を利用した
ヒートポンプ等、種々の金属水素化物装置が提案
されている。従来は、異なる平衡分解圧を有する
第1の金属水素化物MH1と第2の金属水素化物
MH2をそれぞれ熱媒と熱交換し得る密閉容器に
充填すると共に、容器間で水素が移動し得るよう
に連通して作動対となし、いわゆる4ボンベ型と
称される金属水素化物装置の場合には、上記作動
対を2対設けて、金属水素化物装置を構成してい
る。
It is known that certain metal alloys absorb hydrogen exothermically to form metal hydrides, and that these metal hydrides reversibly release hydrogen.
In recent years, various metal hydride devices such as heat pumps that utilize the characteristics of metal hydrides have been proposed. Conventionally, a first metal hydride MH1 and a second metal hydride having different equilibrium decomposition pressures are used.
In the case of a so-called four-cylinder metal hydride device, MH2 is filled in a closed container that can exchange heat with a heating medium, and the containers are communicated so that hydrogen can move between them to form a working pair. constitutes a metal hydride device by providing two pairs of the above working pairs.

このような金属水素化物装置の作動を、いわゆ
る右回りサイクルによつて冷熱出力得る場合につ
いて、第1図に示すサイクル線図に基づいて説明
する。
The operation of such a metal hydride device will be explained based on the cycle diagram shown in FIG. 1, with respect to the case where the cooling output is obtained through a so-called clockwise cycle.

図面において、横軸は絶対温度の逆数を示し、
縦軸は金属水素化物の平衡分解圧の対数を示す。
当初、MH1は十分に水素を吸蔵した状態(点
D)にあり、MH2は十分に水素を放出した状態
(点C)にあるとする。先ず、作動温度領域にお
いて平衡分解圧の大きいMH1を温度THの高温
駆動熱源により加熱し、平衡分解圧の小さいMH
2を例えば外気のような温度TMの中温熱媒に接
続すると、MH1は吸熱的に水素を放出し、(点
A)、この水素をMH2が発熱的に吸蔵する(B)、
水素移動が完了した後、MH1を中温熱媒に切換
えて接続すると共に、MH2を冷水のような冷却
負荷用の温度TLの低温熱媒に切換えて接続する
と、MH2が吸熱的に水素を放出し(点C)、こ
の水素をMH1が発熱的に吸蔵する(点D)。こ
こに、低温熱媒において冷熱出力を得ることがで
き(点C)、また、必要に応じて中温熱媒(点B
及びD)において温熱出力を得るこができる。再
び、MH1を高温駆動熱源に接続し、MH2を中
温熱媒に接続すれば、新しいサイクルが開始され
る。
In the drawing, the horizontal axis shows the reciprocal of absolute temperature,
The vertical axis shows the logarithm of the equilibrium decomposition pressure of the metal hydride.
Initially, it is assumed that MH1 is in a state in which it has sufficiently absorbed hydrogen (point D), and MH2 is in a state in which it has sufficiently released hydrogen (point C). First, MH1, which has a high equilibrium decomposition pressure in the operating temperature range, is heated by a high-temperature driven heat source at temperature TH, and MH1, which has a low equilibrium decomposition pressure,
When 2 is connected to a medium-temperature heating medium of temperature TM, such as outside air, MH1 endothermically releases hydrogen (point A), and MH2 absorbs this hydrogen exothermically (B).
After the hydrogen transfer is completed, MH1 is switched to a medium-temperature heating medium and connected, and MH2 is switched to and connected to a low-temperature heating medium of temperature TL for cooling loads, such as chilled water, and MH2 endothermically releases hydrogen. (Point C), and MH1 exothermically occludes this hydrogen (Point D). Here, cold output can be obtained from the low-temperature heat medium (point C), and if necessary, the medium-temperature heat medium (point B) can be obtained.
and D) thermal output can be obtained. Once again, connect MH1 to the high temperature driving heat source and connect MH2 to the medium temperature heat transfer medium to start a new cycle.

従つて、別の作動対に上記と同じサイクルを半
サイクル遅れで行わせれば、MH2の水素放出に
伴う冷熱出力を各作動対から交互に得ることがで
き、例えば冷房に利用することができる。また、
温熱出力は、例えば暖房や給湯に利用することが
できる。
Therefore, by causing another working pair to perform the same cycle as above with a half-cycle delay, the cooling output associated with hydrogen release from MH2 can be obtained alternately from each working pair, and can be used, for example, for cooling. Also,
Thermal output can be used, for example, for space heating or hot water supply.

しかし、このように平衡分解圧の異なる2種の
金属水素化物からなる同一の作動対を複数対用い
る従来の金属水素化物装置においては、用いる
MH1とMH2の種類によつて、駆動熱源の温度
が予め固定されているので、例えば、都市ガスの
ような高価な熱源と、太陽熱や廃熱のような低廉
若しくは無償の熱源とのように、温度の異なる2
種若しくはそれ以上の熱源を利用し得る場合にお
いても、予め設定された作動温度に応じていずれ
か一方の熱源のみを駆動熱源として用いざるを得
ず、特に低廉若しくは無償の熱源を第2の熱源と
して利用し得ない場合、装置の成績係数が低く、
熱経済性に劣るものである。
However, in conventional metal hydride equipment that uses multiple pairs of the same working pairs consisting of two types of metal hydrides with different equilibrium decomposition pressures,
Since the temperature of the driving heat source is fixed in advance depending on the type of MH1 and MH2, for example, an expensive heat source such as city gas and a cheap or free heat source such as solar heat or waste heat, 2 different temperatures
Even if two or more heat sources can be used, it is necessary to use only one of the heat sources as the drive heat source depending on the preset operating temperature, and in particular, a low-cost or free heat source is used as the second heat source. If it cannot be used as a device, the coefficient of performance of the device is low;
It has poor thermoeconomic efficiency.

本発明はこのような問題を解決するためになさ
れたものであつて、異なる温度の複数の熱源を同
時に効率よく駆動熱源として利用でき、従つて、
熱源利用の経済性にすぐれ、高い成績係数を有す
る金属水素化物装置を提供することを目的とする
ものである。
The present invention was made in order to solve such problems, and it is possible to efficiently utilize a plurality of heat sources at different temperatures as driving heat sources at the same time, and therefore,
The object of the present invention is to provide a metal hydride device that is highly economical in using a heat source and has a high coefficient of performance.

本発明による第1の金属水素化物装置は、作動
温度領域において平衡分解圧の異なる3種の金属
水素化物を用い、平衡分解圧の異なる2種の金属
水素化物を充填した2個の密閉容器を水素が移動
し得るように連通して作動対となし、この作動対
を少なくとも2対設け、平衡分解圧の小さい第1
の金属水素化物を第1の作動対の一方の密閉容器
に充填し、平衡分解圧の次に小さい第2の金属水
素化物を第2の作動対の一方の密閉容器に充填
し、平衡分解圧の大きい第3の金属水素化物を第
1及び第2の作動対の残る密閉容器に充填してな
ることを特徴とするものである。
The first metal hydride device according to the present invention uses three types of metal hydrides that have different equilibrium decomposition pressures in the operating temperature range, and has two sealed containers filled with two types of metal hydrides that have different equilibrium decomposition pressures. They communicate with each other to form a working pair so that hydrogen can move, and at least two working pairs are provided, the first having a lower equilibrium decomposition pressure.
A metal hydride is filled into one sealed container of the first working pair, and a second metal hydride, which has the next lowest equilibrium decomposition pressure, is filled into one sealed container of the second working pair, and the equilibrium decomposition pressure is It is characterized in that the remaining closed containers of the first and second working pairs are filled with a third metal hydride having a large hydride.

以下に実施例を示す図面に基づいて本発明の第
1の金属水素化物装置を説明する。
EMBODIMENT OF THE INVENTION The 1st metal hydride apparatus of this invention is demonstrated based on the drawing which shows an Example below.

第2図は、作動温度領域において平衡分解圧の
異なる3種の金属水素化物MH1、MH2及び
MH3を用いる第1の金属水素化物装置の実施例
を示し、平衡分解圧の小さいMH1と次に小さい
MH2とが熱交換器をなす密閉容器1及び3にそ
れぞれ充填され、また、平衡分解圧の大きいMH
3が熱交換器をなす密閉容器2及び4にそれぞれ
充填されていると共に、容器1と2は水素が移動
し得るように連通管9に連通されて第1の作動対
をなし、同様に容器3と4も連通管10により連
通されて第2の作動対をなす。各連通管には電磁
弁のような制御弁11及び12がそれぞれ設けら
れており、後述するサイクルに応じて各連通管を
開閉制御する。
Figure 2 shows three types of metal hydrides, MH1, MH2, and
An example of the first metal hydride device using MH3 is shown, with MH1 having the lowest equilibrium decomposition pressure and the next lowest equilibrium decomposition pressure.
The sealed containers 1 and 3 forming a heat exchanger are filled with MH2, respectively, and MH2 with a high equilibrium decomposition pressure is
3 is filled in closed containers 2 and 4 forming a heat exchanger, and the containers 1 and 2 are connected to a communication pipe 9 so that hydrogen can be transferred, forming a first working pair. 3 and 4 are also communicated through the communication pipe 10 to form a second working pair. Each communication pipe is provided with control valves 11 and 12 such as electromagnetic valves, and each communication pipe is opened and closed according to a cycle described later.

また、容器1は高温TH1の第1の駆動熱源5
と温度TMの中温熱媒6にそれぞれ管路13及び
14により熱交換可能にかつ切換え可能に接続さ
れ、容器3は上記第1の駆動熱源と異なる高温
TH2(<TH1)の第2の駆動熱源7と中温熱
媒6にそれぞれ管路15及び16により熱交換可
能かつ切換え可能に接続されている。一方、第1
の作動対において平衡分解圧の大きいMH3を充
填した容器2は管路17及び18によりそれぞれ
温度TLの低温熱媒8と中温熱媒6とに熱交換可
能かつ切換え可能に接続され、同様に第2の作動
対においてMH3を充填した容器4も管路19及
び20によりそれぞれ低温熱媒8と中温熱媒6に
熱交換可能かつ切換え可能に接続されている。
Further, the container 1 is a first driving heat source 5 with a high temperature TH1.
and the temperature TM are connected to a medium-temperature heating medium 6 through pipes 13 and 14, respectively, in a heat exchangeable and switchable manner, and the container 3 is connected to a medium-temperature heating medium 6 with a temperature TM, which is different from the first driving heat source.
It is connected to the second drive heat source 7 of TH2 (<TH1) and the intermediate temperature heat medium 6 through pipes 15 and 16, respectively, so that heat exchange and switching is possible. On the other hand, the first
In the working pair, the container 2 filled with MH3 having a high equilibrium decomposition pressure is connected via pipes 17 and 18 to a low-temperature heat medium 8 and a medium-temperature heat medium 6, respectively, at a temperature TL in a heat exchangeable and switchable manner. In the second working pair, the container 4 filled with MH3 is also connected via lines 19 and 20 to the low-temperature heating medium 8 and the medium-temperature heating medium 6, respectively, in a heat exchangeable and switchable manner.

各容器と熱源又は熱媒の接続の切換えは、図示
しない電磁弁のような制御弁によりなされる。こ
の装置は2対の作動対を有する4ボンベ型装置で
ある。
The connection between each container and the heat source or heating medium is switched by a control valve such as a solenoid valve (not shown). The device is a four-cylinder device with two working pairs.

上記の装置の作動を第3図に示すサイクル線図
によつて説明する。なお、第2図においては単一
の中温熱媒6が示され、容器1,2,3及び4は
すべてこの単一の中温熱媒に接続されているが、
中温熱媒は単一である必要はなく、例えば、第1
の作動対において容器1が温度TM1の中温熱媒
に接続され、容器2がTM1と異なる温度TM2
の中温熱媒に接続されていると共に、第2の作動
対において容器3及び4が共に温度TM2の中温
熱媒に接続されていてもよい。第3図は各容器が
このようにに各中温熱媒に接続されているサイク
ル線図を示す。
The operation of the above device will be explained with reference to the cycle diagram shown in FIG. In addition, in FIG. 2, a single medium-temperature heating medium 6 is shown, and the containers 1, 2, 3, and 4 are all connected to this single medium-temperature heating medium,
The intermediate temperature heating medium does not need to be single; for example, the first
In the working pair, vessel 1 is connected to a medium temperature heating medium at temperature TM1 and vessel 2 is connected to a temperature TM2 different from TM1.
In the second working pair, vessels 3 and 4 may both be connected to a medium temperature heat medium at a temperature TM2. FIG. 3 shows a cycle diagram in which each vessel is thus connected to a respective medium temperature heating medium.

先ず、第1の作動対において、容器1を第1の
高温駆動熱源に接続してMH1を温度TH1に加
熱し、容器2を中温熱媒に接続してMH3を温度
TM2に保つと、MH1は水素を吸熱的に放出し
(点A)、この水素は連通管9によつて容器2に到
り、MH3がこれを発熱的に吸蔵する(点B)。
同時に、第2の作動対において、容器3を温度
TM2の中温熱媒に接続し、容器4を温度TLの
低温熱媒に接続して、MH3から吸熱的に水素を
放出させ(点C)、これを連通管10によつて容
器3に到らしめて、MH2に発熱的に吸蔵させれ
ば(点H)、低温熱媒(点C)において冷熱出力
を得ることができる。この冷熱出力は例えば冷房
に供することができる。また、MH3の水素吸蔵
による温熱出力(点B)及びMH2の水素吸蔵に
よる温熱出力(点H)は必要に応じて、例えば給
湯に利用することができる。
First, in the first working pair, vessel 1 is connected to a first high-temperature driving heat source to heat MH1 to temperature TH1, and vessel 2 is connected to a medium-temperature heating medium to heat MH3 to temperature TH1.
When maintained at TM2, MH1 endothermically releases hydrogen (point A), this hydrogen reaches vessel 2 via communication pipe 9, and MH3 absorbs it exothermically (point B).
At the same time, in the second working pair, the container 3 is
TM2 is connected to a medium-temperature heating medium, and the container 4 is connected to a low-temperature heating medium at a temperature TL, and hydrogen is endothermically released from MH3 (point C), which reaches the container 3 through the communication pipe 10. If the temperature is increased and MH2 is exothermically occluded (point H), cold output can be obtained in the low temperature heat medium (point C). This cold output can be used for cooling, for example. Further, the thermal output due to hydrogen storage in MH3 (point B) and the thermal output due to hydrogen storage in MH2 (point H) can be used, for example, for hot water supply, as needed.

次に、各作動対において水素移動が完了した後
に、第1の作動対において、容器1を温度TM1
の中温熱媒に接続し、容器2を低温熱媒に接続す
ると、容器内のMH1とMH3の平衡分解圧の差
圧によつて、MH3は水素を吸熱的に放出し(点
C)、この水素をMH1が発熱的に吸蔵する(点
D)。従つて、MH3の水素放出による吸熱によ
り、低温熱媒(点C)において冷熱出力を得るこ
とができ、また、MH1の水素吸蔵による発熱に
よつて、中温熱媒(点D)において温熱出力を得
ることができる。冷熱出力は例えば冷房に利用す
ることができ、温熱出力は例えば暖房又は給湯に
利用することができる。
Then, after the hydrogen transfer is completed in each working pair, in the first working pair, the vessel 1 is heated to a temperature TM1.
When connected to a medium-temperature heating medium and connecting container 2 to a low-temperature heating medium, MH3 releases hydrogen endothermically (point C) due to the pressure difference between the equilibrium decomposition pressures of MH1 and MH3 in the container. MH1 absorbs hydrogen exothermically (point D). Therefore, cold output can be obtained in the low-temperature heating medium (point C) due to heat absorption due to hydrogen release in MH3, and thermal output can be obtained in the medium-temperature heating medium (point D) due to heat generation due to hydrogen absorption in MH1. Obtainable. The cold output can be used, for example, for cooling, and the thermal output can be used, for example, for heating or hot water supply.

同時に、第2の作動対において、容器3を第2
の高温駆動熱源に接続してMH2を温度TH2に
加熱すると共に、容器4を温度TM2の中温熱媒
に接続して冷却すると、MH2は吸熱的に水素を
放出し(点E)、この水素をMH3が発熱的に吸
蔵する(点B)。MH3の水素吸蔵に伴う発熱も
必要ならば、中温熱媒(点B)において温熱出力
として得ることができる。
At the same time, in the second working pair, the container 3 is
When MH2 is heated to temperature TH2 by connecting it to a high-temperature driving heat source of MH3 is exothermically occluded (point B). If the heat generated by the hydrogen absorption of MH3 is also required, it can be obtained as thermal output in the intermediate temperature heating medium (point B).

このようにして右回りのサイクルが完了し、各
容器を当初の熱源又は熱媒に接続すれば、再び新
しいサイクルが開始される。
The clockwise cycle is thus completed and a new cycle begins again by connecting each vessel to its original heat source or medium.

以上のように、本発明の第1の金属水素化物装
置によれば、上記のように温度の異なる2種の高
温熱源を利用して、冷熱出力及び/又は温熱出力
を得ることができる。
As described above, according to the first metal hydride device of the present invention, cold output and/or thermal output can be obtained by using two types of high-temperature heat sources having different temperatures as described above.

なお、本発明においては、第1の作動対におい
てMH1からMH3への水素移動(A→B)が完
了し、第2の作動対においてMH3からMH2へ
の水素移動(C→H)が完了したとき、温度TH
1のMH1と温度TM2のMH2との間で適宜の
熱媒を管路21により循環させて熱交換を行い、
MH2を温度TH1とTM2の中間温度付近まで
予熱すれば、次の段階でMH2を温度TH2にま
で加熱するための駆動熱源からの熱供給を削減で
きるので熱経済的に有利である。同時に、MH1
の予冷もなし得るので、冷熱出力の取得効率も高
まる。同様に、平衡分解圧の高い金属水素化物に
ついても、温度TM2のMH3と温度TLのMH
3との間に管路22により適宜の熱媒を循環させ
て熱交換を行い、それぞれのMH3を次の段階に
備えて予熱又は予冷するのが熱経済的に有利であ
る。
In addition, in the present invention, hydrogen transfer from MH1 to MH3 (A → B) is completed in the first working pair, and hydrogen transfer from MH3 to MH2 (C → H) is completed in the second working pair. When, temperature TH
Heat exchange is performed by circulating an appropriate heating medium between MH1 at temperature TM2 and MH2 at temperature TM2 through pipe 21,
Preheating MH2 to around the intermediate temperature between TH1 and TM2 is thermoeconomically advantageous because the heat supply from the drive heat source for heating MH2 to temperature TH2 in the next step can be reduced. At the same time, MH1
Since it is also possible to pre-cool the air, the efficiency of acquiring cold output is also increased. Similarly, for metal hydrides with high equilibrium decomposition pressure, MH3 at temperature TM2 and MH3 at temperature TL
It is thermoeconomically advantageous to circulate an appropriate heat medium between the MH3 and the MH3 through the pipe line 22 to perform heat exchange, and to preheat or precool each MH3 in preparation for the next step.

また、第1の作動対において、MH3からMH
1への水素移動(C→D)が完了し、第2の作動
対においてMH2からMH3への水素移動(E→
B)が完了したときも、温度TH2のMH2と温
度TM1のMH1との間で熱交換させると共に、
温度TM2のMH3と温度TLのMH3との間で
熱交換させ、それぞれの金属水素化物を予熱又は
予冷するのが有利である。
Also, in the first working pair, from MH3 to MH
The hydrogen transfer from MH2 to MH3 (E→D) is completed in the second working pair (C→D).
When B) is completed, heat is exchanged between MH2 at temperature TH2 and MH1 at temperature TM1, and
It is advantageous to preheat or precool the respective metal hydride by exchanging heat between MH3 at temperature TM2 and MH3 at temperature TL.

以上に説明した装置温度サイクルにおいて、
MH1としてLaNi4.75Al0.25、MH2として
LaNi4.85Al0.15、また、MH3としてLaNi5.4を用
いるとき、熱源及び熱媒の温度はほぼ次のとおり
に設定できる。
In the device temperature cycle explained above,
LaNi 4.75 Al 0.25 as MH1, as MH2
When using LaNi 4.85 Al 0.15 or LaNi 5.4 as MH3, the temperatures of the heat source and heat medium can be set approximately as follows.

入 力 TH1=100℃(第1の高温駆動熱
源) TH2=80℃(第2の高温駆動12熱
源) 出 力 TL1=10℃(冷熱出力) TM1=45℃(温熱出力) TM2=30℃(大気温度) 従つて、約10℃の冷熱出力と約45℃の温熱出力
を得ることができ、冷房給湯システムに好適に用
いることができる。
Input TH1 = 100℃ (1st high temperature drive heat source) TH2 = 80℃ (2nd high temperature drive 12 heat source) Output TL1 = 10℃ (cold output) TM1 = 45℃ (thermal output) TM2 = 30℃ ( (atmospheric temperature) Therefore, it is possible to obtain a cooling output of about 10°C and a thermal output of about 45°C, and it can be suitably used in an air conditioning hot water supply system.

次に、本発明の装置を暖房給湯に利用する場合
を第4図に示すサイクル線図によつて説明する。
装置は第2図と要部は同じであるが、駆動熱源と
して温度TH(参照番号7は参照番号5と同じに
なる。)の高温駆動熱源のほかに、温度TL2の例
えば太陽熱と、温度TL1(<TL2)の例えば大
気との異なる2種の低温熱源が用いられている。
従つて、この暖房給湯用の装置では第2図におけ
る参照番号8は2種の低温熱源を意味する。
Next, the case where the device of the present invention is used for heating and hot water supply will be explained with reference to the cycle diagram shown in FIG.
The main parts of the device are the same as in Fig. 2, but in addition to the high-temperature drive heat source at temperature TH (reference number 7 is the same as reference number 5), there are also solar heat at temperature TL2 and temperature TL1. (<TL2), for example, two different types of low-temperature heat sources are used, including the atmosphere.
Therefore, in this apparatus for heating and hot water supply, the reference number 8 in FIG. 2 means two types of low-temperature heat sources.

この装置においては、平衡分解圧の小さいMH
1と平衡分解圧の大きいMH3が第1の作動対を
構成し、平衡分解圧の次に小さいMH2と平衡分
解圧の大きいMH3が第2の作動対を構成するこ
とは第2図の装置と同じであり、従つて、第1の
作動対は点A→B→C→Dのサイクルを構成し、
第2の作動対は点E→F→G→Hのサイクルを構
成する。このサイクルによれば、第1の作動対に
おいて、MH1は温度THの高温熱源により加熱
されて、MH1からMH3への水素移動が生じ、
この際の発熱(点B)を暖房給湯用の温熱出力と
して得ることができる。このようにして水素を吸
蔵したMH3は、次に温度TL1の低温熱媒に接
続され、一方、水素を放出したMH1は温度TM
1の中温熱媒に接続され、ここで、MH3から
MH1への水素移動が起り、MH1の水素吸蔵に
よる温熱出力(点D)を暖房給湯に利用すること
ができる。
In this device, MH with low equilibrium decomposition pressure
1 and MH3, which has a large equilibrium decomposition pressure, constitute the first working pair, and MH2, which has the next lowest equilibrium decomposition pressure, and MH3, which has a large equilibrium decomposition pressure, constitute the second working pair. are the same and therefore the first actuation pair constitutes a cycle of points A→B→C→D;
The second actuation pair constitutes a cycle of points E→F→G→H. According to this cycle, in the first working pair, MH1 is heated by a high temperature heat source at temperature TH, hydrogen transfer from MH1 to MH3 occurs;
The heat generated at this time (point B) can be obtained as thermal output for heating and hot water supply. MH3, which has absorbed hydrogen in this way, is then connected to a low-temperature heating medium at a temperature of TL1, while MH1, which has released hydrogen, has a temperature of TM
1, where from MH3
Hydrogen transfer to MH1 occurs, and the thermal output (point D) due to hydrogen storage in MH1 can be used for heating and hot water supply.

第2の作動対においては、同様に、MH2が温
度THの高温熱源によつて加熱されて、MH2か
らMH3への水素移動が生じ、この結果、MH3
から暖房給湯に供し得る温熱出力(点F)を得る
ことができる。水素を吸蔵したMH3は次いで温
度TL2の低温熱源、例えば、太陽熱により加熱
され、一方、水素を放出したMH2は温度TM1
の中温熱源により冷却されて、MH3からMH2
への水素移動が生じ、ここに、MH2の水素吸蔵
によつて得られる温熱出力(点H)を暖房給湯に
供することができる。
In the second working pair, MH2 is similarly heated by a high temperature heat source at temperature TH, resulting in hydrogen transfer from MH2 to MH3, resulting in MH3
From this, a thermal output (point F) that can be used for heating and hot water supply can be obtained. The hydrogen-absorbed MH3 is then heated by a low-temperature heat source, e.g. solar heat, at a temperature TL2, while the hydrogen-released MH2 is heated at a temperature TM1.
Cooled by a medium temperature heat source, MH3 to MH2
Hydrogen transfer occurs, and here the thermal output (point H) obtained by hydrogen storage of MH2 can be provided for heating and hot water supply.

上記した装置において前記したと同じLa―Ni
系の金属水素化物の組合せを用いる場合、熱源及
び熱媒の温度は具体的にはほぼ次のとおりに設定
できる。
In the above device, the same La-Ni as mentioned above is used.
When using a combination of metal hydrides, the temperatures of the heat source and heat medium can be set approximately as follows.

入力 TH1=110℃(高温熱源) TL2=30℃(太陽熱) TL1=0℃(大気) 出力 TM1=50℃(暖房及び給湯) TM2=40℃(給湯) なお、上記した第4図のサイクル線図に従つて
作動する装置においては、温度の異なる2種の低
温熱源を用い、いずれか一方によつていずれか一
方の作動体を作動させており、太陽熱のように低
廉な熱エネルギーを有効に利用できると共に、例
えば大気からも熱を汲上げることができるために
熱経済的に有利である。
Input TH1 = 110℃ (high temperature heat source) TL2 = 30℃ (solar heat) TL1 = 0℃ (atmosphere) Output TM1 = 50℃ (heating and hot water supply) TM2 = 40℃ (hot water supply) Note that the cycle line in Figure 4 above In the device that operates according to the diagram, two types of low-temperature heat sources with different temperatures are used, and one of the actuating bodies is activated by one of them, making it possible to effectively utilize inexpensive thermal energy such as solar heat. It is thermoeconomically advantageous because heat can be pumped up from the atmosphere, for example.

従来の装置においては、もしも、太陽熱が使用
できないときは、G→Hの水素移動ができなくな
つていたが、本発明の装置によれば、温熱出力と
して質の劣る点Bからの温度TM2の温度を点G
においてMH3に与えることにより、G→Hの水
素移動を行うことができる。
In the conventional device, if solar heat cannot be used, hydrogen transfer from G to H becomes impossible, but with the device of the present invention, the temperature TM2 from point B, which is inferior in terms of thermal output, is Temperature at point G
By giving MH3 at , hydrogen transfer from G to H can be performed.

次に、本発明の第1の金属水素化物装置により
左回りサイクルを駆動する場合第5図に示すサイ
クル線図によつて説明する。MH1とMH3から
なる第1の作動対は点A→B→C→Dのサイクル
を行い、温度TM1の第1及び温度TM2の第2
の中温熱媒により駆動され、温度THの温熱出力
(点A)を与える。一方、MH2とMH3からな
る第2の作動対は点E→F→C→Hのサイクルを
行い、温度TM1の第1及び温度TM2の第2の
中温熱媒により駆動され、温度THの温熱出力
(点E)を与える。
Next, the case of driving a counterclockwise cycle using the first metal hydride device of the present invention will be explained with reference to the cycle diagram shown in FIG. The first working pair consisting of MH1 and MH3 cycles from point A→B→C→D, the first at temperature TM1 and the second at temperature TM2.
It is driven by a medium-temperature heating medium of , giving a thermal output (point A) of temperature TH. On the other hand, the second working pair consisting of MH2 and MH3 performs a cycle from point E→F→C→H, is driven by the first intermediate temperature heating medium at temperature TM1 and the second intermediate temperature heating medium at temperature TM2, and has a thermal output at temperature TH. (Point E) is given.

この左回りサイクルでは、例えば低質の2種の
中温駆動熱源を使用して、高温の温熱出力を点A
及び点Eから得ることができる。
This counterclockwise cycle uses, for example, two low-quality, medium-temperature driven heat sources to provide high-temperature thermal output to point A.
and can be obtained from point E.

なお、左回りサイクルでは、液化天然ガスのよ
うな低温熱源を利用して、中温熱媒より大量の冷
熱出力を取り出すことも可能である。
Note that in the counterclockwise cycle, it is also possible to use a low-temperature heat source such as liquefied natural gas to extract a larger amount of cold output than a medium-temperature heat medium.

以上の装置及びサイクルにおいては、2対の作
動対は、平衡分解圧の小さい2種の異なるMH1
とMH2をそれぞれ平衡分解圧の大きいMH3と
組み合せて構成されているが、平衡分解圧の小さ
いMH3を平衡分解圧の大きい2種の異るMH1
とMH2とにそれぞれ組み合せて2対の作動対を
構成することもできる。
In the above device and cycle, the two working pairs are two different types of MH1 with lower equilibrium decomposition pressures.
and MH2 are each combined with MH3, which has a high equilibrium decomposition pressure, but MH3, which has a low equilibrium decomposition pressure, is combined with two different types of MH1, which have a high equilibrium decomposition pressure.
and MH2 can be combined to form two working pairs.

本発明の第2の金属水素化物装置は、作動温度
領域において平衡分解圧の異なる3種の金属水素
化物を用い、平衡分解圧の異なる2種の金属水素
化物を充填した2個の密閉容器を水素が移動し得
るように連通して作動対となし、この作動対を少
なくとも2対設け、平衡分解圧の大きい第1の金
属水素化物を第1の作動対の一方の密閉容器に充
填し、平衡分解圧の次に大きい第2の金属水素化
物を第2の作動対の一方の密閉容器に充填し、平
衡分解圧の小さい第3の金属水素化物を第1及び
第2の作動対の残る密閉容器に充填してなること
を特徴とするものである。
The second metal hydride device of the present invention uses three types of metal hydrides that have different equilibrium decomposition pressures in the operating temperature range, and has two sealed containers filled with two types of metal hydrides that have different equilibrium decomposition pressures. communicating to form a working pair so that hydrogen can move, providing at least two working pairs, and filling a closed container of one of the first working pairs with a first metal hydride having a high equilibrium decomposition pressure; A second metal hydride with the next highest equilibrium decomposition pressure is filled into one closed container of the second working pair, and a third metal hydride with the lowest equilibrium decomposition pressure is charged into the remaining one of the first and second working pairs. It is characterized by being filled in a closed container.

この装置は、第2図において、容器1,2,3
及び4にそれぞれMH3、MH1、MH3及び
MH2が充填されて構成され、熱源及び熱媒の接
続は第2図と同じである。
This device is shown in FIG.
and 4 respectively MH3, MH1, MH3 and
The structure is filled with MH2, and the connections of the heat source and heat medium are the same as in FIG.

第6図はこのような金属水素化物装置の右回り
サイクルを示し、MH1とMH3とからなる第1
の作動対は温度TH1の高温の第1の駆動熱源に
より点A→B→C→Dのサイクルを行い、温度
TLの冷熱出力(点C)と温度TM1の温熱出力
(点D)を与える。MH3からMH1への水素移
動ち伴うMH1の温熱出力も必要に応じて有効に
利用できるが、例えば温度TM2(<TM1)の
大気に放出してもよい。MH3とMH2とからな
る第2の作動対は、温度TH2の高温の第2の駆
動熱源により点E→F→G→Hのサイクルを行つ
て、温度TLの冷熱出力を与える。MH3の水素
吸蔵による温度TM2における温熱出力(点F及
びH)は上記同様に必要に応じて有効に利用げき
るが、系外に放出してもよい。このようにして温
度TLの冷熱出力は冷房に、また、温度TM1
(及び温度TM2)における温熱出力は暖房給湯
に利用することができる。
Figure 6 shows a clockwise cycle of such a metal hydride device, with the first cycle consisting of MH1 and MH3.
The working pair performs a cycle from point A→B→C→D by the high temperature first driving heat source at temperature TH1, and the temperature
Give the cold output of TL (point C) and the thermal output of temperature TM1 (point D). The thermal output of MH1 that accompanies hydrogen transfer from MH3 to MH1 can be effectively used as needed, but it may also be released into the atmosphere at a temperature TM2 (<TM1), for example. The second working pair consisting of MH3 and MH2 performs a cycle from point E→F→G→H by means of a high temperature second driving heat source at temperature TH2, and provides a cold output at temperature TL. The thermal output (points F and H) at temperature TM2 due to hydrogen absorption of MH3 can be effectively used as necessary as described above, but it may also be released outside the system. In this way, the cold output at temperature TL is used for cooling, and the temperature TM1
(and temperature TM2) can be used for heating and hot water supply.

この本発明の第2の金属水素化物装置におい
て、2種の低温駆動熱源を使用した場合のサイク
ル線図を第7図に示す。すなわち、第1の作動対
は点A→B→C→Dのサイクルを行つて、MH3
は温度THの高温駆動熱源(点A)と温度TL1
の第1の低温熱源(点C)により加熱され、それ
ぞれ中温熱媒(点DとB)において温熱出力を与
え、一方、第2の作動対は点A→F→G→Hのサ
イクルを行つて、MH3は高温駆動熱源(点A)
と温度TL2の第2の低温熱源(点G)により加
熱され、それぞれ中温熱媒(点HとF)において
温熱出力を与え、このようにして得られる温熱出
力は暖房及び/又は給湯に利用することができ
る。
FIG. 7 shows a cycle diagram when two types of low-temperature driving heat sources are used in the second metal hydride apparatus of the present invention. That is, the first operating pair performs a cycle of points A→B→C→D and reaches MH3.
is the high temperature driving heat source (point A) at temperature TH and temperature TL1
are heated by the first low-temperature heat source (point C) and provide a thermal output in the medium-temperature heat transfer medium (points D and B), respectively, while the second working pair performs a cycle from points A→F→G→H. Therefore, MH3 is a high temperature drive heat source (point A)
and a second low-temperature heat source (point G) at temperature TL2, respectively, giving a thermal output in the medium-temperature heating medium (points H and F), the thermal output thus obtained being used for space heating and/or hot water supply. be able to.

なお、第7図においては、第4図と同様に太陽
熱を点Gで使用し、大気の有する熱を点Cで汲上
げることができる。
In addition, in FIG. 7, as in FIG. 4, solar heat can be used at point G, and heat possessed by the atmosphere can be pumped up at point C.

この第2の装置において、左回りサイクルを駆
動する場合を第8図によつて説明する。先ず、第
1の作動対において、容器2を第1の中温駆動熱
源に接続してMH1を温度TM1に加熱し、容器
1を高温熱媒に接続してMH3を温度THに保つ
と、MH1は水素を吸熱的に放出し(点D)、こ
の水素をMH3が発熱的に吸蔵する(点A)。一
方、第2の作動対において、容器4を温度TLの
低温熱媒に接続し、容器3を中温熱媒に接続し
て、MH3から吸熱的に水素を放出させると(点
F)、この水素をMH2が発熱的に吸蔵する(点
G)。
The case of driving the counterclockwise cycle in this second device will be explained with reference to FIG. First, in the first working pair, when vessel 2 is connected to the first medium-temperature driving heat source to heat MH1 to temperature TM1, and vessel 1 is connected to a high-temperature heating medium to maintain MH3 at temperature TH, MH1 is Hydrogen is released endothermically (point D), and this hydrogen is exothermically occluded by MH3 (point A). On the other hand, in the second working pair, when the container 4 is connected to a low-temperature heating medium at temperature TL and the container 3 is connected to an intermediate-temperature heating medium to cause hydrogen to be released endothermically from MH3 (point F), this hydrogen is exothermically occluded by MH2 (point G).

次いで、第1の作動対において、MH1を低温
熱媒に切換えて接続し、MH3を温度TM2の中
温熱媒に切換えて接続すると、MH3は水素を吸
熱的に放出し(点B)、この水素をMH1が吸蔵
する(点C)。一方、第2の作動対において、
MH2を第2の中温熱媒に切換えて接続して温度
TM2に加熱すると共に、MH3を高温熱媒に切
換えて接続すると、MH2は水素を吸熱的に放出
し(点H)、この水素をMH3が発熱的に吸蔵す
る(点A)。従つて、MH3の水素吸蔵による温
熱出力を得ることができる。
Then, in the first working pair, when MH1 is switched to a low-temperature heating medium and connected, and MH3 is switched to and connected to a medium-temperature heating medium at a temperature of TM2, MH3 endothermically releases hydrogen (point B), and this hydrogen is occluded by MH1 (point C). On the other hand, in the second working pair,
Switch MH2 to the second medium temperature heat medium and connect it to increase the temperature.
When TM2 is heated and MH3 is switched to a high-temperature heating medium and connected, MH2 endothermically releases hydrogen (point H), and MH3 exothermically stores this hydrogen (point A). Therefore, it is possible to obtain thermal output due to hydrogen storage of MH3.

このようにして左回りサイクルが完了したとき
に、各容器を当初の熱源又は熱媒に接続すること
により新しいサイクルが開始される。以上のよう
に、温度の異なる2種の中温熱源を利用して、よ
り高温の温熱出力を得ることができる。
Thus, when a counterclockwise cycle is completed, a new cycle is started by connecting each vessel to the original heat source or medium. As described above, higher temperature thermal output can be obtained by using two types of medium-temperature heat sources with different temperatures.

この左回りサイクルにおいても、前記したよう
に、容器間で水素移動が完了した後、高温の容器
と低温の容器との間で熱交換させ、低温の金属水
素化物を予熱し、また、高温の金属水素化物を予
冷して、次の段階に備えるのが有利である。
In this counterclockwise cycle, as described above, after the hydrogen transfer between containers is completed, heat is exchanged between the high temperature container and the low temperature container to preheat the low temperature metal hydride, and also to preheat the low temperature metal hydride. It is advantageous to pre-cool the metal hydride in preparation for the next stage.

平衡分解圧の異なる4種の金属水素化物を用い
る本発明の第3の装置は、作動温度領域において
平衡分解圧の異なる4種の金属水素化物を用い、
平衡分解圧の異なる2種の金属水素化物を充填し
た2個の密閉容器を水素が移動し得るように連通
して作動対となし、この作動対を少なくとも2対
設け、平衡分解圧の最も小さい第1の金属水素化
物を第1の作動対の一方の密閉容器に充填し、平
衡分解圧の次に小さい第2の金属水素化物を第2
作動対の一方の密閉容器に充填し、平衡分解圧の
最も大きい第3の金属水素化物を第1又は第2の
作動対の残る密閉容器に充填し、平衡分解圧の次
に大きい第4の金属水素化物を第2又は第1の作
動対の残る密閉容器に充填してなることを特徴と
するものである。
A third device of the present invention using four types of metal hydrides with different equilibrium decomposition pressures uses four types of metal hydrides with different equilibrium decomposition pressures in the operating temperature range,
Two closed containers filled with two types of metal hydrides having different equilibrium decomposition pressures are communicated so that hydrogen can move to form a working pair, and at least two of these working pairs are provided, and the one with the lowest equilibrium decomposition pressure is A first metal hydride is charged into one closed container of the first working pair, and a second metal hydride having the next lowest equilibrium decomposition pressure is charged into the second closed container.
One closed container of the working pair is filled, the third metal hydride with the highest equilibrium decomposition pressure is filled into the remaining closed container of the first or second working pair, and the fourth metal hydride with the next highest equilibrium decomposition pressure is filled. It is characterized in that the remaining closed container of the second or first working pair is filled with a metal hydride.

この装置の作動の一例としてのサイクル線図を
第9図に示す。図示した装置は、第2図において
容器1,2,3及び4にMH1、MH3、MH2
及びMH4がそれぞれ充填されて構成され、熱源
及び熱媒との接続は第2図に示した場合と同じで
ある。また、第1及び第2の作動対のサイクル及
び得られる出力も第6図の場合と同じであること
は明らかであろう。また、第9図には、破線矢印
による水素移動C′→D′を示したが、TH1、TM
2、TL及びTL2の4種の駆動熱源を使用して、
同一温度TM2の温熱出力が点B,F,H及びD
の4点から得られることも容易に理解されるだろ
う。本発明の金属水素化物装置によれば、以上の
ように、温度の異なる2種以上の駆動熱源を同時
に有効に利用して、温熱出力及/又は冷熱出力を
得ることができ、従つて、装置の成績係数が高
く、熱経済性にすぐれるものである。
A cycle diagram as an example of the operation of this device is shown in FIG. The illustrated apparatus has containers 1, 2, 3 and 4 with MH1, MH3 and MH2 in FIG.
and MH4 are respectively filled, and the connections with the heat source and heat medium are the same as those shown in FIG. It will also be clear that the cycles of the first and second actuating pairs and the resulting outputs are also the same as in FIG. In addition, in Figure 9, the hydrogen transfer C'→D' is shown by the broken line arrow, but TH1, TM
2. Using four types of driving heat sources: TL and TL2,
Thermal output at the same temperature TM2 is at points B, F, H and D
It will be easy to understand what can be obtained from these four points. According to the metal hydride device of the present invention, as described above, it is possible to effectively utilize two or more drive heat sources having different temperatures at the same time to obtain thermal output and/or cold output, and therefore, the device It has a high coefficient of performance and excellent thermoeconomic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金属水素化物装置の作動を示す
サイクル線図、第2図は本発明の金属水素化物装
置の実施例を示す回路構成図、第3図ないし第9
図は本発明の装置の作動を示すサイクル線図であ
る。 1,2,3,4……密閉容器、5,6,7,8
……熱源又は熱媒、9,10……連通管、11,
12……制御弁、13,14,15,16,1
7,18,19,20,21,22……管路、
MH1,MH2,MH3,MH4……金属水素化
物。
FIG. 1 is a cycle diagram showing the operation of a conventional metal hydride device, FIG. 2 is a circuit diagram showing an embodiment of the metal hydride device of the present invention, and FIGS. 3 to 9
The figure is a cycle diagram showing the operation of the device of the present invention. 1, 2, 3, 4... airtight container, 5, 6, 7, 8
...Heat source or heat medium, 9,10...Communication pipe, 11,
12...Control valve, 13, 14, 15, 16, 1
7, 18, 19, 20, 21, 22... pipe line,
MH1, MH2, MH3, MH4...metal hydride.

Claims (1)

【特許請求の範囲】 1 作動温度領域において平衡分解圧の異なる3
種の金属水素化物を用い、平衡分解圧の異なる2
種の金属水素化物を充填した2個の密閉容器を水
素が移動し得るように連通して作動対となし、こ
の作動対を少なくとも2対設け、平衡分解圧の小
さい第1の金属水素化物を第1の作動対の一方の
密閉容器に充填し、平衡分解圧の次に小さい第2
の金属水素化物を第2の作動対の一方の密閉容器
に充填し、平衡分解圧の大きい第3の金属水素化
物を第1及び第2の作動対の残る密閉容器に充填
すると共に、第1の金属水素化物を充填した容器
と第2の金属水素化物を充填した容器との間、及
び/又は第3の金属水素化物を充填した容器相互
の間を熱媒の管路にて熱交換可能に接続してなる
ことを特徴とする金属水素化物装置。 2 作動温度領域において平衡分解圧の異なる3
種の金属水素化物を用い、平衡分解圧の異なる2
種の金属水素化物を充填した2個の密閉容器を水
素が移動し得るように連通して作動対となし、こ
の作動対を少なくとも2対設け、平衡分解圧の大
きい第1の金属水素化物を第1の作動対の一方の
密閉容器に充填し、平衡分解圧の次に大きい第2
の金属水素化物を第2の作動対の一方の密閉容器
に充填し、平衡分解圧の小さい第3の金属水素化
物を第1及び第2の作動対の残る密閉容器に充填
すると共に、第1の金属水素化物を充填した容器
と第2の金属水素化物を充填した容器との間、及
び/又は第3の金属水素化物を充填した容器相互
の間を熱媒の管路にて熱交換可能に接続してなる
ことを特徴とする金属水素化物装置。 3 作動温度領域において平衡分解圧の異なる4
種の金属水素化物を用い、平衡分解圧の異なる2
種の金属水素化物を充填した2個の密閉容器を水
素が移動し得るように連通して作動対となし、こ
の作動対を少なくとも2対設け、平衡分解圧の最
も小さい第1の金属水素化物を第1の作動対の一
方の密閉容器に充填し、平衡分解圧の次に小さい
第2の金属水素化物を第2の作動対の一方の密閉
容器に充填し、平衡分解圧の最も大きい第3の金
属水素化物を第1及び第2の作動対の残る密閉容
器に充填し、平衡分解圧の次に大きい第4の金属
水素化物を第2又は第1の作動対の残る密閉容器
に充填すると共に、第1の金属水素化物を充填し
た容器と第2の金属水素化物を充填した容器との
間、及び/又は第3の金属水素化物と第4の金属
水素化物を充填した容器相互の間を熱媒の管路に
て熱交換可能に接続してなることを特徴とする金
属水素化物装置。
[Claims] 1. 3. Different equilibrium decomposition pressures in the operating temperature range.
Two types of metal hydrides with different equilibrium decomposition pressures were used.
Two sealed containers filled with the metal hydride of the species are communicated so that hydrogen can move to form a working pair, and at least two pairs of the working pairs are provided, and the first metal hydride having a low equilibrium decomposition pressure is used. One sealed container of the first working pair is filled, and the second
A third metal hydride having a higher equilibrium decomposition pressure is charged into the remaining closed containers of the first and second working pairs, and the first It is possible to exchange heat between the container filled with the metal hydride and the container filled with the second metal hydride, and/or between the containers filled with the third metal hydride through a heat medium conduit. A metal hydride device characterized by being connected to. 2 Different equilibrium decomposition pressures in the operating temperature range 3
Two types of metal hydrides with different equilibrium decomposition pressures were used.
Two sealed containers filled with different metal hydrides are communicated so that hydrogen can move to form a working pair, and at least two pairs of these working pairs are provided, and the first metal hydride having a large equilibrium decomposition pressure is One of the closed containers of the first working pair is filled, and the second
A third metal hydride having a lower equilibrium decomposition pressure is charged into the remaining closed containers of the first and second working pairs, and the first It is possible to exchange heat between the container filled with the metal hydride and the container filled with the second metal hydride, and/or between the containers filled with the third metal hydride through a heat medium conduit. A metal hydride device characterized by being connected to. 3 Different equilibrium decomposition pressures in the operating temperature range 4
Two types of metal hydrides with different equilibrium decomposition pressures were used.
Two sealed containers filled with the metal hydride of the species are communicated so that hydrogen can move to form a working pair, and at least two pairs of the working pairs are provided, and the first metal hydride having the lowest equilibrium decomposition pressure is provided. is charged into one sealed container of the first working pair, a second metal hydride having the next lowest equilibrium decomposition pressure is filled into one sealed container of the second working pair, and the second metal hydride having the highest equilibrium decomposition pressure is filled with Fill the remaining closed containers of the first and second working pairs with the third metal hydride, and fill the fourth metal hydride with the next highest equilibrium decomposition pressure into the remaining closed containers of the second or first working pair. At the same time, between the container filled with the first metal hydride and the container filled with the second metal hydride, and/or between the containers filled with the third metal hydride and the fourth metal hydride, 1. A metal hydride device, characterized in that the metal hydride devices are connected to each other by a heat medium conduit for heat exchange.
JP5682182A 1981-07-31 1982-04-05 Metal hydride device Granted JPS58173358A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5682182A JPS58173358A (en) 1982-04-05 1982-04-05 Metal hydride device
EP82106871A EP0071271B1 (en) 1981-07-31 1982-07-29 Metal hydride heat pump system
DE8282106871T DE3277930D1 (en) 1981-07-31 1982-07-29 Metal hydride heat pump system
US06/403,877 US4523635A (en) 1981-07-31 1982-07-30 Metal hydride heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5682182A JPS58173358A (en) 1982-04-05 1982-04-05 Metal hydride device

Publications (2)

Publication Number Publication Date
JPS58173358A JPS58173358A (en) 1983-10-12
JPS6327623B2 true JPS6327623B2 (en) 1988-06-03

Family

ID=13038031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5682182A Granted JPS58173358A (en) 1981-07-31 1982-04-05 Metal hydride device

Country Status (1)

Country Link
JP (1) JPS58173358A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568484B2 (en) * 1983-07-08 1997-01-08 松下電器産業株式会社 Multi-effect heat pump device
JPS61134551A (en) * 1984-12-06 1986-06-21 松下電器産業株式会社 Metallic hydride heat pump device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122151A (en) * 1974-08-16 1976-02-21 Matsushita Electric Ind Co Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122151A (en) * 1974-08-16 1976-02-21 Matsushita Electric Ind Co Ltd

Also Published As

Publication number Publication date
JPS58173358A (en) 1983-10-12

Similar Documents

Publication Publication Date Title
US4523635A (en) Metal hydride heat pump system
US4055962A (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
CN112554984B (en) Constant-pressure water-pumping compressed air energy storage system with heat storage function and operation method
JP3631107B2 (en) Cogeneration system using micro gas turbine waste heat gas
JPS6327623B2 (en)
JPS634112B2 (en)
JPS634111B2 (en)
JPS6329183B2 (en)
JPH0132401B2 (en)
JPS6329184B2 (en)
JPS638394B2 (en)
JPH0212321B2 (en)
JP2642830B2 (en) Cooling device
JPS6329182B2 (en)
USRE30840E (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
JPH0472141B2 (en)
JP3133442B2 (en) Heat driven cold heat generation method and apparatus using metal hydride
JP2000234820A (en) Solar heat driven freezing machine and its operation method
JPH06194077A (en) Heat-exchanging device
JP2703360B2 (en) Heat-driven chiller using metal hydride
JPS6037395B2 (en) Portable heating or cooling device
JPS6329181B2 (en)
JPH04165271A (en) Cold-heat generating system
JPH0412380B2 (en)
JPS62169997A (en) Heat transport system utilizing metal hydride