JPS6329182B2 - - Google Patents

Info

Publication number
JPS6329182B2
JPS6329182B2 JP56193307A JP19330781A JPS6329182B2 JP S6329182 B2 JPS6329182 B2 JP S6329182B2 JP 56193307 A JP56193307 A JP 56193307A JP 19330781 A JP19330781 A JP 19330781A JP S6329182 B2 JPS6329182 B2 JP S6329182B2
Authority
JP
Japan
Prior art keywords
temperature
metal hydride
hydrogen
medium
heating medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56193307A
Other languages
Japanese (ja)
Other versions
JPS5895167A (en
Inventor
Michoshi Nishizaki
Minoru Myamoto
Kazuaki Myamoto
Takeshi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP19330781A priority Critical patent/JPS5895167A/en
Publication of JPS5895167A publication Critical patent/JPS5895167A/en
Publication of JPS6329182B2 publication Critical patent/JPS6329182B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明はヒートポンプ装置の運転方法に関し、
詳しくは金属水素化物を用いるヒートポンプ装置
の運転方法に関する。
[Detailed Description of the Invention] The present invention relates to a method of operating a heat pump device,
More specifically, the present invention relates to a method of operating a heat pump device using metal hydrides.

ある種の金属や合金が発熱的に水素を吸蔵して
金属水素化物を形成し、また、この金属水素化物
が可逆的に吸熱的に水素を放出することが知られ
ている。
It is known that certain metals and alloys exothermically absorb hydrogen to form metal hydrides, and that these metal hydrides reversibly and endothermically release hydrogen.

近年、このような金属水素化物の特性を利用し
た種々のヒートポンプ装置が提案されているが、
従来のヒートポンプ装置は第1図に示すように、
第1の密閉容器1に第1の金属水素化物M1Hを
充填し、作動温度領域においてM1Hより平衡分
解圧Pの高い第2の金属水素化物M2Hを第2の
密閉容器2に充填すると共に、電磁弁3等の開閉
制御可能な弁を備えた連通管4にて第1及び第2
の密閉容器を連通し、更に第1の密閉容器には温
度THの高温熱媒5、第2の密閉容器には温度TL
の低温熱媒6、また、第1及び第2の密閉容器に
は温度TMの中温熱媒7をそれぞれ切換可能に接
続して構成されている。
In recent years, various heat pump devices have been proposed that utilize the characteristics of metal hydrides.
As shown in Figure 1, the conventional heat pump device
A first metal hydride M 1 H is filled in the first closed container 1, and a second metal hydride M 2 H having a higher equilibrium decomposition pressure P than M 1 H in the operating temperature range is filled in the second closed container 2. At the same time, the first and second
The first sealed container has a high temperature heating medium 5 at a temperature T H , and the second sealed container has a temperature T L.
A low temperature heat medium 6 is connected to the first and second closed containers, and a medium temperature heat medium 7 having a temperature T M is switchably connected to the first and second closed containers.

この装置の作動を第2図に示すサイクル線図に
よつて説明する。例えば冷熱出力を得る場合は、
M2Hを大気のような温度TMの中温熱媒に接続し
(点B)、M1Hを駆動熱源である高温熱媒に接続
して温度THに加熱し、M1Hの平衡分解圧をM2H
のそれよりも高め(点A)、平衡分解圧の差を利
用してM1Hから吸熱的に水素を放出させ、この
水素をM2Hに発熱的に吸蔵させる。次に、M1H
を中温熱媒に接続し、温度TMに冷却して、その
平衡分解圧をM2Hのそれよりも低くし(点D)、
平衡分解圧の差を利用してM2Hから吸熱的に水
素を放出させ、この水素をM1Hに発熱的に吸蔵
させる。この水素移動過程におけるM2Hの吸熱
反応をM2Hに接続した低温冷媒から温度TLの冷
熱として取得し(点C)、サイクルを完了する。
温熱出力を得る場合には、上記のサイクルにおい
て、高温熱媒と低温熱媒を駆動熱源とし、M2H
の水素吸蔵反応(点B)とM1Hの水素吸蔵反応
(点D)における発熱反応を利用する。
The operation of this device will be explained using the cycle diagram shown in FIG. For example, when obtaining cold output,
Connect M 2 H to a medium-temperature heating medium at temperature T M , such as the atmosphere (point B), and connect M 1 H to a high-temperature heating medium, which is a driving heat source, to heat it to temperature T H , and bring M 1 H into equilibrium. Decomposition pressure M2H
(point A), hydrogen is endothermically released from M 1 H using the difference in equilibrium decomposition pressure, and this hydrogen is exothermically occluded by M 2 H. Then M 1 H
is connected to a medium-temperature heating medium and cooled to a temperature T M to make its equilibrium decomposition pressure lower than that of M 2 H (point D),
Using the difference in equilibrium decomposition pressure, hydrogen is endothermically released from M 2 H, and this hydrogen is exothermically stored in M 1 H. The endothermic reaction of M 2 H in this hydrogen transfer process is obtained as cold heat at a temperature T L from the low-temperature refrigerant connected to M 2 H (point C), and the cycle is completed.
To obtain thermal output, in the above cycle, a high temperature heating medium and a low temperature heating medium are used as driving heat sources, and M 2 H
The exothermic reactions in the hydrogen absorption reaction of (point B) and the hydrogen absorption reaction of M 1 H (point D) are utilized.

しかし、上述したヒートポンプ装置において
は、例えば太陽熱や廃熱のように熱源温度が変動
しやすい場合、熱源が所定温度に達しないとき装
置が作動しない。例えば上に説明した冷熱出力を
得る場合に、駆動熱源の温度が第2図に示すよう
にTEにまで下がり、この結果、M1Hの平衡分解
圧が点BにおけるM2Hの分解平衡圧よりも小さ
いとき、M1HからM2Hへの水素移動が起こり得
ない。同様に温熱出力を得る場合にも、例えば低
温駆動熱源が温度TFに変動し、M2Hの平衡分解
圧が点DにおけるM1Hの平衡分解圧より低くな
つたとき、M2HからM1Hへの水素移動が起こり
得ない。また、上述したヒートポンプ装置は駆動
熱源として高温熱媒や低温熱媒、あるいは複数の
駆動熱源を必要とし、しかも一般にそれらは熱媒
の温度や供給が不安定である。
However, in the above-described heat pump device, when the heat source temperature fluctuates easily, such as solar heat or waste heat, the device does not operate when the heat source does not reach a predetermined temperature. For example, when obtaining the cold output described above, the temperature of the driving heat source decreases to T E as shown in Figure 2, and as a result, the equilibrium decomposition pressure of M 1 H becomes equal to the decomposition equilibrium of M 2 H at point B. When the pressure is less than the pressure, hydrogen transfer from M 1 H to M 2 H cannot occur. Similarly, when obtaining thermal output, for example, when the temperature of the low-temperature driven heat source changes to T F and the equilibrium decomposition pressure of M 2 H becomes lower than the equilibrium decomposition pressure of M 1 H at point D, the Hydrogen transfer to M 1 H cannot occur. Further, the above-described heat pump device requires a high temperature heat medium, a low temperature heat medium, or a plurality of drive heat sources as a driving heat source, and in general, the temperature and supply of the heat medium are unstable.

更に、従来のヒートポンプ装置において、第3
図に示すサイクルから例えば温熱出力を得る場合
に次のような問題がある。即ち、M1Hを太陽熱
のような中温熱媒により温度TMに加熱し、M2H
を大気のような低温熱媒で温度TLに冷却しなが
らM1Hから水素を放出させて(点A)、これを
M2Hに吸蔵させ(点B)、次に、M2Hを中温熱
媒により温度TMに加熱することによりM2Hから
水素を放出させ(点C)、これをM1Hに吸蔵させ
て(点D)、M1Hの発熱から温度THの温熱出力を
得る場合、駆動熱源としての中温熱媒の温度が低
ければ、水素移動が起こらず、温度THの温熱出
力が得られない。しかも、温熱出力を得るために
は、低温駆動熱源である低温熱媒の温度がより低
くなければならないという矛盾した条件が必要で
あり、金属水素化物を加熱、冷却する間に熱損失
が大きくならざるを得ない欠点もある。
Furthermore, in conventional heat pump devices, the third
For example, when obtaining thermal output from the cycle shown in the figure, the following problems arise. That is, M 1 H is heated to a temperature T M by a medium-temperature heating medium such as solar heat, and M 2 H
While cooling M 1 H to a temperature T L with a low-temperature heating medium such as the atmosphere, hydrogen is released from M 1 H (point A).
M 2 H is occluded (point B), then hydrogen is released from M 2 H by heating M 2 H to temperature T M with a medium temperature heating medium (point C), and hydrogen is occluded by M 1 H. (point D), when obtaining a thermal output at a temperature T H from the heat generated by M 1 H, if the temperature of the medium-temperature heating medium serving as the driving heat source is low, hydrogen transfer will not occur and a thermal output at a temperature T H will be obtained. I can't. Moreover, in order to obtain thermal output, a contradictory condition is required: the temperature of the low-temperature heating medium, which is the low-temperature drive heat source, must be lower, and the heat loss during heating and cooling of the metal hydride must be large. There are some unavoidable drawbacks.

本発明は上記に鑑みてなされたものであつて、
不安定な駆動熱源に頼ることなく、金属水素化物
の加熱、冷却による熱損失を防止した金属水素化
物ヒートポンプ装置の運転方法を提供することを
目的とする。
The present invention has been made in view of the above, and includes:
It is an object of the present invention to provide a method for operating a metal hydride heat pump device that prevents heat loss due to heating and cooling of metal hydride without relying on an unstable driving heat source.

本発明のヒートポンプ装置の運転方法は、第1
の金属水素化物を充填した第1の密閉容器と、作
動温度領域において第1の金属水素化物よりも高
い平衡分解圧を有する第2の金属水素化物を充填
した第2の密閉容器と、第1と第2の金属水素化
物の平衡分解圧の差圧によつて第2の密閉容器か
ら第1の密閉容器へ水素を移動させ得ると共に、
第1と第2の金属水素化物の平衡分解圧の逆圧に
抗して強制的に第1の密閉容器から第2の密閉容
器へ水素を移動させ得る駆動制御可能な圧縮機を
有する連通管とからなり、第1及び第2の密閉容
器にそれぞれ切換可能に中温又は低温の熱媒を熱
交換可能に接続して構成されたヒートポンプ装置
において、第2の密閉容器を低温の熱媒に接続
し、第1の密閉容器を中温の熱媒に接続して、第
1と第2の金属水素化物の平衡分解圧の差圧によ
り第2の金属水素化物に吸熱的に水素を放出さ
せ、この水素を第1の金属水素化物に発熱的に吸
蔵させ、次に、第1の金属水素化物を低温の熱媒
に接続し、第2の金属水素化物を中温の熱媒に接
続して、第1と第2の金属水素化物の平衡分解圧
の逆圧に抗して強制的に第1の金属水素化物から
吸熱的に水素を放出させ、この水素を第2の金属
水素化物に発熱的に吸蔵させることを特徴とする
ものである。
The method of operating a heat pump device of the present invention includes the first
a second sealed container filled with a second metal hydride having a higher equilibrium decomposition pressure than the first metal hydride in the operating temperature range; Hydrogen can be transferred from the second closed container to the first closed container by the pressure difference between the equilibrium decomposition pressure of the second metal hydride and the second metal hydride, and
A communication pipe having a drive controllable compressor capable of forcibly transferring hydrogen from the first closed container to the second closed container against the opposite pressure of the equilibrium decomposition pressure of the first and second metal hydrides. In a heat pump device configured by connecting a medium-temperature or low-temperature heat medium to the first and second closed containers in a switchable manner for heat exchange, the second closed container is connected to the low-temperature heat medium. The first closed container is connected to a medium temperature heating medium, and the second metal hydride is endothermically released from hydrogen by the difference in the equilibrium decomposition pressures of the first and second metal hydrides. Hydrogen is exothermically occluded in a first metal hydride, then the first metal hydride is connected to a low temperature heating medium, the second metal hydride is connected to an intermediate temperature heating medium, and a second metal hydride is connected to a medium temperature heating medium. Hydrogen is forcibly released endothermically from the first metal hydride against the opposite pressure of the equilibrium decomposition pressure of the first metal hydride and the second metal hydride, and this hydrogen is exothermically released into the second metal hydride. It is characterized by being occluded.

以下に実施例を示す図面に基づいて本発明を説
明する。
The present invention will be described below based on drawings showing examples.

第4図は本発明で使用するヒートポンプ装置の
一実施例を示し、第1の密閉容器1及び第2の密
閉容器2にはそれぞれM1H及びM2Hが充填され
ていると共に、容器間はM1HとM2Hの平衡分解
圧の差圧により第2の密閉容器から第1の密閉容
器へ水素を移動させるように開閉制御可能な電磁
弁のような弁3を備えた第1の連通管4と、
M1HとM2Hの平衡分解圧の逆圧に抗して第1の
密閉容器から第2の密閉容器へ水素を強制的に移
動させるように駆動制御可能な圧縮機8を備えた
第2の連通管9により相互に連通されている。な
お、弁3と圧縮機8は同一の連通管に設けてもよ
い。また、両容器はそれぞれ切換可能に中温熱媒
6と低温熱媒7とに熱交換可能に接続されてい
る。
FIG. 4 shows an embodiment of the heat pump device used in the present invention, in which the first sealed container 1 and the second sealed container 2 are filled with M 1 H and M 2 H, respectively, and the space between the containers is The first valve is equipped with a valve 3 such as a solenoid valve that can be opened and closed so as to move hydrogen from the second closed container to the first closed container based on the pressure difference between the equilibrium decomposition pressures of M 1 H and M 2 H. a communicating pipe 4,
A compressor 8 equipped with a compressor 8 that can be driven and controlled to forcibly move hydrogen from the first closed container to the second closed container against the reverse pressure of the equilibrium decomposition pressure of M 1 H and M 2 H. They are communicated with each other by two communication pipes 9. Note that the valve 3 and the compressor 8 may be provided in the same communication pipe. Further, both containers are connected to a medium-temperature heat medium 6 and a low-temperature heat medium 7 in a switchable manner so as to exchange heat with each other.

次に上記装置の作動を第5図に示すサイクル線
図により説明する。先ず、M1Hを中温熱媒に接
続し、M2Hを低温熱媒に接続して、M2Hの平衡
分解圧をM1Hのそれよりも高くすることにより
M1HとM2Hとの間に平衡分解圧の差圧を生ぜし
め、弁を開いてM2Hから吸熱的に水素を放出さ
せ(点A)、この水素をM1Hの発熱的に吸蔵させ
る(点B)。次に、弁を閉じ、M1Hを低温熱媒に
接続し(点C)、M2Hを中温熱媒に接続する(点
D)。この場合、M1Hの平衡分解圧はM2Hのそ
れよりも低いので、圧縮機を駆動し、強制的に
M1Hから吸熱的に水素を放出させ、この水素を
M2Hに発熱的に吸蔵させる。次に、再びM1Hを
中温熱媒に、M2Hを低温熱媒にそれぞれ接続す
ることにより、サイクルが完了する。
Next, the operation of the above device will be explained with reference to the cycle diagram shown in FIG. First, by connecting M 1 H to a medium temperature heating medium and connecting M 2 H to a low temperature heating medium, the equilibrium decomposition pressure of M 2 H is made higher than that of M 1 H.
A pressure difference of the equilibrium decomposition pressure is created between M 1 H and M 2 H, and the valve is opened to release hydrogen endothermically from M 2 H (point A). (Point B). The valves are then closed and M 1 H is connected to the low temperature heating medium (point C) and M 2 H is connected to the medium temperature heating medium (point D). In this case, the equilibrium decomposition pressure of M 1 H is lower than that of M 2 H, so drive the compressor and force
Hydrogen is released endothermically from M 1 H, and this hydrogen is
It is exothermically occluded by M 2 H. Next, the cycle is completed by again connecting M 1 H to the medium temperature heating medium and M 2 H to the low temperature heating medium.

上記のサイクルにおいて、中温熱媒に空気を用
い、空気冷却器に形成すれば、点A及び点Cにお
いて低温熱媒に冷熱が与えられ、低温熱媒に空気
を用い、空気加熱器に形成すれば点B及び点Dに
おいて中温熱媒に温熱が与えられ、従つて、1サ
イクルの間に2回の冷熱又は温熱出力を得ること
ができる。更には、第5図のサイクルによつて点
A及び点Cにおいて冷熱出力を得、同時に点B及
び点Dにおいて温熱出力を得ることも可能であ
る。
In the above cycle, if air is used as the medium-temperature heating medium and formed in the air cooler, cold heat is given to the low-temperature heating medium at points A and C, and air is used as the low-temperature heating medium and formed in the air heater. Heat is applied to the medium-temperature heating medium at points B and D, so that cold or heat output can be obtained twice during one cycle. Furthermore, it is also possible to obtain cold output at points A and C, and at the same time obtain thermal output at points B and D by the cycle of FIG.

なお、熱媒は一種に限られるものではなく、例
えば冷熱出力を得る場合に、温度TMより低い温
度TSの熱媒を中温熱媒として利用し得るときは、
第6図に示すように、M2Hを低温熱媒と温度TS
の中温熱媒に切換可能に接続することにより、
M1HからM2Hへ強制的に水素移動させる(点C
から点D)際の圧縮機の仕事量を少なくすること
ができる。また、温熱出力を得る場合に、温度
TLの低温熱媒より高い温度TSの熱媒を低温熱媒
として利用し得るときは、第7図に示すように、
M1Hを中温熱媒と温度TSの低温熱媒に切換可能
に接続することにより、前記と同様にM1Hから
M2Hへ強制的に水素を移動させる際の圧縮機の
仕事量を少なくすることができる。また、第8図
に示すように、M2Hを中温熱媒と温度TSの低温
熱媒に切換可能に接続すれば、より高い温度で
M2HからM1Hへの水素移動(点Aから点B)を
行なわせることができるので、M1Hにおいては
より高温で温熱出力を得ることができる。
Note that the heating medium is not limited to one type; for example, when obtaining cold output, if a heating medium with a temperature T S lower than the temperature T M can be used as a medium-temperature heating medium,
As shown in Figure 6, M 2 H is a low-temperature heating medium and a temperature T S
By switchably connecting to the medium temperature heating medium of
Forced hydrogen transfer from M 1 H to M 2 H (point C
The amount of work of the compressor from point D) to point D) can be reduced. In addition, when obtaining thermal output, the temperature
When a heating medium with a temperature T S higher than the low temperature heating medium T L can be used as a low temperature heating medium, as shown in Fig. 7,
By connecting M 1 H switchably to a medium-temperature heating medium and a low-temperature heating medium of temperature T S , it is possible to convert M 1 H to
The amount of work of the compressor when forcibly transferring hydrogen to M 2 H can be reduced. In addition, as shown in Figure 8, if M 2 H is connected to a medium-temperature heating medium and a low-temperature heating medium with a temperature T S , it can be used at a higher temperature.
Since hydrogen can be transferred from M 2 H to M 1 H (from point A to point B), thermal output can be obtained at a higher temperature in M 1 H.

なお、第6図において、点A及び点Cで冷熱出
力を得ると共に、点Bで温熱出力を得たり、第7
図において点B及び点Dで温熱出力を得ると共に
点Aで冷熱出力を得たり、また、第8図において
点B及び点Dで温熱出力を得ると共に点Cで冷熱
出力を得ることもできる。
In addition, in Fig. 6, the cold output is obtained at points A and C, and the thermal output is obtained at point B.
In the figure, it is also possible to obtain thermal output at points B and D and cold output at point A, or to obtain thermal output at points B and D and cold output at point C in FIG.

このように、本発明のヒートポンプ装置の運転
方法においては、第5図乃至第8図のサイクル線
図に示されるように、点Cから点Dへの水素移動
において圧縮機を主体とした駆動を行なわせるこ
とにより、冷熱又は温熱出力を得、次に、点Aか
ら点Bの水素移動においては、何ら熱源を用いる
ことなく、冷熱又は温熱を得ることができるので
ある。
As described above, in the operating method of the heat pump device of the present invention, as shown in the cycle diagrams of FIGS. By doing so, it is possible to obtain cold or heat output, and then, in the hydrogen transfer from point A to point B, cold or heat can be obtained without using any heat source.

以上のように本発明の運転方法によれば、
M2HからM1Hへの水素移動をそれらの平衡分解
圧の差圧により行なわせ、M1HからM2Hへの水
素移動をそれらの平衡分解圧の逆圧に抗して圧縮
機により行なわせるようにしたので、従来のヒー
トポンプ装置と異なつて、不安定な駆動熱源に頼
ることなく装置を作動させることができ、更に、
1回のサイクルにおいて出力を2回以上連続して
得ることができる。
As described above, according to the operating method of the present invention,
Hydrogen transfer from M 2 H to M 1 H is performed by a pressure difference between their equilibrium decomposition pressures, and hydrogen transfer from M 1 H to M 2 H is performed by a compressor against the opposite pressure of their equilibrium decomposition pressures. Unlike conventional heat pump devices, the device can be operated without relying on an unstable driving heat source, and furthermore,
Output can be obtained two or more times in succession in one cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金属水素化物ヒートポンプ装置
の一例を示し、第2図及び第3図はその作動を説
明するためのサイクル線図、第4図は本発明で使
用するヒートポンプ装置の一例を示し、第5図は
その作動を説明するためのサイクル線図、第6図
乃至第8図は別の熱源を併用する場合のサイクル
線図である。 1……第1の密閉容器、2……第2の密閉容
器、3……弁、4……第1の連通管、5……高温
熱媒、6……中温熱媒、7……低温熱媒、8……
圧縮機、9……第2の連通管。
Fig. 1 shows an example of a conventional metal hydride heat pump device, Figs. 2 and 3 are cycle diagrams for explaining its operation, and Fig. 4 shows an example of the heat pump device used in the present invention. , FIG. 5 is a cycle diagram for explaining its operation, and FIGS. 6 to 8 are cycle diagrams when another heat source is used in combination. DESCRIPTION OF SYMBOLS 1...First airtight container, 2...Second airtight container, 3...Valve, 4...First communication pipe, 5...High temperature heat medium, 6...Medium temperature heat medium, 7...Low temperature Heat medium, 8...
Compressor, 9...second communication pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の金属水素化物を充填した第1の密閉容
器と、作動温度領域において第1の金属水素化物
よりも高い平衡分解圧を有する第2の金属水素化
物を充填した第2の密閉容器と、第1と第2の金
属水素化物の平衡分解圧の差圧によつて第2の密
閉容器から第1の密閉容器へ水素を移動させ得る
と共に、第1と第2の金属水素化物の平衡分解圧
の逆圧に抗して強制的に第1の密閉容器から第2
の密閉容器へ水素を移動させ得る駆動制御可能な
圧縮機を有する連通管とからなり、第1及び第2
の密閉容器にそれぞれ切換可能に中温又は低温の
熱媒を熱交換可能に接続して構成されたヒートポ
ンプ装置において、第2の密閉容器を低温の熱媒
に接続し、第1の密閉容器を中温の熱媒に接続し
て、第1と第2の金属水素化物の平衡分解圧の差
圧により第2の金属水素化物に吸熱的に水素を放
出させ、この水素を第1の金属水素化物に発熱的
に吸蔵させ、次に、第1の金属水素化物を低温の
熱媒に接続し、第2の金属水素化物を中温の熱媒
に接続して、第1と第2の金属水素化物の平衡分
解圧の逆圧に抗して強制的に第1の金属水素化物
から吸熱的に水素を放出させ、この水素を第2の
金属水素化物に発熱的に吸蔵させることを特徴と
するヒートポンプ装置の運転方法。
1. A first closed container filled with a first metal hydride, and a second closed container filled with a second metal hydride that has a higher equilibrium decomposition pressure than the first metal hydride in the operating temperature range. , hydrogen can be transferred from the second sealed container to the first sealed container by the pressure difference between the equilibrium decomposition pressures of the first and second metal hydrides, and the equilibrium decomposition pressure of the first and second metal hydrides is Forced to move from the first closed container to the second container against the reverse pressure of the decomposition pressure.
a communication pipe having a drive-controllable compressor capable of transferring hydrogen to a closed container of the first and second
In the heat pump device, the second sealed container is connected to the low-temperature heating medium, and the first sealed container is connected to the medium-temperature or low-temperature heating medium for heat exchange. is connected to a heating medium, the second metal hydride is endothermically released hydrogen due to the pressure difference between the equilibrium decomposition pressures of the first and second metal hydrides, and this hydrogen is transferred to the first metal hydride. exothermically occluding the first metal hydride and then connecting the first metal hydride to a low temperature heating medium and connecting the second metal hydride to a medium temperature heating medium so that the first and second metal hydrides are separated. A heat pump device characterized in that hydrogen is forcibly released endothermically from a first metal hydride against the opposite pressure of the equilibrium decomposition pressure, and this hydrogen is exothermically occluded in a second metal hydride. How to drive.
JP19330781A 1981-11-30 1981-11-30 Heat pump device Granted JPS5895167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19330781A JPS5895167A (en) 1981-11-30 1981-11-30 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19330781A JPS5895167A (en) 1981-11-30 1981-11-30 Heat pump device

Publications (2)

Publication Number Publication Date
JPS5895167A JPS5895167A (en) 1983-06-06
JPS6329182B2 true JPS6329182B2 (en) 1988-06-13

Family

ID=16305729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19330781A Granted JPS5895167A (en) 1981-11-30 1981-11-30 Heat pump device

Country Status (1)

Country Link
JP (1) JPS5895167A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119955A (en) * 1984-11-14 1986-06-07 松下電器産業株式会社 Air conditioner
JPS62276373A (en) * 1986-05-23 1987-12-01 松下電器産業株式会社 Intermittent operation type heat pump device
EP2418503B1 (en) * 2010-07-14 2013-07-03 Sensirion AG Needle head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146A (en) * 1974-06-20 1976-01-05 Matsushita Electric Ind Co Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146A (en) * 1974-06-20 1976-01-05 Matsushita Electric Ind Co Ltd

Also Published As

Publication number Publication date
JPS5895167A (en) 1983-06-06

Similar Documents

Publication Publication Date Title
EP0168062B1 (en) Metal hydride heat pump assembly
US4523635A (en) Metal hydride heat pump system
US4623018A (en) Thermal system based on thermally coupled intermittent absorption heat pump cycles
JPS6329182B2 (en)
US5445217A (en) Device for the production of cold and/or heat by solid-gas reaction
JPS638394B2 (en)
JPS634111B2 (en)
JPS5895168A (en) Heat pump device
JP2000121197A (en) Heat pump and operation thereof
JPS5935002A (en) Device of metal hydride
US6298665B1 (en) Power generating device employing hydrogen absorbing alloys and low heat
JP2642830B2 (en) Cooling device
JPS6096801A (en) Steam generator
JPS6329184B2 (en)
JPS6037395B2 (en) Portable heating or cooling device
JPH0152666B2 (en)
JPS61134551A (en) Metallic hydride heat pump device
JPS6096802A (en) Steam generator
JPS58173358A (en) Metal hydride device
JPS633233B2 (en)
JPS6329181B2 (en)
JPS6327625B2 (en)
JPH0784966B2 (en) Heat pump using metal hydride and control method thereof
JPH0472141B2 (en)
JPH02259375A (en) Cooling apparatus using metal hydride