JPS5895167A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS5895167A
JPS5895167A JP19330781A JP19330781A JPS5895167A JP S5895167 A JPS5895167 A JP S5895167A JP 19330781 A JP19330781 A JP 19330781A JP 19330781 A JP19330781 A JP 19330781A JP S5895167 A JPS5895167 A JP S5895167A
Authority
JP
Japan
Prior art keywords
hydrogen
medium
sealed container
temperature
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19330781A
Other languages
Japanese (ja)
Other versions
JPS6329182B2 (en
Inventor
西崎 倫義
稔 宮本
和明 宮本
健 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP19330781A priority Critical patent/JPS5895167A/en
Publication of JPS5895167A publication Critical patent/JPS5895167A/en
Publication of JPS6329182B2 publication Critical patent/JPS6329182B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はヒートポンプ族g1に関し、詳しく4工金属水
素化−を用いるヒートポンプ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to heat pump group g1, and specifically relates to a heat pump device using four-stage metal hydrogenation.

ある種の金属や合金が発熱的に水素を吸蔵して金属水素
化物を形成し、また、この金員水素化物か可逆的に吸熱
的に水素を放出することか知られている。
It is known that certain metals and alloys exothermically absorb hydrogen to form metal hydrides, and that these metal hydrides reversibly and endothermically release hydrogen.

近年、このような金員水素化物の特性をfFis用した
種々のヒートポンプ装置力S提−案されてし)る力j、
従来のヒートポンプ装置は第1図に示すように、第1の
密閉容器1に第1の金属水素化物MIHを充填し、作動
温度領域においてMIHより平衡分解圧Pの高い第2の
金属水素化物Mtklを第2の密閉容器2に充填すると
共に、電磁弁3等の開閉制御可能な弁を備えた連通管4
にて第1及び第2の密閉容器を連通し、更に$1の密閉
容器には温度THの高温熱媒5、第2の密閉容器には温
度TLの低温熱媒6、才た、第1及び第2の密閉容器に
は温fTMの中温熱媒7をそれぞれ切換可能に接続して
構成されている。
In recent years, various heat pump devices using fFis based on the characteristics of gold member hydrides have been proposed.
As shown in FIG. 1, the conventional heat pump device fills a first closed container 1 with a first metal hydride MIH, and fills a second metal hydride Mtkl with a higher equilibrium decomposition pressure P than MIH in the operating temperature range. is filled into the second airtight container 2, and a communication pipe 4 equipped with a valve that can be opened and closed, such as a solenoid valve 3.
The first and second closed containers are connected to each other, and the first closed container is connected to a high temperature heating medium 5 at a temperature TH, and a low temperature heating medium 6 at a temperature TL is connected to the second closed container. The intermediate temperature heating medium 7 of temperature fTM is connected to the second sealed container in a switchable manner.

この装置の作動を第2図に示すサイクル線図によって説
明する。例えば冷熱出方を得る場合は、M、Hを大気の
ような温度TMの中温熱媒に接続しく点B ) 、MI
Hを駆動熱源である高温熱媒に接続して温度THに加熱
し、MIHの平衡分解圧をMsHのそれよりも高め(点
A)、平衡分解圧の差を利用してMIHから吸熱的に水
素を放出させ、この水素をM声に発熱的に吸蔵させる。
The operation of this device will be explained using the cycle diagram shown in FIG. For example, to obtain cold heat output, connect M and H to a medium-temperature heating medium with a temperature like the atmosphere (point B), MI
H is connected to a high-temperature heating medium that is a driving heat source and heated to a temperature TH, the equilibrium decomposition pressure of MIH is made higher than that of MsH (point A), and the difference in equilibrium decomposition pressure is used to absorb heat from MIH endothermically. Hydrogen is released and this hydrogen is exothermically absorbed into the M voice.

次に、MIHを中温熱媒に接続し、温度IIIMに冷却
して、その平衡分解圧をMs、(のそれよりも低(シ(
点D)、平衡分解圧の差を利用(てMsHから吸熱的に
水素を放出させ、この水素をMIHに発熱的に吸蔵させ
る。この水素移動過程におけるM、Hの吸熱反応をMs
H&:棲続した低温冷媒から温度TLの冷熱として取得
しく点C)、サイクルを完了する。
Next, the MIH is connected to a medium-temperature heating medium and cooled to a temperature IIIM, making its equilibrium decomposition pressure lower than that of Ms, (
Point D), hydrogen is released endothermically from MsH using the difference in equilibrium decomposition pressure, and this hydrogen is stored exothermically in MIH.The endothermic reaction of M and H in this hydrogen transfer process is expressed as Ms
H&: At point C), the cycle is completed as cold energy of temperature TL is obtained from the persistent low-temperature refrigerant.

温熱出力を得る場合には、上記のサイクルにおいて、高
温熱媒と低温熱媒を駆動熱源とし、M、Hの水素吸蔵反
応(点B)とMtHの水素吸蔵反応・(点D)における
発熱反応を利用する。
To obtain thermal output, in the above cycle, a high temperature heat medium and a low temperature heat medium are used as driving heat sources, and the hydrogen storage reaction of M and H (point B) and the exothermic reaction in the hydrogen storage reaction of MtH (point D) are performed. Use.

しかし、上述したヒートポンプ装置においては、例えば
太陽熱や廃熱のように熱源温度か変動しやすい場合、熱
源が所定温度に達しないとき装置が作動しない。例えば
上に説明した冷熱出力を得る場合に、駆動熱源の温度が
第2図に示すようにlllIcにまで下がり、この結果
、MIHの平衡分解圧か点BにおけるMsHの分解平衡
圧よりも小さいとき、MIHから、 MSB ’への水
素移動か起こり得ない。同゛    、・1 様に温熱出力を得る場合にも、例えば低温駆動熱源が温
度T1に変動し、M、Hの平衡分解圧が点りにおけるM
IHの平衡分解圧より低くなったとき、Ml!(からM
IHへの水素移動か起こり得ない。また、上述したヒー
トポンプ装置は駆動熱源として高温熱媒や低温熱媒、あ
るいは複数の駆動熱源を必要とし、しかも一般にそれら
は熱媒の温度や供給が不安定である。
However, in the above-described heat pump device, if the heat source temperature fluctuates easily, such as solar heat or waste heat, the device will not operate if the heat source does not reach a predetermined temperature. For example, when obtaining the cold output described above, when the temperature of the driving heat source drops to lllIc as shown in Figure 2, and as a result, the equilibrium decomposition pressure of MIH is smaller than the equilibrium decomposition pressure of MsH at point B. , hydrogen transfer from MIH to MSB' cannot occur. Similarly, when obtaining a thermal output in the same way as in
When the pressure becomes lower than the equilibrium decomposition pressure of IH, Ml! (From M
Hydrogen transfer to IH cannot occur. Further, the above-described heat pump device requires a high temperature heat medium, a low temperature heat medium, or a plurality of drive heat sources as a driving heat source, and in general, the temperature and supply of the heat medium are unstable.

史に、従来のヒートポンプ装置において、第3図に示す
サイクルから例えば温熱出方を得る場合に次のような問
題がある。即ち、MIHを太陽熱のような中温熱媒によ
り温度r[1Mに加熱し、MsHを大気のような低温熱
媒で2111tTr、に冷却しなからMIHから水素を
放出させて(点A)、これをMsHに吸蔵させ(点B)
、次に、MsHを中温熱媒により温度fIIMに加熱す
ることによりM、Hから水素を放出させ(点C)、これ
をMIHに吸jlさせて(点D)、MIHの発熱から温
度′rHの温熱出方を得る場合、駆動熱源としての中温
熱媒の温度が低ければ、水素移動が起こらず、温度TH
の温熱出力が得られない。しかも、温熱出力を得るため
には、低温駆動熱源である低温熱媒の温度かより低(な
ければならないという矛盾した条件が必要であり、金属
水素化物を加熱、冷却する間に熱損失が太き(ならざる
を得ない欠点もある。
Historically, in conventional heat pump devices, the following problems have arisen when obtaining heat output from the cycle shown in FIG. 3, for example. That is, the MIH is heated to a temperature r[1M by a medium-temperature heating medium such as solar heat, and the MsH is cooled to 2111 tTr by a low-temperature heating medium such as the atmosphere, and then hydrogen is released from the MIH (point A). is occluded by MsH (point B)
Next, hydrogen is released from M and H by heating MsH to a temperature fIIM with a medium-temperature heating medium (point C), which is absorbed by MIH (point D), and the temperature is increased from the heat generation of MIH to 'rH. When obtaining a thermal output of
Thermal output cannot be obtained. Moreover, in order to obtain thermal output, the temperature of the low-temperature heating medium, which is the low-temperature drive heat source, must be lower, which is a contradictory condition. There are some disadvantages that cannot be avoided.

本発明は上記に鑑みてなされたものであって、不安定な
駆動熱源に頼ることなく、金属水素化物の加熱、冷却に
よる熱損失を防止した金属水素化物ヒートポンプ装−を
提供することを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a metal hydride heat pump system that prevents heat loss due to heating and cooling of metal hydrides without relying on an unstable driving heat source. do.

本発明のヒートポンプ装置は、第1の金属水素化物を充
填した第1の密閉容器と、作動温度領域において第1の
金属水素化物よりも高い平衡分解圧を有する第2の金属
水素化物を充填した第2の密閉容器と、第1と第2の金
属水素化物の平衡分解圧の差圧によって第2の密閉容器
から第1の密閉容器へ水素を移動させ得ると共に、第1
とj82の金属水素化物の平衡骨ysキの逆圧に抗して
強制的に第1の密閉容器から第2の密閉容器へ水素を移
動させ得る駆動制御可能な圧縮機を有する連通管とから
なり、第1及び第2の密閉容器にそれぞれ切換可能に中
温又は低温の熱媒を熱交換可能に接続して構成され、第
2の密閉容器を低温の熱媒に接続し、jFllの密閉容
器を中温の熱媒に接続して、第1と第2の金属水素化物
の平衡分解圧の差圧により第2の金属水素化物に吸熱的
に水素を放出させ、この水素を第1の金属水素化物に発
熱的に吸蔵させ、次に、第1の金属水素化物を低温の熱
媒に接続し、I82の金属水素化物を中温の熱媒に接続
して、第1とiJ2の金属水素化物の平衡分解圧の逆圧
に抗して強制的に第1の金属水素化物から吸熱的に水素
を放出させ、この水素を第2の金属水素化物に発熱的に
吸蔵させるようにしたことを特徴とするものである。
The heat pump device of the present invention includes a first closed container filled with a first metal hydride and a second metal hydride that has a higher equilibrium decomposition pressure than the first metal hydride in the operating temperature range. Hydrogen can be transferred from the second sealed container to the first sealed container by a pressure difference between the equilibrium decomposition pressures of the first and second metal hydrides;
and a communicating pipe having a drive controllable compressor capable of forcibly transferring hydrogen from the first closed container to the second closed container against the counter pressure of the metal hydride equilibrium bone of j82. The first and second closed containers are each connected to a medium-temperature or low-temperature heat medium for heat exchange in a switchable manner, and the second closed container is connected to a low-temperature heat medium, and the jFll closed container is connected to a medium-temperature heating medium, the second metal hydride releases hydrogen endothermically due to the pressure difference between the equilibrium decomposition pressures of the first and second metal hydrides, and this hydrogen is transferred to the first metal hydride. The first metal hydride is then connected to a low temperature heating medium, the I82 metal hydride is connected to an intermediate temperature heating medium, and the first and iJ2 metal hydrides are occluded exothermically. Hydrogen is forcibly released endothermically from the first metal hydride against the reverse pressure of the equilibrium decomposition pressure, and this hydrogen is exothermically occluded in the second metal hydride. It is something to do.

以下に実施例を示す図面に基づいて本発明を説明する。The present invention will be described below based on drawings showing examples.

第4図は本発明のヒートポンプ装置の一実施例を示し、
taXの密閉容器1及び第2の密閉容器2にはそれぞれ
MIH&b MSHが充填されていると共に、容器間は
Min とMzHの平衡分解圧の差圧により第2の密閉
容器から第lの密閉容器へ水素を移動させるように開閉
制御可能な電磁弁のような弁3を備えた第1の連通管4
と、 MIHとMaHの平衡分解圧の逆圧に抗して第1
の密閉容器から第2の密閉容器へ水素を強制的に移動さ
せるように駆動制御可能な圧縮機8を備えた第2の連通
管9により相互に連通されている。なお、弁3と圧縮機
8は同一の連通管に設けてもよい。また、両容器はそれ
ぞれ切換可能に中温熱媒6と低温熱媒7とに熱交換可能
に接続されている。
FIG. 4 shows an embodiment of the heat pump device of the present invention,
The sealed container 1 and the second sealed container 2 of taX are each filled with MIH&b MSH, and there is a pressure difference between the equilibrium decomposition pressures of Min and MzH between the containers from the second sealed container to the first sealed container. A first communication pipe 4 equipped with a valve 3 such as a solenoid valve that can be opened and closed to move hydrogen.
and the first one against the opposite pressure of the equilibrium decomposition pressure of MIH and MaH.
They are interconnected by a second communication pipe 9 equipped with a compressor 8 that can be driven and controlled so as to forcibly move hydrogen from the closed container to the second closed container. Note that the valve 3 and the compressor 8 may be provided in the same communication pipe. Further, both containers are connected to a medium-temperature heat medium 6 and a low-temperature heat medium 7 in a switchable manner so as to exchange heat with each other.

次に上記装置の作動を第5図に示すサイクル線図により
説明する。先ず、MIHを中温熱媒に接続し、M、Hを
低温熱媒に接続して、MmHの平衡分解圧をMIHのそ
れよりも高(することによりMIHとMsHとの間に平
衡分解圧の差圧を生ぜしめ、弁を開いてMsHから吸熱
的に水素を放出させ(点A)、この水素をMIHに発熱
的に吸蔵させる(点B)。次に、弁を閉じ、MIHを低
温熱媒に接続しく点C)、M、Hを中温熱媒に接続する
(点D)。
Next, the operation of the above device will be explained with reference to the cycle diagram shown in FIG. First, connect MIH to a medium temperature heating medium, connect M and H to a low temperature heating medium, and make the equilibrium decomposition pressure of MmH higher than that of MIH (by making the equilibrium decomposition pressure between MIH and MsH higher). A pressure difference is created, the valve is opened and hydrogen is released endothermically from the MsH (point A), and this hydrogen is stored exothermically in the MIH (point B).Then, the valve is closed and the MIH is exposed to low-temperature heat. Connect point C), M, and H to the medium temperature heating medium (point D).

この場合、MIHの平衡分解圧はきfmHのそれよりも
低いので、圧縮機を駆動し、強制的に:MIHから吸熱
的に水素を放出させ、この水素をMIHに発熱的に吸蔵
させる。次に、再びMinを中温熱媒に、 M、Hを低
温熱媒にそれぞれ接続することにより、サイクルが完了
する。
In this case, since the equilibrium decomposition pressure of MIH is lower than that of fmH, the compressor is driven to forcibly release hydrogen from MIH endothermically, and cause this hydrogen to be stored exothermically in MIH. Next, the cycle is completed by again connecting Min to the medium-temperature heat medium and M and H to the low-temperature heat medium.

上記のサイクルにおいて、中温熱媒に空気を用い、空気
冷却器に形成すれば、点A及び点Cにおいて低温熱媒に
冷熱か与えられ、低温熱媒に空気を用い、空気加熱器に
形成すれば点B及び点りにおいて中温熱媒に温熱が与え
られ、従って、1サイクルの間に2回の冷熱又は温熱出
力を得ることかできる。更には、第5図のサイクルによ
って点A及び点Cにおいて冷熱出力を得、同時に点B及
び点りにおいて温熱出力を得ることも可能である。
In the above cycle, if air is used as the medium-temperature heating medium and formed in the air cooler, cold heat is given to the low-temperature heating medium at points A and C, and air is used as the low-temperature heating medium and formed in the air heater. Heat is applied to the intermediate temperature heating medium at point B and point B, so that two cold or hot outputs can be obtained during one cycle. Furthermore, it is also possible to obtain cold output at points A and C, and at the same time to obtain thermal output at point B and point C, using the cycle shown in FIG.

なお、熱媒は一種に限られるものではな(、例えば冷熱
出力を得る場合に、温度TMより低い温度T3の熱媒を
中温熱媒として利用し得るときは、第6図に示すように
、M、Hを低温熱媒と温度THの中温熱媒に切換可能に
接続することにより、MIHlからM、Hへ強制的に水
素移動させる(点0から点D)際の圧縮機の仕事量を少
な(することかできる。また、温熱出力を得る場合に、
温度TLの低温熱媒より高い温度T8の熱媒を低温熱媒
として利用し得るときは、第7図に示すように、MIH
を中温熱媒と温度Tsの低温熱媒に切換可能に接続する
ことにより、前記と同様にMIHからMIHへ強制的に
水素を移動させる際の圧縮機の仕事量を少な(すること
かできる。また、第8図に示すように、M、Hを中温熱
媒と温度Ill、の低温熱媒に切換可能に接続すれば、
より高い温度でMsHからMIHへの水素移動(点Aか
ら点B)を行なわせることかできるので、MIH&m、
おいてはより高温で温熱出力を得ることができる。
Note that the heating medium is not limited to one type. By connecting M and H to a low-temperature heating medium and a medium-temperature heating medium at a temperature of TH, the work of the compressor when forcibly transferring hydrogen from MIHL to M and H (from point 0 to point D) can be reduced. In addition, when obtaining thermal output,
When a heat medium having a temperature T8 higher than a low temperature heat medium having a temperature TL can be used as a low temperature heat medium, as shown in FIG.
By connecting switchably to a medium-temperature heat medium and a low-temperature heat medium at a temperature Ts, the amount of work of the compressor when forcibly transferring hydrogen from MIH to MIH can be reduced in the same way as described above. In addition, as shown in FIG. 8, if M and H are switchably connected to a medium-temperature heating medium and a low-temperature heating medium of temperature Ill,
Since hydrogen transfer from MsH to MIH (from point A to point B) can be performed at a higher temperature, MIH&m,
Thermal output can be obtained at higher temperatures.

なお、186図において、点A及び点Cで冷熱出力を得
ると共に、点Bで温熱出力を得たり、117図において
点B及び点りで温熱出力を得ると共に点Aで冷熱出力を
得たり、また、第8図において点B及び点りで温熱出力
を得ると共に点Cで冷熱出力を得ることもできる。
In addition, in Fig. 186, a cold output is obtained at points A and C, and a thermal output is obtained at a point B, and in Fig. 117, a thermal output is obtained at points B and a point A, and a cold output is obtained at a point A. Further, in FIG. 8, it is also possible to obtain thermal output at points B and dots, and to obtain cold output at point C.

このように、本発明のヒートポンプ装置においては、第
5図乃至第8図のサイクル線図に示されるように、点C
から点りへの水素移動において圧縮機を主体とした駆動
を行なわせることにより、冷熱又は温熱出力を得、次に
、点Aから点Bの水素移動においては、何ら熱源を用い
ることなく、冷熱又は温熱を得ることができるのである
As described above, in the heat pump device of the present invention, as shown in the cycle diagrams of FIGS. 5 to 8, the point C
In the hydrogen transfer from point A to point B, cold or heat output is obtained by mainly driving the compressor, and then in the hydrogen transfer from point A to point B, cold or heat output is obtained without using any heat source. Or you can get heat.

以上のように本発明の装置によれば、Msl(からMI
Hへの水素移動をそれらの平衡分解圧の差FEにより行
なわせ、MIHからMzHへの水素移動をそれらの平衡
分解圧の逆圧に抗して圧縮機により行なわせるようにし
たので、従来のヒートポンプ装置と異なって、不安定な
駆動熱源に頼ることな(装置を作動させることができ、
更に、1回のサイクルにおいて出力を2回以上連続して
得ることかできる。
As described above, according to the apparatus of the present invention, Msl (from MI
Hydrogen transfer to H is performed by the difference FE between their equilibrium decomposition pressures, and hydrogen transfer from MIH to MzH is performed by a compressor against the opposite pressure of their equilibrium decomposition pressures. Unlike heat pump equipment, it does not rely on an unstable driving heat source (the equipment can be operated,
Furthermore, the output can be obtained two or more times in succession in one cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金属水素化物ヒートポンプ装置の一例を
示し、呆2図及び第3図はその作動を説明するためのサ
イクル線図、第4図は本発明のヒートポンプ装置の一例
を示し、第5図はその作動を説明するためのサイクル線
図、′i66図乃至第8Nは別の熱源を併用する場合の
サイクル線図である。 l・・・第1の密閉容器、2・・・第2の密閉容器、3
・・弁、4・・第1の連通管、5・・・高温熱媒、6・
・・中温熱媒、7・・・低温熱媒、8・・・圧結機、9
・・第2の連通管。 特許出願人   積水化学工業株式会社代表者藤沼基利 第1121 第2図          第f3図 第41に 第(5図        ダ゛シう1!1≠ TMTs万 伶 317−
Fig. 1 shows an example of a conventional metal hydride heat pump device, Figs. 2 and 3 are cycle diagrams for explaining its operation, and Fig. 4 shows an example of the heat pump device of the present invention. Figure 5 is a cycle diagram for explaining its operation, and Figures 'i66 to 8N are cycle diagrams when another heat source is used in combination. l...first airtight container, 2...second airtight container, 3
... Valve, 4. First communication pipe, 5. High temperature heat medium, 6.
... Medium temperature heating medium, 7... Low temperature heating medium, 8... Consolidation machine, 9
...Second communication pipe. Patent applicant Sekisui Chemical Co., Ltd. Representative Mototoshi Fujinuma No. 1121 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)第1の金属水素化物を充填した第1の密閉容器と
、作動温度領域に詔いて第1の金属水素化物よりも高い
平衡分解圧を有する第2の金属水素化物を充填した第2
の密閉容器と、j81と第2の金員水素化物の平衡分解
圧の差圧によって$2の密閉容器から第1の密閉容器へ
水素を移動させ得ると共に、第1と第2の金属水素化物
の平衡分解圧の逆圧に抗して強制的に第1の密閉容器か
らIJ2の密閉容器へ水素を移動させ得る駆動制御可能
な圧縮機を有する連通管とからなり、iJl及び第2の
密閉容器にそれぞれ切換可能に中温又は低温の熱媒を熱
交換可能に接続して構成され、9Is2の密閉容器を低
温の熱媒に接続し、第1の密閉容器を中温の熱媒に接続
して、第1と第2の金属水素化物の平衡分解圧の差圧に
よりiJ2の金属水素化物に吸熱的に水素を放出させ、
この水素を第1の金属水素イし物に発熱的に吸蔵させ1
、次に、iJlの金属水素(ヒ物を低温の熱媒に接続し
、I82の金属水素イし物を中温の熱媒に接、続して、
第1とs2の金属水素化物の平衡分解圧の逆圧に抗して
強Ill的に第1の金属水素化物から吸熱的に水素を放
出させ、この水素を182の金属水素化物に発熱的に吸
蔵させるようにしたことを特徴とするヒートポンプ装置
(1) A first sealed container filled with a first metal hydride, and a second sealed container filled with a second metal hydride that is placed in the operating temperature range and has a higher equilibrium decomposition pressure than the first metal hydride.
Hydrogen can be transferred from the sealed container of $2 to the first sealed container by the pressure difference between the equilibrium decomposition pressures of j81 and the second metal hydride, and the first and second metal hydrides a communication pipe with a compressor whose drive can be controlled to forcibly move hydrogen from the first sealed container to the sealed container of IJ2 against the counter pressure of the equilibrium decomposition pressure of iJl and the second sealed container. It is constructed by connecting a medium temperature or low temperature heating medium to the containers in a switchable manner for heat exchange, the 9Is2 sealed container is connected to the low temperature heating medium, and the first sealed container is connected to the medium temperature heating medium. , causing the iJ2 metal hydride to endothermically release hydrogen due to the pressure difference between the equilibrium decomposition pressures of the first and second metal hydrides;
This hydrogen is exothermically occluded in the first metal hydrogen substance.
, Next, connect the iJl metal hydrogen material to a low-temperature heating medium, connect the I82 metal hydrogen material to a medium-temperature heating medium,
Hydrogen is strongly released endothermically from the first metal hydride against the opposite pressure of the equilibrium decomposition pressure of the first and s2 metal hydrides, and this hydrogen is exothermically transferred to the metal hydride 182. A heat pump device characterized in that it is configured to occlude.
JP19330781A 1981-11-30 1981-11-30 Heat pump device Granted JPS5895167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19330781A JPS5895167A (en) 1981-11-30 1981-11-30 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19330781A JPS5895167A (en) 1981-11-30 1981-11-30 Heat pump device

Publications (2)

Publication Number Publication Date
JPS5895167A true JPS5895167A (en) 1983-06-06
JPS6329182B2 JPS6329182B2 (en) 1988-06-13

Family

ID=16305729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19330781A Granted JPS5895167A (en) 1981-11-30 1981-11-30 Heat pump device

Country Status (1)

Country Link
JP (1) JPS5895167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119955A (en) * 1984-11-14 1986-06-07 松下電器産業株式会社 Air conditioner
JPS62276373A (en) * 1986-05-23 1987-12-01 松下電器産業株式会社 Intermittent operation type heat pump device
US20120013326A1 (en) * 2010-07-14 2012-01-19 Markus Graf Needle head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146A (en) * 1974-06-20 1976-01-05 Matsushita Electric Ind Co Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146A (en) * 1974-06-20 1976-01-05 Matsushita Electric Ind Co Ltd

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119955A (en) * 1984-11-14 1986-06-07 松下電器産業株式会社 Air conditioner
JPS62276373A (en) * 1986-05-23 1987-12-01 松下電器産業株式会社 Intermittent operation type heat pump device
US20120013326A1 (en) * 2010-07-14 2012-01-19 Markus Graf Needle head
US8643361B2 (en) * 2010-07-14 2014-02-04 Sensirion Ag Needle head

Also Published As

Publication number Publication date
JPS6329182B2 (en) 1988-06-13

Similar Documents

Publication Publication Date Title
EP0168062B1 (en) Metal hydride heat pump assembly
JPS5895167A (en) Heat pump device
US5445217A (en) Device for the production of cold and/or heat by solid-gas reaction
JPH0121432B2 (en)
JPS5895168A (en) Heat pump device
JP2000121197A (en) Heat pump and operation thereof
JPH09324960A (en) Heat generating or heat absorbing method and apparatus using hydrogen storing alloy
JPS6096869A (en) Method of obtaining cold heat or hot heat output
JPS6096802A (en) Steam generator
JPS5981469A (en) Heat pump device
JPS638394B2 (en)
JPS62158963A (en) Portable thermal shock generator
JPS5935002A (en) Device of metal hydride
JPS60171370A (en) Heat transfer device
JPS633233B2 (en)
JPS6329181B2 (en)
JPS60140067A (en) Heat pump device
JPH0212321B2 (en)
JPS6047517B2 (en) metal hydride equipment
JPH0469081B2 (en)
JPS5943720B2 (en) Heat storage and heat extraction method
JPH0481098B2 (en)
JPS5899663A (en) Heat pump device
JPS6329184B2 (en)
JPS57197230A (en) Method and apparatus for acquiring thermal energy