JP2000234820A - Solar heat driven freezing machine and its operation method - Google Patents

Solar heat driven freezing machine and its operation method

Info

Publication number
JP2000234820A
JP2000234820A JP11032837A JP3283799A JP2000234820A JP 2000234820 A JP2000234820 A JP 2000234820A JP 11032837 A JP11032837 A JP 11032837A JP 3283799 A JP3283799 A JP 3283799A JP 2000234820 A JP2000234820 A JP 2000234820A
Authority
JP
Japan
Prior art keywords
temperature
low
heat
reaction vessel
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11032837A
Other languages
Japanese (ja)
Other versions
JP3059964B1 (en
Inventor
Naoki Ko
直樹 広
Kenji Nasako
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11032837A priority Critical patent/JP3059964B1/en
Application granted granted Critical
Publication of JP3059964B1 publication Critical patent/JP3059964B1/en
Publication of JP2000234820A publication Critical patent/JP2000234820A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar heat driven freezing machine capable of Increasing a yearly heat output amount than in the prior art. SOLUTION: A solar heat driven freezing machine is adapted such that there are switchably coupled first high temperature side section containers 11, 13 in which there is filled first high temperature hydrogen adsorption alloy MH1 having lower equilibrium hydrogen pressure than that of low temperature hydrogen adsorption alloy MH2, and second high temperature side reaction containers 81, 82 in which there is filled second high temperature hydrogen adsorption alloy MH3 having higher equilibrium hydrogen pressure than those of the low temperature hydrogen adsorption alloy MH2 and the first high temperature hydrogen adsorption alloy MH1, with respect to low temperature side reaction containers 12, 14 in which there is filled the low temperature hydrogen adsorption alloy MH2 having higher equilibrium hydrogen pressure. As a result, there is ensured migration of hydrogen gas between the low temperature side reaction containers 12, 14 and the one high temperature wide reaction containers 11, 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽熱を熱源とし
て、冷凍負荷を冷却するための太陽熱駆動冷凍機に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar-driven refrigerator for cooling a refrigeration load using solar heat as a heat source.

【0002】[0002]

【従来の技術】出願人は、図5に示す如き太陽熱駆動冷
凍機を提案している。該太陽熱駆動冷凍機においては、
ヒートポンプ装置(1)に、高温側切換え装置(2)を介し
て集熱器(4)と空水冷型熱交換器(6)とが切り換え可能
に接続されると共に、低温側切換え装置(3)を介して空
水冷型熱交換器(5)と冷凍庫(7)とが切り換え可能に接
続され、集熱器(4)と高温側切換え装置(2)の間には、
蓄熱槽(9)が介在している。
2. Description of the Related Art The applicant has proposed a solar powered refrigerator as shown in FIG. In the solar powered refrigerator,
A heat collector (4) and an air / water heat exchanger (6) are switchably connected to a heat pump device (1) via a high-temperature side switching device (2), and a low-temperature side switching device (3). The air-water-cooled heat exchanger (5) and the freezer (7) are switchably connected to each other through the, and between the heat collector (4) and the high temperature side switching device (2),
A heat storage tank (9) is interposed.

【0003】ヒートポンプ装置(1)は、第1ヒートポン
プP1及び第2ヒートポンプP2を併設して構成されて
いる。第1ヒートポンプP1は、平衡水素圧力の低い水
素吸蔵合金MH1を内蔵した高温側第1反応容器(11)
と、平衡水素圧力の高い水素吸蔵合金MH2を内蔵した
低温側第1反応容器(12)とを、連結管(17)を介して互い
に連結して構成され、連結管(17)にはバルブ(15)が介在
している。又、第2ヒートポンプP2は、平衡水素圧力
の低い水素吸蔵合金MH1を内蔵した高温側第2反応容
器(13)と平衡水素圧力の高い水素吸蔵合金MH2を内蔵
した低温側第2反応容器(14)とを連結管(18)を介して連
結してなり、連結管(18)にはバルブ(16)が介在してい
る。
[0003] The heat pump device (1) includes a first heat pump P1 and a second heat pump P2. The first heat pump P1 is a high-temperature side first reaction vessel (11) containing a hydrogen storage alloy MH1 having a low equilibrium hydrogen pressure.
And a low-temperature-side first reaction vessel (12) containing a hydrogen storage alloy MH2 having a high equilibrium hydrogen pressure are connected to each other via a connection pipe (17), and a valve ( 15) intervenes. The second heat pump P2 includes a high-temperature second reaction vessel (13) containing a hydrogen storage alloy MH1 having a low equilibrium hydrogen pressure and a low-temperature second reaction vessel (14) containing a hydrogen storage alloy MH2 having a high equilibrium hydrogen pressure. ) Are connected via a connecting pipe (18), and a valve (16) is interposed in the connecting pipe (18).

【0004】高温側切換え装置(2)は、蓄熱槽(9)から
伸びる熱媒供給管(41)及び熱媒戻り管(42)を高温側第1
反応容器(11)と高温側第2反応容器(13)の何れか一方に
接続すると共に、空水冷型熱交換器(6)から伸びる熱媒
供給管(61)及び熱媒戻り管(62)を他方の反応容器に接続
するための配管系と、該配管系に介在する複数の3方弁
とから構成される。又、低温側切換え装置(3)は、空水
冷型熱交換器(5)から伸びる冷媒供給管(51)及び冷媒戻
り管(52)を低温側第1反応容器(12)と低温側第2反応容
器(14)の何れか一方に接続すると共に、冷凍庫(7)から
伸びる冷媒戻り管(71)及び冷媒供給管(72)を他方の反応
容器に接続するための配管系と、該配管系に介在する複
数の4方弁とから構成される。
[0004] The high temperature side switching device (2) comprises a heat medium supply pipe (41) and a heat medium return pipe (42) extending from the heat storage tank (9).
A heating medium supply pipe (61) and a heating medium return pipe (62) connected to one of the reaction vessel (11) and the high temperature side second reaction vessel (13) and extending from the air / water cooling type heat exchanger (6). Is connected to the other reaction vessel, and a plurality of three-way valves interposed in the piping system. The low temperature side switching device (3) comprises a refrigerant supply pipe (51) and a refrigerant return pipe (52) extending from the air / water heat exchanger (5) and a low temperature side first reaction vessel (12) and a low temperature side second reaction vessel. A piping system for connecting to one of the reaction vessels (14) and connecting a refrigerant return pipe (71) and a refrigerant supply pipe (72) extending from the freezer (7) to the other reaction vessel; And a plurality of four-way valves interposed therebetween.

【0005】集熱器(4)は、ヒートパイプ構造を有する
複数本の集熱管を併設して構成され、約140℃の高温
水(熱媒)の供給が可能である。集熱器(4)から伸びる熱
媒出口管(43)及び熱媒入口管(44)は蓄熱槽(9)へ接続さ
れると共に、熱媒出口管(43)は3方弁(91)を介して熱媒
入口管(44)へ接続されており、集熱器(4)から供給され
る熱媒が約140℃に達したとき、熱媒出口管(43)から
3方弁(91)を経て蓄熱槽(9)へ高温(約140℃)の熱媒
が供給される。これによって蓄熱槽(9)に十分な熱が蓄
えられ、該蓄熱槽(9)から熱媒供給管(41)を経てヒート
ポンプ装置(1)へ一定温度(約140℃)の熱媒が供給さ
れるのである。
[0005] The heat collector (4) is constituted by a plurality of heat collection tubes having a heat pipe structure and can supply high-temperature water (heat medium) at about 140 ° C. The heat medium outlet pipe (43) and the heat medium inlet pipe (44) extending from the heat collector (4) are connected to the heat storage tank (9), and the heat medium outlet pipe (43) is connected to the three-way valve (91). Connected to the heat medium inlet pipe (44) through the heat medium outlet pipe (43) when the heat medium supplied from the heat collector (4) reaches about 140 ° C. Then, a high-temperature (about 140 ° C.) heat medium is supplied to the heat storage tank (9). As a result, sufficient heat is stored in the heat storage tank (9), and a heat medium at a constant temperature (about 140 ° C.) is supplied from the heat storage tank (9) to the heat pump device (1) via the heat medium supply pipe (41). Because

【0006】ヒートポンプ装置(1)においては、集熱器
(4)が熱源、空水冷型熱交換器(5)及び空水冷型熱交換
器(6)が放熱手段、冷凍庫(7)が冷凍負荷となって、図
6に示す冷凍サイクル(→→→→)が構成され
る。例えば、第1ヒートポンプP1においては、高温側
第1反応容器(11)に集熱器(4)が接続されると共に、低
温側第1反応容器(12)に空水冷熱交換器(5)が接続され
て、高温側第1反応容器(11)内の水素吸蔵合金MH1が
加熱(→)されることによって、水素が放出し、放出
された水素は低温側第1反応容器(12)へ送り込まれて、
水素吸蔵合金MH2に吸収される(→:再生モー
ド)。ここで、水素吸蔵合金MH2が水素を吸収するこ
とによって発生する熱は、空水冷型熱交換器(5)から放
熱される。
In the heat pump device (1), a heat collector
(4) is a heat source, an air-water-cooled heat exchanger (5) and an air-water-cooled heat exchanger (6) are radiating means, and a freezer (7) is a refrigeration load. →) is configured. For example, in the first heat pump P1, the heat collector (4) is connected to the high temperature side first reaction vessel (11), and the air / water cooling heat exchanger (5) is connected to the low temperature side first reaction vessel (12). When connected, the hydrogen storage alloy MH1 in the high temperature side first reaction vessel (11) is heated (→) to release hydrogen, and the released hydrogen is sent to the low temperature side first reaction vessel (12). And
It is absorbed by the hydrogen storage alloy MH2 (→: regeneration mode). Here, heat generated by the absorption of hydrogen by the hydrogen storage alloy MH2 is radiated from the air-water cooled heat exchanger (5).

【0007】次に、高温側切換えユニット(2)及び低温
側切換え装置(3)の切換えによって、高温側第1反応容
器(11)に空水冷熱交換器(6)が接続されると共に、低温
側第1反応容器(12)に冷凍庫(7)が接続される。これに
よって、高温側第1反応容器(11)内の水素吸蔵合金MH
1は状態の温度に設定され、低温側第1反応容器(12)
内の水素吸蔵合金MH2に吸収されている状態の水素
は、状態との圧力差によって低温側第1反応容器(12)
へ向けて放出され、低温側第1反応容器(12)内の水素吸
蔵合金MH1に吸収される。ここで、低温側第1反応容
器(12)内の水素吸蔵合金MH2は水素の放出に伴って冷
却される(→:冷熱発生モード)。この結果、冷凍庫
(7)から冷媒戻り管(71)を経て供給される冷媒が冷却さ
れ、低温の冷媒が冷媒供給管(72)を経て冷凍庫(7)へ送
り込まれるのである。
Next, by switching the high temperature side switching unit (2) and the low temperature side switching device (3), the air / water heat exchanger (6) is connected to the high temperature side first reaction vessel (11), The freezer (7) is connected to the first side reaction vessel (12). Thereby, the hydrogen storage alloy MH in the high temperature side first reaction vessel (11) is
1 is set to the state temperature, and the low-temperature side first reaction vessel (12)
The hydrogen in the state absorbed in the hydrogen storage alloy MH2 in the inside of the low-temperature side first reaction vessel (12) due to the pressure difference from the state
And absorbed by the hydrogen storage alloy MH1 in the low temperature side first reaction vessel (12). Here, the hydrogen storage alloy MH2 in the low temperature side first reaction vessel (12) is cooled with the release of hydrogen (→: cold heat generation mode). This results in a freezer
The refrigerant supplied from (7) via the refrigerant return pipe (71) is cooled, and the low-temperature refrigerant is sent to the freezer (7) via the refrigerant supply pipe (72).

【0008】上述の冷凍サイクルを第1ヒートポンプP
1と第2ヒートポンプP2で180度の位相差をもって
行なわしめることにより、冷凍庫(7)には連続的に低温
の冷媒が供給され、冷凍庫(7)内は、例えば零下20℃
の低温に保たれるのである。
The above-described refrigeration cycle is connected to a first heat pump P
The first and second heat pumps P2 perform the operation with a phase difference of 180 degrees, so that a low-temperature refrigerant is continuously supplied to the freezer (7).
It is kept at a low temperature.

【0009】[0009]

【発明が解決しようとする課題】ところで、太陽熱駆動
冷凍機の冷凍効率は、集熱器(4)の集熱効率とヒートポ
ンプ装置(1)の熱効率の積に依存し、一般に、集熱器
(4)の集熱効率は温度上昇に伴って低下するのに対し、
ヒートポンプ装置(1)の熱効率は水素吸蔵合金の特性か
ら、温度上昇に伴って上昇し、集熱器(4)とヒートポン
プ装置(1)の効率は温度に関して逆の特性を示す。ここ
で、集熱器(4)が受ける日射量は季節によって異なり、
集熱器(4)から供給される熱媒の温度は変化する。従来
は、この温度の変化を前述の如く3方弁(91)及び蓄熱槽
(9)によって一定とし、一定温度の熱媒をヒートポンプ
装置(1)へ供給していた。
The refrigeration efficiency of a solar-powered refrigerator depends on the product of the heat collection efficiency of the heat collector (4) and the heat efficiency of the heat pump device (1).
The heat collection efficiency of (4) decreases with increasing temperature, whereas
The heat efficiency of the heat pump device (1) increases with the temperature due to the characteristics of the hydrogen storage alloy, and the efficiencies of the heat collector (4) and the heat pump device (1) show opposite characteristics with respect to temperature. Here, the amount of solar radiation received by the collector (4) varies depending on the season,
The temperature of the heat medium supplied from the heat collector (4) changes. Conventionally, this change in temperature is determined by a three-way valve (91) and a heat storage tank as described above.
The heat medium was kept constant by (9) and was supplied to the heat pump device (1) at a constant temperature.

【0010】従って、日射量が増大する夏季には、集熱
器(4)から、例えば140℃を越える高温の熱媒が得ら
れるにも拘わらず、この温度を例えば130℃程度まで
低下させてヒートポンプ装置(1)へ供給することとなっ
ていたから、ヒートポンプ装置(1)の熱効率が、本来得
られるべき値よりも低くなり、結果として、太陽熱駆動
冷凍機の冷凍効率が低くなっていた。又、日射量が少な
い冬季は、140℃での集熱効率が低く、必要となる集
熱量が得られないため、結果として、太陽熱駆動冷凍機
の冷凍効率が低くなっていた。この様に年間を通じて太
陽熱駆動冷凍機に充分な冷凍効率が得られない結果、年
間の出熱量が低くなる問題があった。
Therefore, in summer when the amount of solar radiation increases, the temperature is reduced to, for example, about 130 ° C., even though a high-temperature heat medium exceeding, for example, 140 ° C. is obtained from the collector (4). Since the heat is supplied to the heat pump device (1), the heat efficiency of the heat pump device (1) becomes lower than a value which should be originally obtained, and as a result, the refrigeration efficiency of the solar heat driven refrigerator becomes low. In winter, when the amount of solar radiation is small, the heat collection efficiency at 140 ° C. is low, and the required heat collection amount cannot be obtained. As a result, the refrigeration efficiency of the solar heat driven refrigerator has been low. As described above, sufficient refrigeration efficiency cannot be obtained for the solar-driven refrigerator throughout the year, resulting in a problem that the annual heat output is reduced.

【0011】本発明の目的は、従来よりも年間出熱量を
増大させることが可能な太陽熱駆動冷凍機及びその運用
方法を提供することである。
It is an object of the present invention to provide a solar-driven refrigerator capable of increasing the annual heat output compared to the conventional one, and a method of operating the same.

【0012】[0012]

【課題を解決する為の手段】本発明に係る太陽熱駆動冷
凍機は、太陽熱を熱源として、冷凍負荷を冷却するため
の太陽熱駆動冷凍機であって、平衡水素圧力の低い高温
用水素吸蔵合金と平衡水素圧力の高い低温用水素吸蔵合
金の間で水素ガスを移動させて冷凍サイクルを構成する
ヒートポンプと、熱源とヒートポンプの間で熱媒を循環
させて高温用水素吸蔵合金を加熱するための熱媒系統
と、ヒートポンプと冷凍負荷の間で冷媒を循環させて低
温用水素吸蔵合金を放熱させるための冷媒系統とから構
成される。ここで、ヒートポンプは、平衡水素圧力の高
い低温用水素吸蔵合金MH2が充填された低温側反応容
器と、低温用水素吸蔵合金MH2よりも平衡水素圧力の
低い第1高温用水素吸蔵合金MH1が充填された第1高
温側反応容器と、低温用水素吸蔵合金MH2及び第1高
温用水素吸蔵合金MH1よりも平衡水素圧力の低い第2
高温用水素吸蔵合金MH3が充填された第2高温側反応
容器とを具え、低温側反応容器に対し、第1高温側反応
容器と第2高温側反応容器を切換え可能に連結して、低
温側反応容器と何れか一方の高温側反応容器との間で水
素ガスの移動を可能とした。
SUMMARY OF THE INVENTION A solar-powered refrigerator according to the present invention is a solar-powered refrigerator for cooling a refrigeration load using solar heat as a heat source, comprising a high-temperature hydrogen storage alloy having a low equilibrium hydrogen pressure. A heat pump that forms a refrigeration cycle by moving hydrogen gas between low-temperature hydrogen storage alloys with high equilibrium hydrogen pressure, and heat for circulating a heat medium between the heat source and the heat pump to heat the high-temperature hydrogen storage alloy. It is composed of a medium system and a refrigerant system for circulating the refrigerant between the heat pump and the refrigeration load to radiate the low-temperature hydrogen storage alloy. Here, the heat pump is filled with a low-temperature side reaction vessel filled with a low-temperature hydrogen storage alloy MH2 having a high equilibrium hydrogen pressure and a first high-temperature hydrogen storage alloy MH1 having a lower equilibrium hydrogen pressure than the low-temperature hydrogen storage alloy MH2. The first high-temperature side reaction vessel, and the second hydrogen storage alloy MH2 having a lower equilibrium hydrogen pressure than the low-temperature hydrogen storage alloy MH2 and the first high-temperature hydrogen storage alloy MH1.
A second high-temperature side reaction vessel filled with the high-temperature hydrogen storage alloy MH3, wherein the first high-temperature side reaction vessel and the second high-temperature side reaction vessel are switchably connected to the low-temperature side reaction vessel; The transfer of hydrogen gas between the reaction vessel and any one of the high-temperature side reaction vessels was enabled.

【0013】ここで、低温用水素吸蔵合金としては、T
i、Zr、Mn、V、及びNiを含有したC14型構造
の合金を採用することが可能であり、第1及び第2高温
用水素吸蔵合金としては、La、Ni、Sn、及びAl
を含有したCaCu型構造の合金を採用することが出
来る。
Here, as the low-temperature hydrogen storage alloy, T
An alloy having a C14 type structure containing i, Zr, Mn, V, and Ni can be adopted. As the first and second high-temperature hydrogen storage alloys, La, Ni, Sn, and Al
Can be adopted as the alloy having a CaCu 5- type structure.

【0014】上記本発明の太陽熱駆動冷凍機において
は、冬季を含む低温期には、平衡水素圧力の高い第1高
温用水素吸蔵合金MH1が充填された第1高温用反応容
器を、低温側反応容器に連結する。これによって、第1
高温側反応容器と低温側反応容器の間で水素ガスが移動
し、冷凍サイクルが構成される。これに対し、夏季を含
む高温期には、平衡水素圧力の低い第2高温用水素吸蔵
合金MH3が充填された第2高温用反応容器を、低温側
反応容器に連結する。これによって、第2高温側反応容
器と低温側反応容器の間で水素ガスが移動し、冷凍サイ
クルが構成される。
In the above-described solar-powered refrigerator of the present invention, in the low-temperature period including winter, the first high-temperature reaction vessel filled with the first high-temperature hydrogen storage alloy MH1 having a high equilibrium hydrogen pressure is supplied to the low-temperature side reaction vessel. Connect to container. Thereby, the first
Hydrogen gas moves between the high-temperature side reaction vessel and the low-temperature side reaction vessel, and a refrigeration cycle is configured. On the other hand, in the high temperature period including the summer, the second high temperature reaction vessel filled with the second high temperature hydrogen storage alloy MH3 having a low equilibrium hydrogen pressure is connected to the low temperature side reaction vessel. Thereby, the hydrogen gas moves between the second high temperature side reaction vessel and the low temperature side reaction vessel, and a refrigeration cycle is configured.

【0015】従って、熱源温度の低い冬季には、熱媒供
給温度を基準値よりも低く設定することによって、集熱
効率の向上を図ることが可能であり、熱源温度の高い夏
季には、熱媒供給温度を基準値よりも高く設定すること
により、ヒートポンプの熱効率の向上を図ることが可能
である。これによって、年間を通じて冷凍効率を従来よ
りも向上させることが出来る。
Therefore, in winter when the heat source temperature is low, it is possible to improve the heat collection efficiency by setting the heat medium supply temperature lower than the reference value. In summer when the heat source temperature is high, the heat medium can be improved. By setting the supply temperature higher than the reference value, it is possible to improve the heat efficiency of the heat pump. As a result, the refrigeration efficiency can be improved over the whole year.

【0016】[0016]

【発明の効果】本発明に係る太陽熱駆動冷凍機及びその
運用方法によれば、年間を通じて冷凍効率を向上させる
ことが出来るので、年間出熱量が従来よりも増大する。
According to the solar-powered refrigerator and the method for operating the same according to the present invention, the refrigerating efficiency can be improved throughout the year, so that the annual heat output is larger than before.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につ
き、図面に沿って具体的に説明する。本発明に係る太陽
熱駆動冷凍機においては、図1に示す如く、ヒートポン
プユニット(8)に、高温側切換え装置(2)を介して集熱
器(4)と空水冷型熱交換器(6)とが切り換え可能に接続
されると共に、低温側切換え装置(3)を介して空水冷型
熱交換器(5)と冷凍庫(7)とが切り換え可能に接続さ
れ、集熱器(4)と高温側切換え装置(2)の間には、蓄熱
槽(9)が介在している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. In the solar powered refrigerator according to the present invention, as shown in FIG. 1, a heat collector (4) and an air / water cooling type heat exchanger (6) are connected to a heat pump unit (8) via a high temperature side switching device (2). Are switchably connected, and the air / water heat exchanger (5) and the freezer (7) are switchably connected via the low temperature side switching device (3), and the heat collector (4) is connected to the high temperature collector (4). A heat storage tank (9) is interposed between the side switching devices (2).

【0018】高温側切換え装置(2)は、蓄熱槽(9)から
伸びる熱媒供給管(41)及び熱媒戻り管(42)を高温側第1
反応容器(11)と高温側第2反応容器(13)の何れか一方に
接続すると共に、空水冷型熱交換器(6)から伸びる熱媒
供給管(61)及び熱媒戻り管(62)を他方の反応容器に接続
するための配管系と、該配管系に介在する複数の3方弁
とから構成される。又、低温側切換え装置(3)は、空水
冷型熱交換器(5)から伸びる冷媒供給管(51)及び冷媒戻
り管(52)を低温側第1反応容器(12)と低温側第2反応容
器(14)の何れか一方に接続すると共に、冷凍庫(7)から
伸びる冷媒戻り管(71)及び冷媒供給管(72)を他方の反応
容器に接続するための配管系と、該配管系に介在する複
数の4方弁とから構成される。
The high-temperature side switching device (2) includes a heat medium supply pipe (41) and a heat medium return pipe (42) extending from the heat storage tank (9), and a high-temperature side first pipe.
A heating medium supply pipe (61) and a heating medium return pipe (62) connected to one of the reaction vessel (11) and the high temperature side second reaction vessel (13) and extending from the air / water cooling type heat exchanger (6). Is connected to the other reaction vessel, and a plurality of three-way valves interposed in the piping system. The low temperature side switching device (3) comprises a refrigerant supply pipe (51) and a refrigerant return pipe (52) extending from the air / water heat exchanger (5) and a low temperature side first reaction vessel (12) and a low temperature side second reaction vessel. A piping system for connecting to one of the reaction vessels (14) and connecting a refrigerant return pipe (71) and a refrigerant supply pipe (72) extending from the freezer (7) to the other reaction vessel; And a plurality of four-way valves interposed therebetween.

【0019】集熱器(4)は、ヒートパイプ構造を有する
複数本の集熱管を併設して構成され、例えば約140℃
の高温水(熱媒)の供給が可能である。集熱器(4)から伸
びる熱媒出口管(43)及び熱媒入口管(44)は蓄熱槽(9)へ
接続されると共に、熱媒出口管(43)は3方弁(91)を介し
て熱媒入口管(44)へ接続されており、集熱器(4)から供
給される熱媒が所定温度に達したとき、熱媒出口管(43)
から3方弁(91)を経て蓄熱槽(9)へ高温の熱媒が供給さ
れる。これによって蓄熱槽(9)に十分な熱が蓄えられ、
該蓄熱槽(9)から熱媒供給管(41)を経てヒートポンプ装
置(1)へ一定温度の熱媒が供給されるのである。
The heat collector (4) is constituted by a plurality of heat collector tubes having a heat pipe structure.
Supply of high-temperature water (heat medium). The heat medium outlet pipe (43) and the heat medium inlet pipe (44) extending from the heat collector (4) are connected to the heat storage tank (9), and the heat medium outlet pipe (43) is connected to the three-way valve (91). When the heat medium supplied from the heat collector (4) reaches a predetermined temperature, the heat medium outlet pipe (43) is connected to the heat medium inlet pipe (44).
A high-temperature heat medium is supplied to the heat storage tank (9) through the three-way valve (91). This stores enough heat in the heat storage tank (9),
A heat medium of a constant temperature is supplied from the heat storage tank (9) to the heat pump device (1) via a heat medium supply pipe (41).

【0020】ヒートポンプユニット(8)は、第1ヒート
ポンプP1及び第2ヒートポンプP2を併設して構成さ
れている。第1ヒートポンプP1は、平衡水素圧力の高
い低温用水素吸蔵合金MH2を内蔵した低温側第1反応
容器(12)と、低温用水素吸蔵合金MH2よりも平衡水素
圧力の低い第1高温用水素吸蔵合金MH1を内蔵した高
温側第1反応容器(11)と、低温用水素吸蔵合金MH2及
び第1高温用水素吸蔵合金MH1よりも平衡水素圧力の
低い第2高温用水素吸蔵合金MH3を内蔵した高温側第
2反応容器(81)とを具え、低温側第1反応容器(12)に対
して、高温側第1反応容器(11)と高温側第2反応容器(8
1)とがそれぞれ連結管(17)(83)を介して連結され、各連
結管(17)(83)にはバルブ(15)(19)が介在している。又、
高温側第2反応容器(81)には、前記熱媒供給管(41)及び
熱媒戻り管(42)から分岐した熱媒供給管(45)及び熱媒戻
り管(46)が接続されている。
The heat pump unit (8) includes a first heat pump P1 and a second heat pump P2. The first heat pump P1 includes a low-temperature side first reaction vessel (12) containing a low-temperature hydrogen storage alloy MH2 having a high equilibrium hydrogen pressure, and a first high-temperature hydrogen storage having a lower equilibrium hydrogen pressure than the low-temperature hydrogen storage alloy MH2. A high temperature side first reaction vessel (11) containing an alloy MH1, and a high temperature containing a second high temperature hydrogen storage alloy MH3 having a lower equilibrium hydrogen pressure than the low temperature hydrogen storage alloy MH2 and the first high temperature hydrogen storage alloy MH1. A second reaction vessel (81), and a first reaction vessel (11) on the high temperature side and a second reaction vessel (8) on the high temperature side with respect to the first reaction vessel (12) on the low temperature side.
1) are connected via connecting pipes (17) and (83), respectively, and valves (15) and (19) are interposed in each connecting pipe (17) and (83). or,
A heating medium supply pipe (45) and a heating medium return pipe (46) branched from the heating medium supply pipe (41) and the heating medium return pipe (42) are connected to the high temperature side second reaction vessel (81). I have.

【0021】第2ヒートポンプP2は、前記低温用水素
吸蔵合金MH2を内蔵した低温側第2反応容器(14)と、
前記第1高温用水素吸蔵合金MH1を内蔵した高温側第
3反応容器(13)と、前記第2高温用水素吸蔵合金MH3
を内蔵した高温側第4反応容器(82)とを具え、低温側第
2反応容器(14)に対して、高温側第3反応容器(13)と高
温側第4反応容器(82)とがそれぞれ連結管(18)(84)を介
して連結され、各連結管(18)(84)にはバルブ(16)(20)が
介在している。又、高温側第4反応容器(82)には、前記
熱媒供給管(61)及び熱媒戻り管(62)から分岐した熱媒供
給管(65)及び熱媒戻り管(66)が接続されている。
The second heat pump P2 comprises a low-temperature side second reaction vessel (14) containing the low-temperature hydrogen storage alloy MH2,
A high temperature side third reaction vessel (13) containing the first high temperature hydrogen storage alloy MH1, and a second high temperature hydrogen storage alloy MH3;
And a high-temperature third reaction vessel (13) and a high-temperature fourth reaction vessel (82) with respect to the low-temperature second reaction vessel (14). The connecting pipes (18) and (84) are connected to each other, and the connecting pipes (18) and (84) have valves (16) and (20) interposed therebetween. A heating medium supply pipe (65) and a heating medium return pipe (66) branched from the heating medium supply pipe (61) and the heating medium return pipe (62) are connected to the high temperature side fourth reaction vessel (82). Have been.

【0022】尚、低温用水素吸蔵合金としては、Ti、
Zr、Mn、V、及びNiを含有したC14型構造の合
金、例えばTi0.85Zr0.15MnV0.4Ni
0.6を採用することが可能であり、この場合、平衡水
素圧力は−20℃で0.06MPaとなる。又、第1及
び第2高温用水素吸蔵合金MH1、MH3としては、L
a、Ni、Sn、及びAlを含有したCaCu型構造
の合金、例えばLaNi4.7Sn 0.2Al0.1を採
用することが出来、この場合、SnとAlの組成比を僅
かに調整することによって、平衡水素圧力が例えば14
0℃で1MPaの第1高温用水素吸蔵金MH1を得ると
共に、平衡水素圧力が例えば150℃で1MPaの第2
高温用水素吸蔵合金MH3を得ることが出来る。
Incidentally, as the low-temperature hydrogen storage alloy, Ti,
Synthesis of C14 type structure containing Zr, Mn, V, and Ni
Gold, for example Ti0.85Zr0.15MnV0.4Ni
0.6It is possible to employ
The elementary pressure becomes 0.06 MPa at -20 ° C. In addition,
And the second high-temperature hydrogen storage alloys MH1 and MH3 are L
CaCu containing a, Ni, Sn, and Al5Type structure
Alloy, such as LaNi4.7Sn 0.2Al0.1Take
In this case, the composition ratio of Sn and Al can be reduced.
To adjust the equilibrium hydrogen pressure to, for example, 14
When obtaining the first high-temperature hydrogen storage gold MH1 of 1 MPa at 0 ° C.
In both cases, the second equilibrium hydrogen pressure is, for example, 150 ° C. and 1 MPa.
High-temperature hydrogen storage alloy MH3 can be obtained.

【0023】上記太陽熱駆動冷凍機においては、冬季を
含む低温期(例えば10月乃至5月)には、第1ヒートポ
ンプP1のバルブ(15)と第2ヒートポンプP2のバルブ
(16)を開く一方、第1ヒートポンプP1のバルブ(19)と
第2ヒートポンプP2のバルブ(20)は閉じて運転する。
又、集熱器(4)から熱媒供給管(41)へ供給する熱媒の温
度は、従来値(基準値)よりも低く、例えば100℃に設
定する。これに対し、夏季を含む高温期(例えば6月乃
至9月)には、第1ヒートポンプP1のバルブ(15)と第
2ヒートポンプP2のバルブ(16)は閉じる一方、第1ヒ
ートポンプP1のバルブ(19)と第2ヒートポンプP2の
バルブ(20)を開いて運転する。又、集熱器(4)から熱媒
供給管(41)へ供給する熱媒の温度は、従来値(基準値)よ
りも高く、例えば140℃に設定する。
In the above solar-powered refrigerator, the valve (15) of the first heat pump P1 and the valve (15) of the second heat pump P2 are used during a low temperature period including winter (for example, from October to May).
While (16) is opened, the valve (19) of the first heat pump P1 and the valve (20) of the second heat pump P2 are closed to operate.
The temperature of the heat medium supplied from the heat collector (4) to the heat medium supply pipe (41) is set lower than the conventional value (reference value), for example, 100 ° C. On the other hand, in a high temperature period including summer (for example, from June to September), the valve (15) of the first heat pump P1 and the valve (16) of the second heat pump P2 are closed, while the valve (1) of the first heat pump P1 is closed. 19) and the valve (20) of the second heat pump P2 is opened for operation. The temperature of the heat medium supplied from the heat collector (4) to the heat medium supply pipe (41) is set higher than a conventional value (reference value), for example, 140 ° C.

【0024】これによって、集熱器(4)が熱源、空水冷
型熱交換器(5)及び空水冷型熱交換器(6)が放熱手段、
冷凍庫(7)が冷凍負荷となって、低温期には、図2に示
す第1の冷凍サイクル(→→→→)が構成さ
れ、高温期には、図2に示す第2の冷凍サイクル(′
→′→′→→′)が構成されることになる。
Thus, the heat collector (4) is a heat source, the air / water cooled heat exchanger (5) and the air / water cooled heat exchanger (6) are radiating means,
The freezer (7) becomes a refrigeration load, and a first refrigeration cycle (→→→→) shown in FIG. 2 is configured in a low temperature period, and a second refrigeration cycle (→→→) shown in FIG. ′
→ ′ → ′ →→ ′).

【0025】図3は、上記本発明の太陽熱駆動冷凍機に
おいて、冷却水温度が20℃で一定の場合の熱源温度と
冷凍機の熱出力との関係を計算によって求め、グラフ化
したものであって、実線は、低温側第1反応容器(12)及
び低温側第2反応容器(14)にそれぞれ高温側第1反応容
器(11)及び高温側第3反応容器(13)を接続して、第1高
温用水素吸蔵合金MH1を用いたときの関係を表わし、
破線は、低温側第1反応容器(12)及び低温側第2反応容
器(14)にそれぞれ高温側第2反応容器(81)及び高温側第
4反応容器(82)を接続して、第2高温用水素吸蔵合金M
H3を用いたときの関係を表わしている。
FIG. 3 is a graph obtained by calculating the relationship between the heat source temperature and the heat output of the refrigerator when the cooling water temperature is constant at 20 ° C. in the above-described solar heat driven refrigerator of the present invention. The solid line connects the high-temperature first reaction vessel (11) and the high-temperature third reaction vessel (13) to the low-temperature first reaction vessel (12) and the low-temperature second reaction vessel (14), respectively. The relationship when the first high-temperature hydrogen storage alloy MH1 is used,
The dashed line indicates that the high-temperature second reaction vessel (81) and the high-temperature fourth reaction vessel (82) are connected to the low-temperature first reaction vessel (12) and the low-temperature second reaction vessel (14), respectively. High temperature hydrogen storage alloy M
The relationship when H3 is used is shown.

【0026】図示の如く、熱源温度が低い範囲Aでは、
第1高温用水素吸蔵合金MH1を用いたときの方が高い
熱出力が得られているのに対し、熱源温度が高い範囲B
では、第2高温用水素吸蔵合金MH3を用いたときの方
が高い熱出力が得られている。又、図4は、熱源温度が
150℃で一定の場合の冷却水温度と熱出力の関係を表
わしている。図示の如く、熱源温度が高い場合には、冷
却水温度に拘わらず、第2水素吸蔵合金MH3を用いた
ときの方が高い熱出力が得られている。
As shown, in the range A where the heat source temperature is low,
A higher heat output is obtained when the first high-temperature hydrogen-absorbing alloy MH1 is used, but a range B in which the heat source temperature is higher.
In this example, a higher heat output was obtained when the second high-temperature hydrogen storage alloy MH3 was used. FIG. 4 shows the relationship between the cooling water temperature and the heat output when the heat source temperature is constant at 150 ° C. As shown, when the heat source temperature is high, a higher heat output is obtained when the second hydrogen storage alloy MH3 is used, regardless of the cooling water temperature.

【0027】従って、外気温度の低い冬季を含む低温期
には、第1水素吸蔵合金MH1が充填された高温側第1
反応容器(11)及び高温側第3反応容器(13)を用いると共
に、これらの反応容器(11)(13)へ供給すべき熱媒の供給
温度を130℃よりも低く設定することによって、高い
熱出力が得られる。一方、外気温度の高い夏季を含む高
温期には、第2水素吸蔵合金MH3が充填された高温側
第2反応容器(81)及び高温側第4反応容器(82)を用いる
と共に、これらの反応容器(81)(82)へ供給すべき熱媒の
供給温度を130℃以上に設定することによって、高い
熱出力が得られる。この結果、年間出熱量が従来よりも
増大することになる。
Therefore, in the low temperature period including the winter season when the outside air temperature is low, the high-temperature side first gas filled with the first hydrogen storage alloy MH1 is used.
By using the reaction vessel (11) and the third reaction vessel (13) on the high temperature side, the supply temperature of the heat medium to be supplied to these reaction vessels (11) and (13) is set lower than 130 ° C. Heat output is obtained. On the other hand, in the high-temperature period including the summer time when the outside air temperature is high, the high-temperature second reaction vessel (81) and the high-temperature fourth reaction vessel (82) filled with the second hydrogen storage alloy MH3 are used. By setting the supply temperature of the heat medium to be supplied to the containers (81) and (82) to 130 ° C. or higher, a high heat output can be obtained. As a result, the annual heat output is increased more than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽熱駆動冷凍機の構成を示す系
統図である。
FIG. 1 is a system diagram showing a configuration of a solar heat refrigerator according to the present invention.

【図2】本発明に係る太陽熱駆動冷凍機における冷凍サ
イクルを説明する図である。
FIG. 2 is a diagram illustrating a refrigeration cycle in the solar-powered refrigerator according to the present invention.

【図3】熱源温度と熱出力の関係を表わすグラフであ
る。
FIG. 3 is a graph showing a relationship between a heat source temperature and a heat output.

【図4】冷却水温度と熱出力の関係を表わすグラフであ
る。
FIG. 4 is a graph showing a relationship between cooling water temperature and heat output.

【図5】従来の太陽熱駆動冷凍機の構成を示す系統図で
ある。
FIG. 5 is a system diagram showing a configuration of a conventional solar-powered refrigerator.

【図6】従来の太陽熱駆動冷凍機における冷凍サイクル
を説明する図である。
FIG. 6 is a diagram illustrating a refrigeration cycle in a conventional solar-driven refrigerator.

【符号の説明】[Explanation of symbols]

(8) ヒートポンプユニット MH1 第1高温用水素吸蔵合金 MH2 低温用水素吸蔵合金 MH3 第2高温用水素吸蔵合金 (11) 高温側第1反応容器 (12) 低温側第1反応容器 (13) 高温側第3反応容器 (14) 低温側第2反応容器 (81) 高温側第2反応容器 (82) 高温側第4反応容器 (2) 高温側切換えユニット (3) 低温側切換えユニット (4) 集熱器 (5) 空水冷熱交換器 (6) 空水冷熱交換器 (7) 冷凍庫 (8) Heat pump unit MH1 First high-temperature hydrogen storage alloy MH2 Low-temperature hydrogen storage alloy MH3 Second high-temperature hydrogen storage alloy (11) High-temperature first reaction vessel (12) Low-temperature first reaction vessel (13) High-temperature side Third reaction vessel (14) Low temperature side second reaction vessel (81) High temperature side second reaction vessel (82) High temperature side fourth reaction vessel (2) High temperature side switching unit (3) Low temperature side switching unit (4) Heat collection (5) Air / water heat exchanger (6) Air / water heat exchanger (7) Freezer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 太陽熱を熱源として、冷凍負荷を冷却す
るための太陽熱駆動冷凍機であって、平衡水素圧力の低
い高温用水素吸蔵合金と平衡水素圧力の高い低温用水素
吸蔵合金の間で水素ガスを移動させて冷凍サイクルを構
成するヒートポンプと、熱源とヒートポンプの間で熱媒
を循環させて高温用水素吸蔵合金を加熱するための熱媒
系統と、ヒートポンプと冷凍負荷の間で冷媒を循環させ
て低温用水素吸蔵合金を放熱させるための冷媒系統とか
ら構成され、ヒートポンプは、 平衡水素圧力の高い低温用水素吸蔵合金MH2が充填さ
れた低温側反応容器と、 低温用水素吸蔵合金MH2よりも平衡水素圧力の低い第
1高温用水素吸蔵合金MH1が充填された第1高温側反
応容器と、 低温用水素吸蔵合金MH2及び第1高温用水素吸蔵合金
MH1よりも平衡水素圧力の低い第2高温用水素吸蔵合
金MH3が充填された第2高温側反応容器とを具え、低
温側反応容器に対し、第1高温側反応容器と第2高温側
反応容器を切換え可能に連結して、低温側反応容器と何
れか一方の高温側反応容器との間で水素ガスの移動を可
能としたことを特徴とする太陽熱駆動冷凍機。
1. A solar heat driven refrigerator for cooling a refrigeration load using solar heat as a heat source, wherein a hydrogen is stored between a high-temperature hydrogen storage alloy having a low equilibrium hydrogen pressure and a low temperature hydrogen storage alloy having a high equilibrium hydrogen pressure. A heat pump that forms a refrigeration cycle by moving gas, a heat medium system that circulates a heat medium between the heat source and the heat pump to heat the high-temperature hydrogen storage alloy, and circulates a refrigerant between the heat pump and the refrigeration load. The heat pump is composed of a low-temperature side reaction vessel filled with a low-temperature hydrogen storage alloy MH2 having a high equilibrium hydrogen pressure, and a low-temperature hydrogen storage alloy MH2. A first high-temperature side reaction vessel filled with a first high-temperature hydrogen storage alloy MH1 having a low equilibrium hydrogen pressure, a low-temperature hydrogen storage alloy MH2 and a first high-temperature hydrogen storage alloy MH1 A second high-temperature side reaction vessel filled with a second high-temperature hydrogen storage alloy MH3 having a lower equilibrium hydrogen pressure than the first high-temperature side reaction vessel and the second high-temperature side reaction vessel with respect to the low-temperature side reaction vessel. A solar-powered refrigerator characterized by being switchably connected so that hydrogen gas can be moved between a low-temperature side reaction vessel and one of the high-temperature side reaction vessels.
【請求項2】 低温用水素吸蔵合金はTi、Zr、M
n、V、及びNiを含有したC14型構造を有し、第1
及び第2高温用水素吸蔵合金は、La、Ni、Sn、及
びAlを含有したCaCu型構造を有している請求項
1に記載の太陽熱駆動冷凍機。
2. The low-temperature hydrogen storage alloy is Ti, Zr, M
a C14 type structure containing n, V, and Ni,
The solar heat driven refrigerator according to claim 1, wherein the second high-temperature hydrogen storage alloy has a CaCu 5- type structure containing La, Ni, Sn, and Al.
【請求項3】 太陽熱を熱源として冷凍負荷を冷却する
ための太陽熱駆動冷凍機の運用方法であって、太陽熱駆
動冷凍機は、平衡水素圧力の低い高温用水素吸蔵合金と
平衡水素圧力の高い低温用水素吸蔵合金の間で水素ガス
を移動させて冷凍サイクルを構成するヒートポンプと、
熱源とヒートポンプの間で熱媒を循環させて高温用水素
吸蔵合金を加熱するための熱媒系統と、ヒートポンプと
冷凍負荷の間で冷媒を循環させて低温用水素吸蔵合金を
放熱させるための冷媒系統とから構成され、ヒートポン
プは、衡水素圧力の高い低温用水素吸蔵合金MH2が充
填された低温側反応容器と、低温用水素吸蔵合金MH2
よりも平衡水素圧力の低い第1高温用水素吸蔵合金MH
1が充填された第1高温側反応容器と、温用水素吸蔵合
金MH2及び第1高温用水素吸蔵合金MH1よりも平衡
水素圧力の低い第2高温用水素吸蔵合金MH3が充填さ
れた第2高温側反応容器とを具え、低温側反応容器に対
し、第1高温側反応容器と第2高温側反応容器を切換え
可能に連結して、低温側反応容器と何れか一方の高温側
反応容器との間で水素ガスの移動を可能とし、冬季を含
む低温期には、平衡水素圧力の高い第1高温用水素吸蔵
合金MH1が充填された第1高温用反応容器を低温側反
応容器に連結すると共に、熱源から第1高温用反応容器
へ供給すべき熱媒の供給温度を基準値よりも低く設定す
る一方、夏季を含む高温期には、平衡水素圧力の低い第
2高温用水素吸蔵合金MH3が充填された第2高温用反
応容器を低温側反応容器に連結すると共に、熱源から第
2高温側反応容器へ供給すべき熱媒の供給温度を基準値
よりも高く設定することを特徴とする太陽熱駆動冷凍機
の運用方法。
3. A method for operating a solar heat driven refrigerator for cooling a refrigeration load using solar heat as a heat source, wherein the solar heat driven refrigerator includes a high-temperature hydrogen storage alloy having a low equilibrium hydrogen pressure and a low temperature having a high equilibrium hydrogen pressure. A heat pump that constitutes a refrigeration cycle by moving hydrogen gas between the hydrogen storage alloys,
A heat medium system for circulating the heat medium between the heat source and the heat pump to heat the high-temperature hydrogen storage alloy, and a refrigerant for circulating the refrigerant between the heat pump and the refrigeration load to release the low-temperature hydrogen storage alloy. A low-temperature side reaction vessel filled with a low-temperature hydrogen storage alloy MH2 having a high equilibrium hydrogen pressure, and a low-temperature hydrogen storage alloy MH2.
High temperature hydrogen storage alloy MH having a lower equilibrium hydrogen pressure than
1 and a second high-temperature reaction vessel filled with a second high-temperature hydrogen storage alloy MH3 having a lower equilibrium hydrogen pressure than the first and second high-temperature hydrogen storage alloys MH2 and MH1. A first high-temperature side reaction vessel and a second high-temperature side reaction vessel are switchably connected to the low-temperature side reaction vessel, and the low-temperature side reaction vessel and one of the high-temperature side reaction vessels are connected to each other. The first high-temperature reaction vessel filled with the first high-temperature hydrogen storage alloy MH1 having a high equilibrium hydrogen pressure is connected to the low-temperature side reaction vessel in the low-temperature period including the winter season. While the supply temperature of the heat medium to be supplied from the heat source to the first high-temperature reaction vessel is set lower than the reference value, during the high-temperature period including summer, the second high-temperature hydrogen storage alloy MH3 having a low equilibrium hydrogen pressure is used. Place the filled second high-temperature reaction vessel on the low-temperature side While connected to the container, the method operation of solar driven refrigerator and setting higher than the reference value the supply temperature of the heat medium to be supplied from the heat source to the second hot side reaction vessel.
JP11032837A 1999-02-10 1999-02-10 Solar powered refrigerator and its operation method Expired - Fee Related JP3059964B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11032837A JP3059964B1 (en) 1999-02-10 1999-02-10 Solar powered refrigerator and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11032837A JP3059964B1 (en) 1999-02-10 1999-02-10 Solar powered refrigerator and its operation method

Publications (2)

Publication Number Publication Date
JP3059964B1 JP3059964B1 (en) 2000-07-04
JP2000234820A true JP2000234820A (en) 2000-08-29

Family

ID=12369946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11032837A Expired - Fee Related JP3059964B1 (en) 1999-02-10 1999-02-10 Solar powered refrigerator and its operation method

Country Status (1)

Country Link
JP (1) JP3059964B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088740A (en) * 2013-01-17 2013-05-08 东南大学 Solar energy-ground source heat pump combined heat storage heating system for cold area tunnel pavements
CN103090553A (en) * 2013-01-17 2013-05-08 东南大学 Cold region tunnel lining solar energy and ground source heat pump combined heat storage heating system and method
CN103088873A (en) * 2013-01-17 2013-05-08 东南大学 Cold region tunnel fire fighting pipeline solar energy-ground source heat pump united heat storage heating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088740A (en) * 2013-01-17 2013-05-08 东南大学 Solar energy-ground source heat pump combined heat storage heating system for cold area tunnel pavements
CN103090553A (en) * 2013-01-17 2013-05-08 东南大学 Cold region tunnel lining solar energy and ground source heat pump combined heat storage heating system and method
CN103088873A (en) * 2013-01-17 2013-05-08 东南大学 Cold region tunnel fire fighting pipeline solar energy-ground source heat pump united heat storage heating system

Also Published As

Publication number Publication date
JP3059964B1 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
EP0603199B1 (en) Dual temperature heat pump apparatus
Gao et al. A novel hybrid solid sorption-compression refrigeration technology for refrigerated transportation and storage
Babu et al. Thermodynamic analysis of compressor operated resorption thermochemical energy storage system for heat storage, combined cooling and heat upgradation
Gao et al. Solar-driven compression-assisted desorption chemisorption refrigeration/cold energy storage system
JP2553738B2 (en) Heat pump system and its control method
JP3059964B1 (en) Solar powered refrigerator and its operation method
JPH0473556A (en) Absorption type heat pump
US5174367A (en) Thermal utilization system using hydrogen absorbing alloys
JP3126086B2 (en) Compression metal hydride heat pump
CN113137780B (en) Low-temperature refrigeration cold-storage system for efficiently utilizing solar energy
JP2950474B1 (en) Solar powered refrigerator
JPH109709A (en) Metal hydride adsorption type thermally driven refrigerating machine
JP3938831B2 (en) Solar-powered refrigeration system
US20240151360A1 (en) Hydrogen supply module and hydrogen supply method
JPH02242055A (en) Hydrogen occluded alloy-based heat application system
Nasako et al. Heat Exchanger for Hydrogen-Absorbing Alloy Refrigeration System
JP2751695B2 (en) Heat storage type cooling device
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JP4149251B2 (en) Method and apparatus for generating cold using hydrogen storage alloy
JPS5829396Y2 (en) Air conditioning equipment
JPS6055730B2 (en) solar heating and cooling equipment
JPH06147686A (en) Low temperature generator using metal hydride
JPH0774710B2 (en) Refrigerating and cooling system by combining Peltier element and hydrogen storage alloy
CN117906309A (en) Energy storage type system
JPH10122695A (en) Heat storage system using hydrogen storage alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees