JPH02242055A - Hydrogen occluded alloy-based heat application system - Google Patents

Hydrogen occluded alloy-based heat application system

Info

Publication number
JPH02242055A
JPH02242055A JP6168389A JP6168389A JPH02242055A JP H02242055 A JPH02242055 A JP H02242055A JP 6168389 A JP6168389 A JP 6168389A JP 6168389 A JP6168389 A JP 6168389A JP H02242055 A JPH02242055 A JP H02242055A
Authority
JP
Japan
Prior art keywords
hydrogen
heat
heat source
container
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6168389A
Other languages
Japanese (ja)
Inventor
Kenji Nasako
名迫 賢二
Takahiro Yonezaki
米崎 孝広
Akio Furukawa
明男 古川
Masakazu Morozu
諸頭 昌和
Toshihiko Saito
斎藤 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6168389A priority Critical patent/JPH02242055A/en
Priority to US07/490,999 priority patent/US5174367A/en
Priority to DE90302631T priority patent/DE69004718T2/en
Priority to EP90302631A priority patent/EP0388132B1/en
Publication of JPH02242055A publication Critical patent/JPH02242055A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve the operation efficiency and stabilize the operation in response to fluctuations in a drive heat source by providing a first hydrogen occluded alloy which is heated by a drive heat a source and discharges hydrogen, a second hydrogen occluded alloy which absorbs said discharged hydrogen, and a hydrogen pump which operates when a temperature level of a drive heat source is low, and discharges hydrogen from said first hydrogen occluded alloy side to said second hydrogen occluded alloy. CONSTITUTION:Hydrogen occluded alloys MH1 and MH2 heat MH1 with the heat at temperature if a drive heat source 12 is at a relatively high temperature, and cools MH2 with cooling water and transfers the hydrogen of the MH1 to the MH2, then returns the hydrogen of the MHMH2 to the MH1, cooling the MH1, where refrigerating heat is collected by the endothermic reaction of the MH2. On the other hand, the heat of the drive heat source 12, it it is relatively low, say, 90 deg.C, is detected by a sensor or the like, and the detected drive heat source operates a motor-driven hydrogen pump 8. The hydrogen pump 8 forcibly transfers hydrogen from the MH1 to the MH2 and allows the discharged hydrogen to be absorbed, cooling the MH2.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、水素吸蔵合金を用いたヒートポンプ、冷凍等
の熱利用システムに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to heat utilization systems such as heat pumps and refrigeration using hydrogen storage alloys.

(ロ)従来の技術 このような熱利用システムは、例えば特公昭58−19
955号公報、特開昭61−202054号公報に開示
されている。
(b) Conventional technology Such a heat utilization system is known, for example, from the Japanese Patent Publication Publication No. 58-19
It is disclosed in Japanese Patent Application Laid-open No. 955 and Japanese Patent Application Laid-Open No. 61-202054.

これらは、2種類の水素吸蔵合金を用い、一方を130
℃〜150℃の駆動用熱源で加熱して他方に水素を送り
且つ吸収させ、他方が水素を一方に戻す際の吸熱反応に
より冷凍熱を得るようにしている。
These use two types of hydrogen storage alloys, one with 130%
By heating with a driving heat source at a temperature of 150°C to 150°C, hydrogen is sent to and absorbed by the other side, and the other side returns the hydrogen to one side to obtain refrigeration heat through an endothermic reaction.

(ハ)発明が解決しようとする課題 しかし、これらの従来例は駆動用熱源で常に130℃〜
150℃の熱を得ることを条件としており、コージェネ
レーションシステムからの熱、工場の廃熱、太陽熱等を
熱源とした場合、熱変動が大きすぎて稼動効率が上らな
い。
(c) Problems to be solved by the invention However, in these conventional examples, the driving heat source always
The condition is to obtain heat of 150 degrees Celsius, and if the heat source is heat from a cogeneration system, waste heat from a factory, solar heat, etc., the heat fluctuations will be too large and the operating efficiency will not increase.

本発明は、駆動用熱源の変動に対応して稼動効率を向上
させ且つ安定させるものである。
The present invention improves and stabilizes operating efficiency in response to fluctuations in the driving heat source.

(ニ)課題を解決するための手段 本発明による解決手段は、駆動用熱源によって加熱され
、水素を放出する第1の水素吸蔵合金と、放出水素を吸
収する第2の水素吸蔵合金と、上記駆動用熱源の温度レ
ベルが低いときに作動し、第1の水素吸蔵合金側から第
2の水素吸蔵合金側に水素を送出する水素ポンプとから
成る構成である。
(d) Means for Solving the Problem The solution according to the present invention includes a first hydrogen storage alloy that is heated by a driving heat source and releases hydrogen, a second hydrogen storage alloy that absorbs the released hydrogen, and the above-mentioned hydrogen storage alloy. This configuration includes a hydrogen pump that operates when the temperature level of the drive heat source is low and sends hydrogen from the first hydrogen storage alloy side to the second hydrogen storage alloy side.

(ホ)作用 第1図の圧力−温度線図で示すように、2種類の水素吸
蔵合金MH,MH,は、駆動用熱源が130℃以上の比
較的高温であれば、その高温の熱でMH,を加熱させ、
M H、を20℃程度の冷却水で冷却させ、MH,の水
素をMH,に移送させる。そして、次にMHlを20℃
で冷却しつつMH2の水素をM H、に戻し、ここでの
MH,の吸熱反応により冷凍熱を回収する。
(E) Effect As shown in the pressure-temperature diagram in Figure 1, two types of hydrogen storage alloys MH, MH, can absorb the high temperature heat if the driving heat source is relatively high temperature of 130°C or higher. MH, is heated,
MH, is cooled with cooling water of about 20° C., and hydrogen in MH, is transferred to MH. Then, add MHL to 20°C.
The hydrogen in MH2 is returned to MH while being cooled, and the heat of refrigeration is recovered by the endothermic reaction of MH.

一方、駆動用熱源の熱が130℃未満、例えば90℃程
度の比較的低温であれば、これをセンサーなどで検知し
て電動の水素ポンプ(例えばコンプレッサー)を作動さ
せる。水素ポンプは、MT4 +側からMH,側に水素
を強制的に送り、MH。
On the other hand, if the heat from the driving heat source is relatively low, such as less than 130°C, for example about 90°C, this is detected by a sensor or the like and an electric hydrogen pump (for example, a compressor) is activated. The hydrogen pump forcibly sends hydrogen from the MT4 + side to the MH side.

を20℃程度で冷却しつつ送出水素を吸収せしめる。こ
のとき、熱源によるM H+の加熱も併用して良い。そ
して、次にM H、を20℃で冷却しつつMH,の水素
をMH,に戻し、ここでのMH2の吸熱反応により冷凍
熱を回収する。
The hydrogen is absorbed while being cooled to about 20°C. At this time, heating of M H+ by a heat source may also be used. Then, while cooling MH at 20° C., the hydrogen in MH is returned to MH, and the heat of refrigeration is recovered by the endothermic reaction of MH2.

このように、駆動用熱源の供給熱の温度レベルに応じて
、通常の熱サイクル運転と、水素ポンプによる熱サイク
ル運転とを切替えて実行させるのであるが、温度レベル
は熱源の温度をセンサーで測定する、成るいは太陽熱利
用熱源では日射計で日射強度を測定する等の方法で調べ
、例えば130℃を切替えのための基準とする。
In this way, the normal heat cycle operation and the heat cycle operation using the hydrogen pump are switched and executed depending on the temperature level of the heat supplied by the drive heat source, but the temperature level is determined by measuring the temperature of the heat source with a sensor. In the case of a solar heat source, the solar radiation intensity is measured using a pyranometer or the like, and for example, 130° C. is used as the standard for switching.

(へ)実施例 本発明による熱利用システムとして、冷凍熱利用システ
ムの例を第2図に基づいて説明する。
(f) Example As a heat utilization system according to the present invention, an example of a refrigeration heat utilization system will be explained based on FIG. 2.

容器1.2は第1の水素吸蔵合金MH,を、容器3.4
は第2の水素吸蔵合金MH,を充填している。容器1と
4、容器2と3は、水素ガスの第1、第2移送配W5.
6によって接続されると共に、容iS1.4は第2移送
配管6に、容S2.3は第1移送配管5に夫々接続可能
にしである。この接続を可能にするために、4個の三方
弁7・・・が配管5.6に設けである。
Container 1.2 contains the first hydrogen storage alloy MH, and container 3.4 contains the first hydrogen storage alloy MH.
is filled with a second hydrogen storage alloy MH. Containers 1 and 4 and containers 2 and 3 are connected to the first and second hydrogen gas transfer distribution W5.
6, the capacitor iS1.4 can be connected to the second transfer pipe 6, and the capacitor S2.3 can be connected to the first transfer pipe 5, respectively. To enable this connection, four three-way valves 7... are provided in the pipe 5.6.

第1移送配管5には、容器1.2側から容器3.4側に
水素ガスを強制的に送出する電動のコンプレッサーから
成る水素ポンプ8が設けてあり、このポンプ8にはバイ
パス弁9付のバイパス路10が設けである。
The first transfer pipe 5 is provided with a hydrogen pump 8 consisting of an electric compressor that forcibly sends hydrogen gas from the container 1.2 side to the container 3.4 side, and this pump 8 is equipped with a bypass valve 9. A bypass path 10 is provided.

容vjP1.2.3.4は、充填した合金を加熱したり
、合金の反応熱を回収するために、熱交換器11・・・
を内装している。そして、容器1.2は、その熱交換器
11.11を駆動用熱源12と、20℃の冷却水を備え
た冷却源13とに切替弁14・・・によって選択的に切
替えることができるように配管接続している。また、容
器3.4は、その熱交換器11.11を冷却源13と、
冷凍負荷15とに切替弁14・・・によって選択的に切
替えることができるように配管接続している。熱交換器
11・・・と熱源12は、冷却源13、冷凍負荷15と
の間の配管は、熱媒、冷媒をポンプ等で強制循環させる
配管である。
The capacity vjP1.2.3.4 is a heat exchanger 11... for heating the filled alloy and recovering the reaction heat of the alloy.
It's decorated. The container 1.2 is configured so that its heat exchanger 11.11 can be selectively switched between the drive heat source 12 and the cooling source 13 provided with 20° C. cooling water using a switching valve 14... Piping is connected to. The container 3.4 also connects its heat exchanger 11.11 to a cooling source 13;
It is pipe-connected to the refrigeration load 15 so that it can be selectively switched by a switching valve 14 . The piping between the heat exchangers 11 . . . and the heat source 12, the cooling source 13, and the refrigeration load 15 is piping for forced circulation of heat medium and refrigerant using a pump or the like.

上記駆動用熱源12の供給熱の温度レベルは、温度セン
サーや日射計等で測定される。制御装置(図示せず)は
、測定値を基準温度(例えば130℃)や基準日射強度
と比較し、基準以上であれば、通常の熱サイクル運転を
、未満であれば、水素ポンプ8の使用を指示し、各弁7
・・・ 9.14・・・を各運転に合せて開閉せしめる
。水素ポンプ8の使用時には熱源12の併用加熱とする
よう指示する。
The temperature level of the heat supplied by the driving heat source 12 is measured by a temperature sensor, a pyranometer, or the like. A control device (not shown) compares the measured value with a standard temperature (for example, 130°C) and standard solar radiation intensity, and if it is above the standard, normal thermal cycle operation is performed, and if it is less than the standard, the hydrogen pump 8 is used. and each valve 7
... 9.14... will be opened and closed according to each operation. When using the hydrogen pump 8, instructions are given to use the heat source 12 for heating.

次に、本実施例の動作を説明すると、制御装置は熱源1
2の温度レベルが基準以上に高いとの比較結果に基づき
、容器1の熱交換器11を熱源12に、容器2.4の熱
交換器11.11を冷却源13に、容器3の熱交換器1
1を冷凍負荷15に接続すべく切替弁14・・・を夫々
開閉させ、バイパス弁9を開放すると共に三方弁7・・
・を切替え、容器1と4を第1移送配管5及びバイパス
路10を介して接続し、容器2と3を第2移送配管6を
介して接続する。この結果、水素ガスは、容器1から4
へ、容器3から2に移送され、容器3での水素放出によ
る吸熱反応により冷凍負荷15に約−20℃の冷熱を与
える。この反応が終了すると、制御装置は、容器1.3
の熱交換器11.11を冷却源13に、容器2の熱交換
器11を熱源12に、容器4の熱交換器11を冷凍負荷
15に夫々接続すべく切替弁14を開閉させ、バイパス
弁9を開放すると共に三方弁7・・・を切替え、容at
と4を7J2移送配管6を介して接続し、容器2と3を
第1移送配管5及びバイパス路10を介して接続する。
Next, to explain the operation of this embodiment, the control device controls the heat source 1.
Based on the comparison result that the temperature level of container 2 is higher than the standard, the heat exchanger 11 of container 1 is used as the heat source 12, the heat exchanger 11.11 of container 2.4 is used as the cooling source 13, and the heat exchanger of container 3 is changed. Vessel 1
1 to the refrigeration load 15, the switching valves 14... are opened and closed, respectively, and the bypass valve 9 is opened, and the three-way valves 7...
, the containers 1 and 4 are connected via the first transfer pipe 5 and the bypass path 10, and the containers 2 and 3 are connected via the second transfer pipe 6. As a result, hydrogen gas is transferred from containers 1 to 4.
The hydrogen is transferred from container 3 to container 2, and an endothermic reaction due to hydrogen release in container 3 provides cold heat of about -20° C. to refrigeration load 15. When this reaction is finished, the control device controls the container 1.3.
The switching valve 14 is opened and closed to connect the heat exchanger 11 of the container 2 to the cooling source 13, the heat exchanger 11 of the container 2 to the heat source 12, and the heat exchanger 11 of the container 4 to the refrigeration load 15. At the same time as opening valve 9, switch the three-way valve 7...
and 4 are connected via a 7J2 transfer pipe 6, and the containers 2 and 3 are connected via a first transfer pipe 5 and a bypass path 10.

この結果、水素ガスは容器4から1へ容器2から3に移
送され、容iS4での水素放出による吸熱反応により冷
凍負荷15に約−20℃の冷熱を与える。
As a result, hydrogen gas is transferred from container 4 to container 1 and from container 2 to container 3, and imparts cold heat of about -20° C. to refrigeration load 15 through an endothermic reaction due to hydrogen release in tank iS4.

斯る動作は交互に繰返されて連続的な熱サイクル運転と
成る。
Such operations are repeated alternately to form a continuous thermal cycle operation.

一方、熱[12の温度レベルが基準未満との比較結果が
あれば、制御装置は上記基準以上の場合の指示に加えて
、バイパス弁9の閉成と水素ポンプ8の駆動を指示する
。従って、水素ガスを容器1から容器4に、また容器2
がら容器3に夫々移送するときに、極めて効果的に移送
作業を行なう。
On the other hand, if the comparison result shows that the temperature level of the heat [12] is below the standard, the control device instructs closing of the bypass valve 9 and driving of the hydrogen pump 8 in addition to the instruction when the temperature level is above the standard. Therefore, hydrogen gas is transferred from container 1 to container 4, and from container 2 to container 2.
To carry out the transfer work very effectively when transferring the waste to the containers 3 respectively.

駆動用熱源12に太陽熱集熱装置を用いて、2種類合金
での通常の熱サイクル運転と、これに水素ポンプ8をも
用いた熱サイクル運転とを行ない、日射強度に応じた総
合効率を求めた。これが第3図に示しである。この図か
ら明らかなように、単なる2種類合金での熱サイクル運
転は、日射強度600Kc a l/’h r−m’を
境に日射強度が大の領域では効率が高いが、小の領域で
は稼動できないことがある。一方、水素ポンプ8を加え
た運転は、日射強度が小の領域でも稼動できて所定の効
率を得るが、大の領域ではポンプ8への入力骨がむしろ
損失となる。
Using a solar heat collector as the drive heat source 12, normal heat cycle operation with two types of alloys and heat cycle operation using the hydrogen pump 8 were performed to determine the overall efficiency according to the solar radiation intensity. Ta. This is shown in FIG. As is clear from this figure, thermal cycle operation with just two types of alloys is highly efficient in the region of high solar radiation intensity, bordering on 600 Kcal/'hr-m', but in the region of low solar radiation intensity. It may not be possible to operate. On the other hand, when the hydrogen pump 8 is added, it can be operated even in a region where the solar radiation intensity is low and a predetermined efficiency is obtained, but in a region where the solar radiation intensity is high, the input bone to the pump 8 is rather lost.

従って、本実施例のように、日射強度に応じて運転を使
い分ければ(第3図点線参照)、1日の中で稼動時間帯
を延長でき、稼動効率の向上、安定を図ることができる
Therefore, as in this embodiment, if the operation is used differently depending on the solar radiation intensity (see the dotted line in Figure 3), the operating hours can be extended within the day, and the operating efficiency can be improved and stabilized. .

尚、本実施例では、両運転を温度、日射等で自動的に切
替えているが、この切替を所定の表示・報知により手動
で行なっても良い。また、太陽熱々源の場合、1日の運
転を時間(タイマー)制御で切替えるようにしても良い (ト)発明の効果 本発明に依れば、駆動用熱源の温度レベルに応じて熱サ
イクル運転を切替えるので、熱源の温度変動に対応して
運転でき、稼動率を向上でき、全体の運転を安定させる
ことができる。従って、熱エネルギーを極めて効率良(
利用したシステムを提供できるものである。
In this embodiment, the two operations are automatically switched based on temperature, solar radiation, etc., but this switching may also be done manually using a predetermined display/notification. In addition, in the case of a solar heat source, the daily operation may be switched by time (timer) control. Since the system can be switched over, it can be operated in response to temperature fluctuations in the heat source, improving the operating rate and stabilizing the overall operation. Therefore, thermal energy can be used extremely efficiently (
It is possible to provide the system used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明システムに於ける熱サイクル運転を原理
的に説明する圧力−温度線図、第2図は実施例に配管系
統図、第3図は太陽熱々源での日射強度−効率特性図で
ある。 1〜4・・・容器、5.6・・・移送配管、7・・・三
方弁、8・・・水素ポンプ、12・・・駆動用熱源、1
3・・・冷却源、14・・・切替弁、15・・・冷凍負
荷。 第1図 1000/T  [に−1] 第3図
Fig. 1 is a pressure-temperature diagram that explains the principle of thermal cycle operation in the system of the present invention, Fig. 2 is a piping system diagram for an example, and Fig. 3 is a solar radiation intensity-efficiency characteristic in a hot solar source. It is a diagram. 1-4... Container, 5.6... Transfer piping, 7... Three-way valve, 8... Hydrogen pump, 12... Drive heat source, 1
3...Cooling source, 14...Switching valve, 15...Refrigerating load. Fig. 1 1000/T [ni-1] Fig. 3

Claims (1)

【特許請求の範囲】[Claims] (1)駆動用熱源によって加熱され、水素を放出する第
1の水素吸蔵合金と、放出水素を吸収する第2の水素吸
蔵合金と、上記駆動用熱源の温度レベルが低いときに作
動し、第1の水素吸蔵合金側から第2の水素吸蔵合金側
に水素を送出する水素ポンプとから成る水素吸蔵合金を
用いた熱利用システム。
(1) A first hydrogen storage alloy that is heated by a driving heat source and releases hydrogen, a second hydrogen storage alloy that absorbs released hydrogen, and a second hydrogen storage alloy that operates when the temperature level of the driving heat source is low. A heat utilization system using a hydrogen storage alloy comprising a hydrogen pump that sends hydrogen from a first hydrogen storage alloy side to a second hydrogen storage alloy side.
JP6168389A 1989-03-13 1989-03-13 Hydrogen occluded alloy-based heat application system Pending JPH02242055A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6168389A JPH02242055A (en) 1989-03-13 1989-03-13 Hydrogen occluded alloy-based heat application system
US07/490,999 US5174367A (en) 1989-03-13 1990-03-09 Thermal utilization system using hydrogen absorbing alloys
DE90302631T DE69004718T2 (en) 1989-03-13 1990-03-13 Thermal recovery system using hydrogen absorbing alloys.
EP90302631A EP0388132B1 (en) 1989-03-13 1990-03-13 Thermal utilization system using hydrogen absorbing alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6168389A JPH02242055A (en) 1989-03-13 1989-03-13 Hydrogen occluded alloy-based heat application system

Publications (1)

Publication Number Publication Date
JPH02242055A true JPH02242055A (en) 1990-09-26

Family

ID=13178309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6168389A Pending JPH02242055A (en) 1989-03-13 1989-03-13 Hydrogen occluded alloy-based heat application system

Country Status (1)

Country Link
JP (1) JPH02242055A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409676A (en) * 1992-12-28 1995-04-25 Sanyo Electric Co., Ltd. Heat transfer system utilizing hydrogen absorbing metals
KR20040050758A (en) * 2002-12-09 2004-06-17 엘지전자 주식회사 heating and cooling device for hydrogen storage alloys and method thereof
WO2008155543A2 (en) * 2007-06-18 2008-12-24 Thermal Energy Systems Ltd Heat pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895168A (en) * 1981-11-30 1983-06-06 積水化学工業株式会社 Heat pump device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895168A (en) * 1981-11-30 1983-06-06 積水化学工業株式会社 Heat pump device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409676A (en) * 1992-12-28 1995-04-25 Sanyo Electric Co., Ltd. Heat transfer system utilizing hydrogen absorbing metals
KR20040050758A (en) * 2002-12-09 2004-06-17 엘지전자 주식회사 heating and cooling device for hydrogen storage alloys and method thereof
WO2008155543A2 (en) * 2007-06-18 2008-12-24 Thermal Energy Systems Ltd Heat pump
WO2008155543A3 (en) * 2007-06-18 2009-03-05 Thermal Energy Systems Ltd Heat pump

Similar Documents

Publication Publication Date Title
JP2652456B2 (en) Operating method of heat utilization system using hydrogen storage alloy
EP0071271B1 (en) Metal hydride heat pump system
JPH0432669A (en) Heat pump system controlling method therefor
JPH02242055A (en) Hydrogen occluded alloy-based heat application system
EP0388132B1 (en) Thermal utilization system using hydrogen absorbing alloys
JP2623002B2 (en) Heat utilization system using hydrogen storage alloy
JP3126086B2 (en) Compression metal hydride heat pump
CN200975808Y (en) Frequency converting energy-saving heat pump freezing air-conditioner
JPH01208674A (en) Heat pump type hot water, heating and cooling machine
JPS58193035A (en) Space cooling and heating device
JP3059964B1 (en) Solar powered refrigerator and its operation method
JPS60164178A (en) Solar heat collecting device
JP2005083659A (en) Water heater
JP2001263853A (en) Solar heat driven refrigerating system
JP3639960B2 (en) Ice storage method using cold sensible heat
JPS5935755A (en) Heat pump type hot-water supply apparatus
JPH11281191A (en) Solar-heat-driven refrigerating machine
JPH0794927B2 (en) Air conditioner
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JPH0493593A (en) Heat application system utilizing hydrogen storage alloy
JP2703360B2 (en) Heat-driven chiller using metal hydride
JPH0361108B2 (en)
JPS58150733A (en) Solar cooling/heating device
JPH1194312A (en) Cold/hot heat storage device
JPH07190423A (en) Ice heat accumulation type refrigerator