JPH11281191A - Solar-heat-driven refrigerating machine - Google Patents

Solar-heat-driven refrigerating machine

Info

Publication number
JPH11281191A
JPH11281191A JP8149698A JP8149698A JPH11281191A JP H11281191 A JPH11281191 A JP H11281191A JP 8149698 A JP8149698 A JP 8149698A JP 8149698 A JP8149698 A JP 8149698A JP H11281191 A JPH11281191 A JP H11281191A
Authority
JP
Japan
Prior art keywords
temperature side
heat
reaction vessel
low
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8149698A
Other languages
Japanese (ja)
Other versions
JP2950474B1 (en
Inventor
Naoki Ko
直樹 広
Kenji Nasako
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8149698A priority Critical patent/JP2950474B1/en
Application granted granted Critical
Publication of JP2950474B1 publication Critical patent/JP2950474B1/en
Publication of JPH11281191A publication Critical patent/JPH11281191A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a solar-heat-driven refrigerating machine where higher refrigeration efficiency than that in the past can be obtained. SOLUTION: For this solar-heat-driven refrigerating machine, a heat collector 4 is connected through a switch 2 on high temperature side to a heat pump device 1 where a pair of heat pumps P1 and P2 are juxtaposed, and also a freezer 7 is connected through a switch 3 on low temperature side to it. In this case, the setting of the regeneration mode to let hydrogen gas flow from the reactors 11 and 13 on high temperature side of the heat pumps P1 and P2 to the reactors 12 and 14 on low temperature side, and the cold heat generation to let the hydrogen gas flow reversely is possible. Moreover, flow meters 81 and 82 are connected to the coupling pipes 17 and 18 for coupling the reactors 11 and 13 on high temperature side with the reactors 12 and 14 on low temperature side, and the measurement data of the flow of hydrogen gas are supplied to a control circuit 8, and the flow is integrated. Then, when this integrated value reaches the specified value, each heat pumps P1 and P2 are switches between the regeneration mode and the cold heat generation mode by controlling the system of both switches 2 and 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽熱を熱源とし
て、冷凍負荷を冷却するための太陽熱駆動冷凍機に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar-driven refrigerator for cooling a refrigeration load using solar heat as a heat source.

【0002】[0002]

【従来の技術】出願人は、図7に示す如き太陽熱駆動冷
凍機を提案している。該太陽熱駆動冷凍機においては、
ヒートポンプ装置(1)に、高温側切換え装置(2)を介し
て集熱器(4)と空水冷型熱交換器(6)とが切り換え可能
に接続されると共に、低温側切換え装置(3)を介して空
水冷型熱交換器(5)と冷凍庫(7)とが切り換え可能に接
続され、集熱器(4)と高温側切換え装置(2)の間には、
蓄熱槽(9)が介在している。
2. Description of the Related Art The applicant has proposed a solar powered refrigerator as shown in FIG. In the solar powered refrigerator,
A heat collector (4) and an air / water heat exchanger (6) are switchably connected to a heat pump device (1) via a high-temperature side switching device (2), and a low-temperature side switching device (3). The air-water-cooled heat exchanger (5) and the freezer (7) are switchably connected to each other through the, and between the heat collector (4) and the high temperature side switching device (2),
A heat storage tank (9) is interposed.

【0003】ヒートポンプ装置(1)は、第1ヒートポン
プP1及び第2ヒートポンプP2を併設して構成されて
いる。第1ヒートポンプP1は、水素平衡圧力の低い水
素吸蔵合金MH1を内蔵した高温側第1反応容器(11)と
水素平衡圧力の高い水素吸蔵合金MH2を内蔵した低温
側第1反応容器(12)とを連結管(17)を介して連結してな
り、連結管(17)にはバルブ(15)が介在している。又、第
2ヒートポンプP2は、水素平衡圧力の低い水素吸蔵合
金MH1を内蔵した高温側第2反応容器(13)と水素平衡
圧力の高い水素吸蔵合金MH2を内蔵した低温側第2反
応容器(14)とを連結管(18)を介して連結してなり、連結
管(18)にはバルブ(16)が介在している。
[0003] The heat pump device (1) includes a first heat pump P1 and a second heat pump P2. The first heat pump P1 includes a high-temperature first reaction vessel (11) containing a hydrogen storage alloy MH1 having a low hydrogen equilibrium pressure and a low-temperature first reaction vessel (12) containing a hydrogen storage alloy MH2 having a high hydrogen equilibrium pressure. Are connected via a connecting pipe (17), and a valve (15) is interposed in the connecting pipe (17). The second heat pump P2 includes a high temperature side second reaction vessel (13) containing a hydrogen storage alloy MH1 having a low hydrogen equilibrium pressure and a low temperature side second reaction vessel (14) containing a hydrogen storage alloy MH2 having a high hydrogen equilibrium pressure. ) Are connected via a connecting pipe (18), and a valve (16) is interposed in the connecting pipe (18).

【0004】高温側切換え装置(2)は、蓄熱槽(9)から
伸びる熱媒供給管(41)及び熱媒戻り管(42)を高温側第1
反応容器(11)と高温側第2反応容器(13)の何れか一方に
接続すると共に、空水冷型熱交換器(6)から伸びる冷媒
供給管(61)及び冷媒戻り管(62)を他方の反応容器に接続
するための配管系と、該配管系に介在する複数の3方弁
とから構成される。又、低温側切換え装置(3)は、空水
冷型熱交換器(5)から伸びる冷媒供給管(51)及び冷媒戻
り管(52)を低温側第1反応容器(12)と低温側第2反応容
器(14)の何れか一方に接続すると共に、冷凍庫(7)から
伸びる冷媒戻り管(71)及び冷媒供給管(72)を他方の反応
容器に接続するための配管系と、該配管系に介在する複
数の4方弁とから構成される。
[0004] The high temperature side switching device (2) comprises a heat medium supply pipe (41) and a heat medium return pipe (42) extending from the heat storage tank (9).
The refrigerant supply pipe (61) and the refrigerant return pipe (62), which are connected to one of the reaction vessel (11) and the high-temperature side second reaction vessel (13) and extend from the air / water heat exchanger (6), are connected to the other. And a plurality of three-way valves interposed in the piping system. The low temperature side switching device (3) comprises a refrigerant supply pipe (51) and a refrigerant return pipe (52) extending from the air / water heat exchanger (5) and a low temperature side first reaction vessel (12) and a low temperature side second reaction vessel. A piping system for connecting to one of the reaction vessels (14) and connecting a refrigerant return pipe (71) and a refrigerant supply pipe (72) extending from the freezer (7) to the other reaction vessel; And a plurality of four-way valves interposed therebetween.

【0005】集熱器(4)は、ヒートパイプ構造を有する
複数本の集熱管を併設して構成され、約140℃の高温
水(熱媒)の供給が可能である。集熱器(4)から伸びる熱
媒出口管(43)及び熱媒入口管(44)は蓄熱槽(9)へ接続さ
れると共に、熱媒出口管(43)は3方弁(91)を介して熱媒
入口管(44)へ接続されており、集熱器(4)から供給され
る熱媒が約140℃に達したとき、熱媒出口管(43)から
3方弁(91)を経て蓄熱槽(9)へ高温(約140℃)の熱媒
が供給される。これによって蓄熱槽(9)に十分な熱が蓄
えられ、該蓄熱槽(9)から熱媒供給管(41)を経てヒート
ポンプ装置(1)へ一定温度(約140℃)の熱媒が供給さ
れるのである。
[0005] The heat collector (4) is constituted by a plurality of heat collection tubes having a heat pipe structure and can supply high-temperature water (heat medium) at about 140 ° C. The heat medium outlet pipe (43) and the heat medium inlet pipe (44) extending from the heat collector (4) are connected to the heat storage tank (9), and the heat medium outlet pipe (43) is connected to the three-way valve (91). Connected to the heat medium inlet pipe (44) through the heat medium outlet pipe (43) when the heat medium supplied from the heat collector (4) reaches about 140 ° C. Then, a high-temperature (about 140 ° C.) heat medium is supplied to the heat storage tank (9). As a result, sufficient heat is stored in the heat storage tank (9), and a heat medium at a constant temperature (about 140 ° C.) is supplied from the heat storage tank (9) to the heat pump device (1) via the heat medium supply pipe (41). Because

【0006】ヒートポンプ装置(1)においては、集熱器
(4)が熱源、空水冷型熱交換器(5)及び空水冷型熱交換
器(6)が放熱手段、冷凍庫(7)が冷凍負荷となって、図
6に示す冷凍サイクル(→→→→)が構成され
る。例えば、第1ヒートポンプP1においては、先ず、
高温側第1反応容器(11)内の水素吸蔵合金MH1が加熱
されることによって、水素が放出し(→)、放出され
た水素は低温側第1反応容器(12)へ送り込まれて、水素
吸蔵合金MH2に吸収される(→:再生モード)。こ
こで、水素吸蔵合金MH2が水素を吸収することによっ
て発生する熱は、空水冷型熱交換器(5)から放熱され
る。次に、低温側切換え装置(3)の切換えによって、低
温側第1反応容器(12)には冷凍庫(7)が接続される。こ
の状態で、低温側第1反応容器(12)では、水素吸蔵合金
MH2に吸収されている水素が放出し(→)、これに
よって、冷凍庫(7)から冷媒戻り管(71)を経て供給され
る冷媒が冷却され、低温の冷媒が冷媒供給管(72)を経て
冷凍庫(7)へ送り込まれる。又、高温側切換え装置(2)
の切換えによって、高温側第1反応容器(11)には空水冷
型熱交換器(6)が接続される。この状態で、低温側第1
反応容器(12)から放出されるガスは高温側第1反応容器
(11)へ送り込まれ、水素吸蔵合金MH1に吸収される
(→:冷熱発生モード)。ここで、水素吸蔵合金MH
1が水素を吸収することによって発生する熱は、空水冷
型熱交換器(6)から放熱される。
In the heat pump device (1), a heat collector
(4) is a heat source, an air-water-cooled heat exchanger (5) and an air-water-cooled heat exchanger (6) are radiating means, and a freezer (7) is a refrigeration load. →) is configured. For example, in the first heat pump P1, first,
By heating the hydrogen storage alloy MH1 in the high temperature side first reaction vessel (11), hydrogen is released (→), and the released hydrogen is sent to the low temperature side first reaction vessel (12), It is absorbed by the storage alloy MH2 (→: regeneration mode). Here, heat generated by the absorption of hydrogen by the hydrogen storage alloy MH2 is radiated from the air-water cooled heat exchanger (5). Next, the freezer (7) is connected to the low temperature side first reaction vessel (12) by the switching of the low temperature side switching device (3). In this state, in the low temperature side first reaction vessel (12), the hydrogen absorbed in the hydrogen storage alloy MH2 is released (→), whereby the hydrogen is supplied from the freezer (7) via the refrigerant return pipe (71). Is cooled, and the low-temperature refrigerant is sent to the freezer (7) via the refrigerant supply pipe (72). Also, high-temperature side switching device (2)
The air-water-cooled heat exchanger (6) is connected to the high-temperature-side first reaction vessel (11) by the switching. In this state, the low-temperature side first
The gas released from the reaction vessel (12) is the first reaction vessel on the high temperature side.
Sent to (11) and absorbed by the hydrogen storage alloy MH1
(→: cold heat generation mode). Here, the hydrogen storage alloy MH
The heat generated by the absorption of hydrogen by 1 is radiated from the air / water heat exchanger (6).

【0007】上述の冷凍サイクルを第1ヒートポンプP
1と第2ヒートポンプP2で180度の位相差をもって
行なわしめることにより、冷凍庫(7)には連続的に低温
の冷媒が供給され、冷凍庫(7)内は、例えば零下20℃
の低温に保たれるのである。
The above-described refrigeration cycle is connected to a first heat pump P
The first and second heat pumps P2 perform the operation with a phase difference of 180 degrees, so that a low-temperature refrigerant is continuously supplied to the freezer (7).
It is kept at a low temperature.

【0008】上記太陽熱駆動冷凍機においては、集熱器
(4)から蓄熱槽(9)を経て一定温度の熱媒がヒートポン
プ装置(1)へ供給されるので、高温側の反応容器(11)(1
3)から低温側の反応容器(12)(14)への水素ガスの移動は
一定時間(例えば約20分)で行なわれる。従って、各ヒ
ートポンプにおける再生モードと冷熱発生モードの切換
えは、タイマー設定等により、一定時間で行なうことが
出来る。
[0008] In the above solar powered refrigerator, the heat collector
Since the heat medium at a constant temperature is supplied from (4) through the heat storage tank (9) to the heat pump device (1), the reaction vessel (11) (1)
The transfer of the hydrogen gas from 3) to the reaction vessels (12) and (14) on the low temperature side is performed in a fixed time (for example, about 20 minutes). Therefore, switching between the regeneration mode and the cold heat generation mode in each heat pump can be performed in a fixed time by setting a timer or the like.

【0009】[0009]

【発明が解決しようとする課題】ところで、太陽熱駆動
冷凍機の冷凍効率は、集熱器(4)の集熱効率とヒートポ
ンプ装置(1)の熱効率の積に依存し、一般に、集熱器
(4)の集熱効率は温度上昇に伴って低下するのに対し、
ヒートポンプ装置(1)の熱効率は水素吸蔵合金の特性か
ら、温度上昇に伴って上昇し、集熱器(4)とヒートポン
プ装置(1)の効率は温度に関して逆の特性を示す。ここ
で、集熱器(4)が受ける日射量は季節や時刻によって異
なり、集熱器(4)から供給される熱媒の温度は変化す
る。従来は、この温度の変化を前述の如く3方弁(91)及
び蓄熱槽(9)によって一定にし、一定温度(約140℃)
の熱媒をヒートポンプ装置(1)へ供給していたのであ
る。
The refrigeration efficiency of a solar-powered refrigerator depends on the product of the heat collection efficiency of the heat collector (4) and the heat efficiency of the heat pump device (1).
The heat collection efficiency of (4) decreases with increasing temperature, whereas
The heat efficiency of the heat pump device (1) increases with the temperature due to the characteristics of the hydrogen storage alloy, and the efficiencies of the heat collector (4) and the heat pump device (1) show opposite characteristics with respect to temperature. Here, the amount of solar radiation received by the heat collector (4) varies depending on the season and time, and the temperature of the heat medium supplied from the heat collector (4) changes. Conventionally, this temperature change is made constant by the three-way valve (91) and the heat storage tank (9) as described above, and the temperature is kept constant (about 140 ° C.).
Was supplied to the heat pump device (1).

【0010】従って、特に日射量が増大する正午前後に
は、集熱器(4)から、例えば140℃を越える高温の熱
媒が得られるにも拘わらず、この温度を低下させてヒー
トポンプ装置(1)へ供給することとなっていたから、ヒ
ートポンプ装置(1)の熱効率が、本来得られるべき値よ
りも低くなり、結果として、太陽熱駆動冷凍機の冷凍効
率が低くなる問題があった。一方、日射量が少ない朝
は、140℃での集熱効率が低く、必要となる集熱量が
得られないため、結果として、太陽熱駆動冷凍機の冷凍
効率が低くなる問題があった。然も、従来の太陽熱駆動
冷凍機においは、集熱器(4)とヒートポンプ装置(1)の
間に介在する蓄熱槽(9)における熱損失が大きいため、
冷凍効率の改善に限界がある問題があった。
Therefore, in particular, after noon, when the amount of solar radiation increases, despite the fact that a high-temperature heat medium exceeding, for example, 140 ° C. is obtained from the heat collector (4), the temperature is lowered to reduce the heat pump device ( 1), the heat efficiency of the heat pump device (1) becomes lower than the value that should be originally obtained, and as a result, there is a problem that the refrigeration efficiency of the solar heat driven refrigerator becomes low. On the other hand, in the morning when the amount of solar radiation is small, the heat collection efficiency at 140 ° C. is low, and the required amount of heat collection cannot be obtained. Of course, in the conventional solar-powered refrigerator, the heat loss in the heat storage tank (9) interposed between the heat collector (4) and the heat pump device (1) is large.
There is a problem that the improvement of refrigeration efficiency is limited.

【0011】本発明の目的は、従来よりも高い冷凍効率
が得られる太陽熱駆動冷凍機を提供することである。
An object of the present invention is to provide a solar-driven refrigerator capable of obtaining a higher refrigeration efficiency than before.

【0012】[0012]

【課題を解決する為の手段】本発明に係る太陽熱駆動冷
凍機は、一対のヒートポンプP1、P2を併設して構成
され、各ヒートポンプは、水素平衡圧力の異なる2種類
の水素吸蔵合金を内蔵した高温側反応容器と低温側反応
容器を互いに連結してなり、高温側反応容器から低温側
反応容器へ水素ガスを流す再生モードと、低温側反応容
器から高温側反応容器へ水素ガスを流す冷熱発生モード
が設定されるべきヒートポンプ装置と、熱源から何れか
一方のヒートポンプの高温側反応容器へ選択的に高温の
熱媒を供給するための熱媒系統と、何れか一方のヒート
ポンプの低温側反応容器から選択的に冷凍負荷へ低温の
冷媒を供給するための冷媒系統と、再生モードに設定す
べきヒートポンプの高温側反応容器から低温側反応容器
へ流れる水素ガスの流量の積算値、若しくは、該積算値
に相当する物理量を計測する計測手段と、計測手段によ
る計測値が所定値に達したとき、前記熱媒系統及び冷媒
系統を制御して、各ヒートポンプを再生モードと冷熱発
生モードの間で切り換える制御手段とを具えている。
The solar powered refrigerator according to the present invention comprises a pair of heat pumps P1 and P2, each of which incorporates two kinds of hydrogen storage alloys having different hydrogen equilibrium pressures. A high-temperature reaction vessel and a low-temperature reaction vessel are connected to each other, and a regeneration mode in which hydrogen gas flows from the high-temperature reaction vessel to the low-temperature reaction vessel and a cold heat generation in which hydrogen gas flows from the low-temperature reaction vessel to the high-temperature reaction vessel A heat pump device whose mode is to be set, a heat medium system for selectively supplying a high-temperature heat medium from a heat source to a high-temperature reaction vessel of one of the heat pumps, and a low-temperature reaction vessel of any one of the heat pumps System for selectively supplying low-temperature refrigerant to the refrigeration load from the refrigeration load, and hydrogen gas flowing from the high-temperature side reaction vessel to the low-temperature side reaction vessel of the heat pump to be set to the regeneration mode Measuring means for measuring the integrated value of the flow rate, or a physical quantity corresponding to the integrated value, and when the value measured by the measuring means reaches a predetermined value, controls the heat medium system and the refrigerant system to regenerate each heat pump. Control means for switching between the mode and the cold heat generation mode.

【0013】具体的には、更に、両ヒートポンプの高温
側反応容器を交互に冷却するための高温側冷却系統と、
両ヒートポンプの低温側反応容器を交互に冷却するため
の低温側冷却系統とを具えている。
Specifically, a high-temperature side cooling system for alternately cooling the high-temperature side reaction vessels of both heat pumps;
A low-temperature side cooling system for alternately cooling the low-temperature side reaction vessels of both heat pumps is provided.

【0014】上記本発明の太陽熱駆動冷凍機において
は、従来の冷凍機に装備されていた蓄熱槽は省略され、
或いは従来よりも小容量の蓄熱槽が配備される。従っ
て、熱源から供給される熱媒は、日射量に応じて温度が
変化する状態で、ヒートポンプ装置の一方のヒートポン
プへ供給されることになる。これによって、該ヒートポ
ンプの高温側反応容器が加熱され、該容器内の水素吸蔵
合金から水素ガスが放出される。この水素ガスは、高温
側反応容器から低温側反応容器へ送りこまれ、低温側反
応容器内の水素吸蔵合金に吸収される(再生モード)。
In the above-described solar-powered refrigerator of the present invention, the heat storage tank provided in the conventional refrigerator is omitted,
Alternatively, a heat storage tank having a smaller capacity than before is provided. Therefore, the heat medium supplied from the heat source is supplied to one heat pump of the heat pump device in a state where the temperature changes in accordance with the amount of solar radiation. As a result, the high-temperature side reaction vessel of the heat pump is heated, and hydrogen gas is released from the hydrogen storage alloy in the vessel. This hydrogen gas is sent from the high-temperature side reaction vessel to the low-temperature side reaction vessel, and is absorbed by the hydrogen storage alloy in the low-temperature side reaction vessel (regeneration mode).

【0015】この過程で、高温側反応容器から低温側反
応容器へ移動する水素ガスの流量(単位時間当り)の積算
値、若しくは、該積算値に相当する物理量が計測され、
該計測値が所定値と比較される。ここで、所定値として
は、所定の冷凍サイクル(図6)における再生プロセス
(→)で移動すべき水素ガスの総量、若しくは該総量
に相当する物理量に設定されている。従って、前記計測
値が該所定値に達したとき、再生プロセスに必要な水素
ガスが高温側反応容器から低温側反応容器へ移動したこ
とになる。そこで、この時点で、該ヒートポンプを再生
モードから冷熱発生モードへ切り換えるのである。
In this process, the integrated value of the flow rate (per unit time) of the hydrogen gas moving from the high-temperature side reaction vessel to the low-temperature side reaction vessel, or a physical quantity corresponding to the integrated value is measured.
The measured value is compared with a predetermined value. Here, the predetermined value is a regeneration process in a predetermined refrigeration cycle (FIG. 6).
The total amount of hydrogen gas to be moved is set by (→) or a physical amount corresponding to the total amount. Therefore, when the measured value reaches the predetermined value, it means that the hydrogen gas required for the regeneration process has moved from the high-temperature side reaction vessel to the low-temperature side reaction vessel. Therefore, at this point, the heat pump is switched from the regeneration mode to the cold heat generation mode.

【0016】この結果、該ヒートポンプの低温側反応容
器から水素が放出し、これに伴って低温側反応容器の温
度が低下し、冷凍負荷へ低温の冷媒が供給される。低温
側反応容器から放出される水素ガスは高温側反応容器へ
送り込まれ、水素吸蔵合金に吸収されることになる(
→)。
As a result, hydrogen is released from the low-temperature side reaction vessel of the heat pump, whereby the temperature of the low-temperature side reaction vessel decreases, and a low-temperature refrigerant is supplied to the refrigeration load. Hydrogen gas released from the low-temperature side reaction vessel is sent to the high-temperature side reaction vessel and absorbed by the hydrogen storage alloy (
→).

【0017】斯くして所定の冷凍サイクル(図6〜)
が構成され、該冷凍サイクルを第1ヒートポンプP1と
第2ヒートポンプP2で180度の位相差をもって繰り
返し行なわしめることにより、冷凍負荷には連続的に低
温の冷媒が供給され、冷凍負荷の温度は低温に保たれ
る。
Thus, a predetermined refrigeration cycle (FIG. 6)
The refrigeration cycle is repeatedly performed with a phase difference of 180 degrees between the first heat pump P1 and the second heat pump P2, so that a low-temperature refrigerant is continuously supplied to the refrigeration load, and the temperature of the refrigeration load is low. Is kept.

【0018】上記太陽熱駆動冷凍機においては、熱源か
らの熱媒が日射量によって温度変化する状態でヒートポ
ンプ装置へ供給されるので、高温側の反応容器から低温
側の反応容器へ所定量の水素ガスが移動するのに要する
時間は、その日の日射量によって異なり、この結果、各
ヒートポンプにおける再生モードと冷熱発生モードの切
換え時間も変化する。
In the above-described solar-powered refrigerator, since the heat medium from the heat source is supplied to the heat pump device in a state where the temperature changes according to the amount of solar radiation, a predetermined amount of hydrogen gas is supplied from the high-temperature side reaction vessel to the low-temperature side reaction vessel. The time required for the movement of the heat pump varies depending on the amount of solar radiation on that day, and as a result, the switching time between the regeneration mode and the cold heat generation mode in each heat pump also changes.

【0019】尚、再生モードにおける水素移動量は、再
生モードに設定すべきヒートポンプの高温側反応容器か
ら低温側反応容器へ水素ガスが移動を開始した後におけ
る、該高温側反応容器へ供給される熱媒と該高温側反応
容器から排出される熱媒の温度差の積算値に比例するの
で、該温度差の積算値を前記物理量として採用すること
が出来る。
The hydrogen transfer amount in the regeneration mode is supplied to the high-temperature side reaction vessel after the hydrogen gas starts to move from the high-temperature side reaction vessel to the low-temperature side reaction vessel of the heat pump to be set in the regeneration mode. Since it is proportional to the integrated value of the temperature difference between the heat medium and the heat medium discharged from the high-temperature side reaction vessel, the integrated value of the temperature difference can be used as the physical quantity.

【0020】又、再生モードにおける水素移動量は、再
生モードに設定すべきヒートポンプの低温側反応容器か
ら低温側冷却手段へ戻る冷媒と低温側冷却手段から低温
側反応容器へ供給される冷媒の温度差の積算値に比例す
るので、該温度差の積算値を前記物理量として採用する
ことも可能である。
The amount of hydrogen transfer in the regeneration mode depends on the temperature of the refrigerant returning from the low-temperature side reaction vessel to the low-temperature side cooling means and the temperature of the refrigerant supplied from the low-temperature side cooling means to the low-temperature side reaction vessel to be set in the regeneration mode. Since it is proportional to the integrated value of the difference, the integrated value of the temperature difference can be adopted as the physical quantity.

【0021】[0021]

【発明の効果】本発明に係る太陽熱駆動冷凍機において
は、熱源から供給される熱媒の温度を低下させることな
く、ヒートポンプ装置へ供給する構成が採用されている
ので、従来の蓄熱槽は省略し、或いは従来よりも小容量
の蓄熱槽を装備することが出来る。従って、蓄熱槽にお
ける熱損失の問題が解消されるばかりでなく、日射量に
応じた高温の熱媒をヒートポンプ装置へ供給することが
出来るので、これによって、ヒートポンプ装置の熱効率
が上昇し、従来よりも高い冷凍効率が得られる。
As described above, the solar heat driven refrigerator according to the present invention employs a configuration in which the temperature of the heat medium supplied from the heat source is supplied to the heat pump device without lowering the temperature thereof. Therefore, the conventional heat storage tank is omitted. Alternatively, a heat storage tank having a smaller capacity than before can be provided. Therefore, not only the problem of heat loss in the heat storage tank is solved, but also a high-temperature heat medium according to the amount of solar radiation can be supplied to the heat pump device, thereby increasing the heat efficiency of the heat pump device, High refrigeration efficiency can be obtained.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につ
き、図面に沿って具体的に説明する。第1実施例 本実施例の太陽熱駆動冷凍機においては、図1に示す如
く、ヒートポンプ装置(1)に、高温側切換え装置(2)を
介して集熱器(4)と空水冷型熱交換器(6)とが切り換え
可能に接続されると共に、低温側切換え装置(3)を介し
て空水冷型熱交換器(5)と冷凍庫(7)とが切り換え可能
に接続され、集熱器(4)と高温側切換え装置(2)とは直
接に接続されている。尚、集熱器(4)と高温側切換え装
置(2)の間には、必要に応じて、従来と同様の3方弁
と、従来よりも小容量の蓄熱槽を接続することが出来
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. First Embodiment In the solar-powered refrigerator of this embodiment, as shown in FIG. 1, a heat pump device (1) is connected to a heat collector (4) via a high-temperature side switching device (2) with an air / water cooling type heat exchanger. The air-water-cooled heat exchanger (5) and the freezer (7) are switchably connected to the heat collector (6) via a low-temperature side switching device (3). 4) and the high temperature side switching device (2) are directly connected. If necessary, a three-way valve similar to the conventional one and a heat storage tank having a smaller capacity than the conventional one can be connected between the heat collector (4) and the high-temperature side switching device (2).

【0023】ヒートポンプ装置(1)は、第1ヒートポン
プP1及び第2ヒートポンプP2を併設して構成されて
いる。第1ヒートポンプP1は、水素平衡圧力の低い水
素吸蔵合金MH1を内蔵した高温側第1反応容器(11)と
水素平衡圧力の高い水素吸蔵合金MH2を内蔵した低温
側第1反応容器(12)とを連結管(17)を介して連結してな
り、連結管(17)にはバルブ(15)と流量計(81)とが介在し
ている。又、第2ヒートポンプP2は、水素平衡圧力の
低い水素吸蔵合金MH1を内蔵した高温側第2反応容器
(13)と水素平衡圧力の高い水素吸蔵合金MH2を内蔵し
た低温側第2反応容器(14)とを連結管(18)を介して連結
してなり、連結管(18)にはバルブ(16)と流量計(82)とが
介在している。
The heat pump device (1) includes a first heat pump P1 and a second heat pump P2. The first heat pump P1 includes a high-temperature first reaction vessel (11) containing a hydrogen storage alloy MH1 having a low hydrogen equilibrium pressure and a low-temperature first reaction vessel (12) containing a hydrogen storage alloy MH2 having a high hydrogen equilibrium pressure. Are connected via a connecting pipe (17), and a valve (15) and a flow meter (81) are interposed in the connecting pipe (17). The second heat pump P2 is a high-temperature side second reaction vessel containing a hydrogen storage alloy MH1 having a low hydrogen equilibrium pressure.
(13) and a low-temperature side second reaction vessel (14) containing a hydrogen storage alloy MH2 having a high hydrogen equilibrium pressure are connected via a connecting pipe (18), and a valve (16) is connected to the connecting pipe (18). ) And the flow meter (82) are interposed.

【0024】高温側切換え装置(2)は、蓄熱槽(9)から
伸びる熱媒供給管(41)及び熱媒戻り管(42)を高温側第1
反応容器(11)と高温側第2反応容器(13)の何れか一方に
接続すると共に、空水冷型熱交換器(6)から伸びる冷媒
供給管(61)及び冷媒戻り管(62)を他方の反応容器に接続
するための配管系と、該配管系に介在する複数の3方弁
とから構成される。又、低温側切換え装置(3)は、空水
冷型熱交換器(5)から伸びる冷媒供給管(51)及び冷媒戻
り管(52)を低温側第1反応容器(12)と低温側第2反応容
器(14)の何れか一方に接続すると共に、冷凍庫(7)から
伸びる冷媒戻り管(71)及び冷媒供給管(72)を他方の反応
容器に接続するための配管系と、該配管系に介在する複
数の4方弁とから構成される。
The high-temperature side switching device (2) includes a heat medium supply pipe (41) and a heat medium return pipe (42) extending from the heat storage tank (9), which are connected to the first high temperature side.
The refrigerant supply pipe (61) and the refrigerant return pipe (62), which are connected to one of the reaction vessel (11) and the high-temperature side second reaction vessel (13) and extend from the air / water heat exchanger (6), are connected to the other. And a plurality of three-way valves interposed in the piping system. The low temperature side switching device (3) comprises a refrigerant supply pipe (51) and a refrigerant return pipe (52) extending from the air / water heat exchanger (5) and a low temperature side first reaction vessel (12) and a low temperature side second reaction vessel. A piping system for connecting to one of the reaction vessels (14) and connecting a refrigerant return pipe (71) and a refrigerant supply pipe (72) extending from the freezer (7) to the other reaction vessel; And a plurality of four-way valves interposed therebetween.

【0025】集熱器(4)は、ヒートパイプ構造を有する
複数本の集熱管を併設して構成され、約140℃の高温
水(熱媒)の供給が可能である。集熱器(4)から伸びる熱
媒供給管(41)及び熱媒戻り管(42)は直接に高温側切換え
装置(2)と接続されており、日射量の変化に応じて、例
えば100℃〜160℃の熱媒が、集熱器(4)から高温
側切換え装置(2)を経てヒートポンプ装置(1)へ供給さ
れる。尚、熱媒供給管(41)内の熱媒は、所定圧力の窒素
ガスN2によって加圧されている。
The heat collector (4) is provided with a plurality of heat collector tubes having a heat pipe structure, and can supply high-temperature water (heat medium) at about 140 ° C. The heat medium supply pipe (41) and the heat medium return pipe (42) extending from the heat collector (4) are directly connected to the high-temperature side switching device (2). A heat medium of ~ 160 ° C is supplied from the heat collector (4) to the heat pump device (1) via the high temperature side switching device (2). Incidentally, the heating medium in the heat medium supply pipe (41) is pressurized by nitrogen gas N 2 with a predetermined pressure.

【0026】ヒートポンプ装置(1)が構成する冷凍サイ
クル(図6に示す→→→→)は従来と同じであ
るが、本実施例においては、高温側切換え装置(2)、低
温側切換え装置(3)及びヒートポンプ装置(1)のバルブ
(15)(16)の切り換えが、流量計(81)(82)によって計測さ
れる単位時間当りの水素ガス流量の積算値に基づいて制
御され、これによって、再生モードから冷熱発生モード
への切り換えが行なわれる。
The refrigeration cycle (→→→→ shown in FIG. 6) constituted by the heat pump device (1) is the same as the conventional one, but in this embodiment, the high-temperature side switching device (2) and the low-temperature side switching device ( 3) and valve of heat pump device (1)
(15) The switching of (16) is controlled based on the integrated value of the hydrogen gas flow rate per unit time measured by the flow meters (81) and (82), whereby the switching from the regeneration mode to the cold heat generation mode is performed. Is performed.

【0027】即ち、第1ヒートポンプP1の流量計(81)
の計測データQ1と、第2ヒートポンプP2の流量計(8
2)の計測データQ2が、マイクロコンピュータからなる
制御回路(8)へ供給され、これらの計測データが夫々積
算される。そして、該積算値が所定値を越えたとき、高
温側切換え装置(2)、低温側切換え装置(3)及びヒート
ポンプ装置(1)のバルブ(15)(16)を切り換えて、再生モ
ードのヒートポンプは冷熱発生モードへ、そして、冷熱
発生モードのヒートポンプは再生モードへ切り換えるの
である。
That is, the flow meter (81) of the first heat pump P1
Measurement data Q1 and the flow meter (8
The measurement data Q2 of 2) is supplied to a control circuit (8) including a microcomputer, and these measurement data are integrated. When the integrated value exceeds a predetermined value, the valves (15) and (16) of the high-temperature side switching device (2), the low-temperature side switching device (3) and the heat pump device (1) are switched, and the heat pump in the regeneration mode is switched. Is switched to the cold heat generation mode, and the heat pump in the cold heat generation mode is switched to the regeneration mode.

【0028】初期状態では、高温側切換え装置(2)の切
換え設定によって、ヒートポンプ装置(1)の高温側第1
反応容器(11)に集熱器(4)が接続されると共に、高温側
第2反応容器(13)に空水冷型熱交換器(6)が接続される
一方、低温側切換え装置(3)の切換え設定によって、ヒ
ートポンプ装置(1)の低温側第1反応容器(12)に空水冷
型熱交換器(5)が接続されると共に、低温側第2反応容
器(14)に冷凍庫(7)が接続されている。
In the initial state, the high-temperature first switch of the heat pump device (1) is set by the switching setting of the high-temperature switch device (2).
A heat collector (4) is connected to the reaction vessel (11), and an air-water-cooled heat exchanger (6) is connected to the high-temperature second reaction vessel (13), while the low-temperature side switching device (3) is connected. The air-water-cooled heat exchanger (5) is connected to the low-temperature first reaction vessel (12) of the heat pump device (1), and the freezer (7) is connected to the low-temperature second reaction vessel (14). Is connected.

【0029】この状態で、第1ヒートポンプP1の高温
側第1反応容器(11)内の水素吸蔵合金MH1が加熱され
ることによって、水素が放出し(→)、放出された水
素は低温側第1反応容器(12)へ送り込まれて、水素吸蔵
合金MH2に吸収される(→)。ここで、水素吸蔵合
金MH2が水素を吸収することによって発生する熱は、
空水冷型熱交換器(5)から放熱される。そして、高温側
第1反応容器(11)から低温側第1反応容器(12)へ移動す
る水素ガスの流量の積算値が所定値を越えたとき、制御
回路(8)から高温側切換え装置(2)及び低温側切換え装
置(3)へ供給される制御信号C1、C2によって、これ
らの装置(2)(3)が切り換えられ、高温側第1反応容器
(11)には空水冷型熱交換器(6)が接続されると共に、高
温側第2反応容器(13)には集熱器(4)が接続される一
方、低温側第1反応容器(12)には冷凍庫(7)が接続され
ると共に、低温側第2反応容器(14)には空水冷型熱交換
器(5)が接続される。尚、ヒートポンプ装置(1)のバル
ブ(15)(16)は、高温側切換え装置(2)及び低温側切換え
装置(3)の切換え時に、制御回路(8)から供給される制
御信号C3によって、一時的に閉じられる。
In this state, the hydrogen storage alloy MH1 in the first reaction vessel (11) on the high temperature side of the first heat pump P1 is heated to release hydrogen (→), and the released hydrogen is reduced to the low temperature side. 1 It is sent to the reaction vessel (12) and absorbed by the hydrogen storage alloy MH2 (→). Here, the heat generated by the hydrogen storage alloy MH2 absorbing hydrogen is:
The heat is radiated from the air-water cooled heat exchanger (5). When the integrated value of the flow rate of the hydrogen gas moving from the high temperature side first reaction vessel (11) to the low temperature side first reaction vessel (12) exceeds a predetermined value, the control circuit (8) sends a high temperature side switching device ( These devices (2) and (3) are switched by control signals C1 and C2 supplied to 2) and the low-temperature side switching device (3), and the high-temperature side first reaction vessel
An air-water-cooled heat exchanger (6) is connected to (11), and a heat collector (4) is connected to the high-temperature second reaction vessel (13), while a low-temperature first reaction vessel (13) is connected. A freezer (7) is connected to 12), and an air / water heat exchanger (5) is connected to the low-temperature second reaction vessel (14). The valves (15) and (16) of the heat pump device (1) are controlled by the control signal C3 supplied from the control circuit (8) when the high-temperature switching device (2) and the low-temperature switching device (3) are switched. Closed temporarily.

【0030】この状態で、低温側第1反応容器(12)で
は、水素吸蔵合金MH2に吸収されている水素が放出し
(→)、これによって、冷凍庫(7)から冷媒戻り管(7
1)を経て供給される冷媒が冷却され、低温の冷媒が冷媒
供給管(72)を経て冷凍庫(7)へ送り込まれる。又、低温
側第1反応容器(12)から放出される水素ガスは高温側第
1反応容器(11)へ送り込まれ、水素吸蔵合金MH1に吸
収される(→)。ここで、水素吸蔵合金MH1が水素
を吸収することによって発生する熱は、空水冷型熱交換
器(6)から放熱される。
In this state, in the low temperature side first reaction vessel (12), the hydrogen absorbed in the hydrogen storage alloy MH2 is released.
(→), whereby the refrigerant return pipe (7
The refrigerant supplied via 1) is cooled, and the low-temperature refrigerant is sent to the freezer (7) via the refrigerant supply pipe (72). The hydrogen gas released from the low-temperature side first reaction vessel (12) is sent to the high-temperature side first reaction vessel (11) and is absorbed by the hydrogen storage alloy MH1 (→). Here, heat generated by the absorption of hydrogen by the hydrogen storage alloy MH1 is radiated from the air / water cooled heat exchanger (6).

【0031】上述の冷凍サイクルを第1ヒートポンプP
1と第2ヒートポンプP2で位相を180度ずらして繰
り返し行なわしめることにより、冷凍庫(7)には連続的
に低温の冷媒が供給され、冷凍庫(7)内は、例えば零下
20℃の低温に保たれるのである
The above refrigeration cycle is connected to the first heat pump P
The first and second heat pumps P2 are repeatedly operated with the phase shifted by 180 degrees, so that a low-temperature refrigerant is continuously supplied to the freezer (7), and the inside of the freezer (7) is maintained at a low temperature of, for example, 20 ° C below zero. It saps

【0032】図4は、制御回路(8)が実行する制御手続
きを表わしている。先ずステップS1にて、高温側切換
え装置(2)及び低温側切換え装置(3)の系統を初期設定
し、ステップS2では、水素流量の積算値Fを0に設定
する。次に、ステップS3にて、流量計から水素流量の
計測データQを取り込み、ステップS4にて、水素流量
の積算値Fに計測データQを加算して、水素流量を積算
する。続いて、ステップS5では、水素流量の積算値F
が所定値Fsを越えたかどうかを判断し、ノーの場合は
ステップS3〜S5を繰り返す。そして、ステップS5
にてイエスと判断されたときは、ステップS6に移行し
て、高温側切換え装置(2)及び低温側切換え装置(3)の
系統を切り換え、ステップS2に戻る。尚、前記所定値
Fsとしては、図6に示す冷凍サイクルにおける再生プ
ロセス(→)で移動すべき水素ガスの総量が設定され
ている。上記手続きによって、図6の冷凍サイクルが繰
り返し実行されることになる。
FIG. 4 shows a control procedure executed by the control circuit (8). First, in step S1, the system of the high-temperature side switching device (2) and the low-temperature side switching device (3) is initialized, and in step S2, the integrated value F of the hydrogen flow rate is set to zero. Next, in step S3, the measurement data Q of the hydrogen flow rate is fetched from the flow meter, and in step S4, the measurement data Q is added to the integrated value F of the hydrogen flow rate to integrate the hydrogen flow rate. Subsequently, in step S5, the integrated value F of the hydrogen flow rate is obtained.
Is greater than a predetermined value Fs, and if NO, steps S3 to S5 are repeated. Then, step S5
If the answer is yes in step S6, the process proceeds to step S6, where the system of the high-temperature switching device (2) and the low-temperature switching device (3) is switched, and the process returns to step S2. As the predetermined value Fs, the total amount of hydrogen gas to be moved in the regeneration process (→) in the refrigeration cycle shown in FIG. 6 is set. By the above procedure, the refrigeration cycle of FIG. 6 is repeatedly executed.

【0033】第2実施例 本実施例は、上記第1実施例における水素流量の積算値
に代えて、図2に示す如く集熱器(4)からヒートポンプ
装置(1)へ伸びる熱媒供給管(41)及び熱媒戻り管(42)を
流れる熱媒の温度差を積算するものであって、熱媒供給
管(41)及び熱媒戻り管(42)に取り付けた温度計(83)(84)
の計測データT1、T2を制御回路(8)へ供給してい
る。
Second Embodiment In this embodiment, a heat medium supply pipe extending from the heat collector (4) to the heat pump device (1) as shown in FIG. 2 is used instead of the integrated value of the hydrogen flow rate in the first embodiment. (41) and a thermometer (83) attached to the heat medium supply pipe (41) and the heat medium return pipe (42) for integrating the temperature difference between the heat medium flowing through the heat medium return pipe (42) ( 84)
Are supplied to the control circuit (8).

【0034】制御回路(8)は、再生モードに設定すべき
ヒートポンプの再生プロセス(水素ガスの移動)が開始し
た後、温度計(83)(84)からの計測データT1、T2を取
り込んで、両計測データの差を積算する。そして、該積
算値が所定値を越えたとき、高温側切換え装置(2)、低
温側切換え装置(3)及びバルブ(15)(16)を切り換えて、
再生モードのヒートポンプは冷熱発生モードへ、そし
て、冷熱発生モードのヒートポンプは再生モードへ切り
換えるのである。尚、上記所定値としては、図6に示す
冷凍サイクルにおける再生プロセス(→)で所定量の
水素ガスが移動することによって生じる温度差の積算値
が、予め設定されている。又、再生モードに設定すべき
ヒートポンプの再生プロセスが開始する時点は、例え
ば、該ヒートポンプの高温側の反応容器内の水素吸蔵合
金MH1が水素の放出を開始する温度(例えば120℃)
に達した時点として検知することが出来る。
After the heat pump regeneration process (movement of hydrogen gas) to be set to the regeneration mode is started, the control circuit (8) takes in the measurement data T1 and T2 from the thermometers (83) and (84), The difference between the two measurement data is integrated. When the integrated value exceeds a predetermined value, the high temperature side switching device (2), the low temperature side switching device (3) and the valves (15) and (16) are switched,
The heat pump in the regeneration mode switches to the cold heat generation mode, and the heat pump in the cold heat generation mode switches to the regeneration mode. Note that, as the predetermined value, an integrated value of a temperature difference generated by moving a predetermined amount of hydrogen gas in the regeneration process (→) in the refrigeration cycle shown in FIG. 6 is set in advance. The time at which the regeneration process of the heat pump to be set to the regeneration mode starts is, for example, the temperature (eg, 120 ° C.) at which the hydrogen storage alloy MH1 in the reaction vessel on the high temperature side of the heat pump starts releasing hydrogen.
Can be detected as having reached

【0035】本実施例によれば、上記計測データの差の
積算値が水素流量の積算値に比例するので、第1実施例
と略同じ時点でモード切換えを行なうことが出来る。
According to this embodiment, since the integrated value of the difference between the measured data is proportional to the integrated value of the hydrogen flow rate, the mode can be switched at substantially the same time as in the first embodiment.

【0036】第3実施例 本実施例は、上記第1実施例における水素流量の積算値
に代えて、図3に示す如くヒートポンプ装置(1)から空
水冷型熱交換器(5)へ伸びる冷媒供給管(51)及び冷媒戻
り管(52)を流れる熱媒の温度差を積算するものであっ
て、冷媒供給管(51)及び冷媒戻り管(52)に取り付けた温
度計(85)(86)の計測データT3、T4を制御回路(8)へ
供給している。
Third Embodiment In this embodiment, instead of the integrated value of the hydrogen flow rate in the first embodiment, the refrigerant extending from the heat pump device (1) to the air-water cooled heat exchanger (5) as shown in FIG. It integrates the temperature difference between the heat medium flowing through the supply pipe (51) and the refrigerant return pipe (52), and is a thermometer (85) (86) attached to the refrigerant supply pipe (51) and the refrigerant return pipe (52). ) Are supplied to the control circuit (8).

【0037】制御回路(8)は、高温側切換え装置(2)及
び低温側切換え装置(3)の系統が切り換えられた直後か
ら、温度計(85)(86)からの計測データT3、T4を取り
込んで、両計測データの差を積算する。そして、該積算
値が所定値を越えたとき、高温側切換え装置(2)、低温
側切換え装置(3)及びバルブ(15)(16)を切り換えて、再
生モードのヒートポンプは冷熱発生モードへ、そして、
冷熱発生モードのヒートポンプは再生モードへ切り換え
るのである。尚、上記所定値としては、図6に示す冷凍
サイクルにおける再生プロセス(→)で所定量の水素
ガスが移動することによって得られるべき温度差の積算
値が、予め設定されている。
Immediately after the system of the high-temperature side switching device (2) and the low-temperature side switching device (3) are switched, the control circuit (8) reads the measurement data T3 and T4 from the thermometers (85) and (86). Then, the difference between the two measurement data is integrated. Then, when the integrated value exceeds a predetermined value, the high-temperature side switching device (2), the low-temperature side switching device (3) and the valves (15) and (16) are switched, and the heat pump in the regeneration mode switches to the cold heat generation mode. And
The heat pump in the cold heat generation mode switches to the regeneration mode. Note that, as the predetermined value, an integrated value of a temperature difference to be obtained by moving a predetermined amount of hydrogen gas in the regeneration process (→) in the refrigeration cycle shown in FIG. 6 is set in advance.

【0038】本実施例においては、上記計測データの差
の積算値が水素流量の積算値に比例するので、第1実施
例と略同じ時点でモード切換えを行なうことが出来る。
In this embodiment, since the integrated value of the difference between the measurement data is proportional to the integrated value of the hydrogen flow rate, the mode can be switched at substantially the same time as in the first embodiment.

【0039】図5は、上記本発明(第1実施例)の太陽熱
駆動冷凍機の効果を実証するために行なった計算機シミ
ュレーションの結果を表わしている。同図(a)は7月に
おける1日の日射量Ijの変化と、従来の太陽熱駆動冷
凍機(熱媒供給温度=140℃一定)の冷凍出力Rj′の
変化と、本発明の太陽熱駆動冷凍機の冷凍出力Rjの変
化を表わしている。又、同図(b)は4月における1日の
日射量Iaの変化と、従来の太陽熱駆動冷凍機(熱媒供給
温度=130℃一定)の冷凍出力Ra′の変化と、本発明
の太陽熱駆動冷凍機の冷凍出力Raの変化を表わしてい
る。
FIG. 5 shows the results of a computer simulation performed to verify the effect of the solar-powered refrigerator of the present invention (first embodiment). FIG. 7A shows the change in the daily solar radiation Ij in July, the change in the refrigeration output Rj 'of the conventional solar-driven refrigerator (heating medium supply temperature = 140 ° C. constant), and the solar-driven refrigeration of the present invention. Represents the change in the refrigeration output Rj of the machine. FIG. 4B shows the change in the daily solar radiation Ia in April, the change in the refrigeration output Ra 'of the conventional solar-driven refrigerator (heating medium supply temperature = 130 ° C. constant), and the solar heat of the present invention. It shows the change in the refrigeration output Ra of the drive refrigerator.

【0040】図5から明らかな様に、本発明の太陽熱駆
動冷凍機においては、日射量の変化に応じた冷凍出力が
得られているのに対し、従来の太陽熱駆動冷凍機では、
特に正午前後の大きな日射量によって得られる熱媒の温
度が有効に利用されず、冷凍出力が本発明で得られる冷
凍出力よりも低くなっている。又、本発明の太陽熱駆動
冷凍機では、7月には10時から、4月には11時から
出力が得られているのに対し、従来の太陽熱駆動冷凍機
では、7月及び4月のいずれにおいても12時までは出
力が得られていない。この結果、1日の総量として、本
発明の太陽熱駆動冷凍機によって得られる出力量は、従
来の太陽熱駆動冷凍機で得られる出力量よりも大きくな
る。
As is clear from FIG. 5, in the solar-powered refrigerator of the present invention, a refrigeration output according to a change in the amount of solar radiation is obtained, whereas in the conventional solar-powered refrigerator,
In particular, the temperature of the heat medium obtained by a large amount of solar radiation after noon is not effectively used, and the refrigeration output is lower than the refrigeration output obtained by the present invention. In the solar-powered refrigerator of the present invention, output is obtained from 10:00 in July and from 11:00 in April, whereas in the conventional solar-powered refrigerator, the output is obtained in July and April. In any case, no output was obtained until 12:00. As a result, the amount of power obtained by the solar-powered refrigerator of the present invention as a total amount per day is larger than the amount of output obtained by the conventional solar-powered refrigerator.

【0041】これは、本発明の太陽熱駆動冷凍機におい
ては、日射量の変化に応じた温度の熱媒によって、特に
大きな日射量が得られる正午前後には140℃を越える
高温の熱媒によって、ヒートポンプ装置(1)を加熱して
いるので、ヒートポンプ装置(1)の1日平均としての熱
効率が従来よりも向上するからである。更に、日射量の
少ない朝夕においても、140℃以下の集熱を行なうこ
とによって、必要となる集熱量が得られるためである。
又、本発明の太陽熱駆動冷凍機においては、従来は集熱
器(4)とヒートポンプ装置(1)の間に介在していた蓄熱
槽が省略されているため、該蓄熱槽における熱損失がな
くなり、これによって冷凍効率が改善されたものであ
る。尚、第2実施例や第3実施例の太陽熱駆動冷凍機に
おいても同様の効果が得られることは明らかである。
This is because, in the solar-powered refrigerator of the present invention, the heat medium having a temperature corresponding to the change in the amount of solar radiation, particularly a high-temperature heat medium exceeding 140 ° C. after noon when a large amount of solar radiation is obtained. This is because the heat pump device (1) is heated, so that the heat efficiency of the heat pump device (1) as a daily average is improved as compared with the conventional case. Furthermore, even in the morning and evening when the amount of solar radiation is small, by performing heat collection at 140 ° C. or less, a necessary amount of heat collection can be obtained.
Further, in the solar heat driven refrigerator of the present invention, since the heat storage tank conventionally interposed between the heat collector (4) and the heat pump device (1) is omitted, heat loss in the heat storage tank is eliminated. Thus, the refrigeration efficiency is improved. It is clear that the same effect can be obtained in the solar-powered refrigerators of the second and third embodiments.

【0042】本発明の各部構成は上記実施の形態に限ら
ず、特許請求の範囲に記載の技術的範囲内で種々の変形
が可能である。例えば、高温側反応容器から低温側反応
容器へ流れる水素ガスの流量の積算値に相当する物理量
としては、第2実施例や第3実施例で採用されている温
度差の積算値に限らず、再生プロセスのヒートポンプに
おける高温側反応容器と低温側反応容器の圧力差の積算
値を採用することも可能である。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, the physical quantity corresponding to the integrated value of the flow rate of the hydrogen gas flowing from the high-temperature side reaction vessel to the low-temperature side reaction vessel is not limited to the integrated value of the temperature difference employed in the second and third embodiments. It is also possible to adopt the integrated value of the pressure difference between the high-temperature side reaction vessel and the low-temperature side reaction vessel in the heat pump of the regeneration process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例の太陽熱駆動冷凍機の構成を表わす
系統図である。
FIG. 1 is a system diagram illustrating a configuration of a solar heat refrigerator according to a first embodiment.

【図2】第2実施例の太陽熱駆動冷凍機の構成を表わす
系統図である。
FIG. 2 is a system diagram illustrating a configuration of a solar-powered refrigerator according to a second embodiment.

【図3】第3実施例の太陽熱駆動冷凍機の構成を表わす
系統図である。
FIG. 3 is a system diagram illustrating a configuration of a solar-driven refrigerator according to a third embodiment.

【図4】第1実施例における制御回路の制御手続きを表
わすフローチャートである。
FIG. 4 is a flowchart illustrating a control procedure of a control circuit in the first embodiment.

【図5】本発明の効果を実証するために行なった計算機
シミュレーションの結果を表わすグラフである。
FIG. 5 is a graph showing the results of a computer simulation performed to demonstrate the effect of the present invention.

【図6】ヒートポンプの冷凍サイクルを表わす図であ
る。
FIG. 6 is a diagram illustrating a refrigeration cycle of a heat pump.

【図7】従来の太陽熱駆動冷凍機の構成を表わす系統図
である。
FIG. 7 is a system diagram showing a configuration of a conventional solar-powered refrigerator.

【符号の説明】[Explanation of symbols]

(1) ヒートポンプ装置 P1 ヒートポンプ P2 ヒートポンプ (2) 高温側切換え装置 (3) 低温側切換え装置 (4) 集熱器 (5) 空水冷型熱交換器 (6) 空水冷型熱交換器 (7) 冷凍庫 (8) 制御回路 (81) 流量計 (82) 流量計 (83) 温度計 (84) 温度計 (85) 温度計 (86) 温度計 (1) Heat pump device P1 Heat pump P2 Heat pump (2) High-temperature switching device (3) Low-temperature switching device (4) Collector (5) Air / water cooling type heat exchanger (6) Air / water cooling type heat exchanger (7) Freezer (8) Control circuit (81) Flow meter (82) Flow meter (83) Thermometer (84) Thermometer (85) Thermometer (86) Thermometer

【手続補正書】[Procedure amendment]

【提出日】平成11年2月19日[Submission date] February 19, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】高温側切換え装置(2)は、蓄熱槽(9)から
伸びる熱媒供給管(41)及び熱媒戻り管(42)を高温側第1
反応容器(11)と高温側第2反応容器(13)の何れか一方に
接続すると共に、空水冷型熱交換器(6)から伸びる熱媒
供給管(61)及び熱媒戻り管(62)を他方の反応容器に接続
するための配管系と、該配管系に介在する複数の3方弁
とから構成される。又、低温側切換え装置(3)は、空水
冷型熱交換器(5)から伸びる冷媒供給管(51)及び冷媒戻
り管(52)を低温側第1反応容器(12)と低温側第2反応容
器(14)の何れか一方に接続すると共に、冷凍庫(7)から
伸びる冷媒戻り管(71)及び冷媒供給管(72)を他方の反応
容器に接続するための配管系と、該配管系に介在する複
数の4方弁とから構成される。
[0004] The high temperature side switching device (2) comprises a heat medium supply pipe (41) and a heat medium return pipe (42) extending from the heat storage tank (9).
A heat medium connected to one of the reaction vessel (11) and the high-temperature side second reaction vessel (13) and extending from the air / water heat exchanger (6).
It comprises a piping system for connecting the supply pipe (61) and the heat medium return pipe (62) to the other reaction vessel, and a plurality of three-way valves interposed in the piping system. The low temperature side switching device (3) comprises a refrigerant supply pipe (51) and a refrigerant return pipe (52) extending from the air / water heat exchanger (5) and a low temperature side first reaction vessel (12) and a low temperature side second reaction vessel. A piping system for connecting to one of the reaction vessels (14) and connecting a refrigerant return pipe (71) and a refrigerant supply pipe (72) extending from the freezer (7) to the other reaction vessel; And a plurality of four-way valves interposed therebetween.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】高温側切換え装置(2)は、蓄熱槽(9)から
伸びる熱媒供給管(41)及び熱媒戻り管(42)を高温側第1
反応容器(11)と高温側第2反応容器(13)の何れか一方に
接続すると共に、空水冷型熱交換器(6)から伸びる熱媒
供給管(61)及び熱媒戻り管(62)を他方の反応容器に接続
するための配管系と、該配管系に介在する複数の3方弁
とから構成される。又、低温側切換え装置(3)は、空水
冷型熱交換器(5)から伸びる冷媒供給管(51)及び冷媒戻
り管(52)を低温側第1反応容器(12)と低温側第2反応容
器(14)の何れか一方に接続すると共に、冷凍庫(7)から
伸びる冷媒戻り管(71)及び冷媒供給管(72)を他方の反応
容器に接続するための配管系と、該配管系に介在する複
数の4方弁とから構成される。
The high-temperature side switching device (2) includes a heat medium supply pipe (41) and a heat medium return pipe (42) extending from the heat storage tank (9), which are connected to the first high temperature side.
A heat medium connected to one of the reaction vessel (11) and the high-temperature side second reaction vessel (13) and extending from the air / water heat exchanger (6).
It comprises a piping system for connecting the supply pipe (61) and the heat medium return pipe (62) to the other reaction vessel, and a plurality of three-way valves interposed in the piping system. The low temperature side switching device (3) comprises a refrigerant supply pipe (51) and a refrigerant return pipe (52) extending from the air / water heat exchanger (5) and a low temperature side first reaction vessel (12) and a low temperature side second reaction vessel. A piping system for connecting to one of the reaction vessels (14) and connecting a refrigerant return pipe (71) and a refrigerant supply pipe (72) extending from the freezer (7) to the other reaction vessel; And a plurality of four-way valves interposed therebetween.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図6[Correction target item name] Fig. 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図6】 FIG. 6

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 太陽熱を熱源として、冷凍負荷を冷却す
るための太陽熱駆動冷凍機であって、 水素平衡圧力の異なる2種類の水素吸蔵合金を内蔵した
高温側反応容器と低温側反応容器を互いに連結してな
り、高温側反応容器から低温側反応容器へ水素ガスを流
す再生モードと、低温側反応容器から高温側反応容器へ
水素ガスを流す冷熱発生モードが設定されるべきヒート
ポンプと、 熱源から高温側反応容器へ高温の熱媒を供給するための
熱媒系統と、 低温側反応容器から冷凍負荷へ低温の冷媒を供給するた
めの冷媒系統と、 再生モードにて、高温側反応容器から低温側反応容器へ
流れる水素ガスの流量の積算値、若しくは、該積算値に
相当する物理量を計測する計測手段と、 計測手段による計測値が所定値に達したとき、前記熱媒
系統及び冷媒系統を制御して、再生モードと冷熱発生モ
ードを切り換える制御手段とを具えている太陽熱駆動冷
凍機。
1. A solar heat driven refrigerator for cooling a refrigeration load using solar heat as a heat source, wherein a high temperature side reaction vessel and a low temperature side reaction vessel containing two kinds of hydrogen storage alloys having different hydrogen equilibrium pressures are connected to each other. A heat pump that should be set to a regeneration mode in which hydrogen gas flows from the high-temperature side reaction vessel to the low-temperature side reaction vessel, and a cold-heat generation mode in which hydrogen gas flows from the low-temperature side reaction vessel to the high-temperature side reaction vessel. A heat medium system for supplying a high-temperature heat medium to the high-temperature reaction vessel, a refrigerant system for supplying a low-temperature refrigerant from the low-temperature reaction vessel to the refrigeration load, and a low-temperature Measuring means for measuring the integrated value of the flow rate of hydrogen gas flowing to the side reaction vessel, or a physical quantity corresponding to the integrated value, when the measured value by the measuring means reaches a predetermined value, the heating medium system and By controlling the medium system, solar driven refrigerator and control means for switching the reproduction mode and cold generating mode.
【請求項2】 太陽熱を熱源として、冷凍負荷へ冷媒を
供給するための太陽熱駆動冷凍機であって、 一対のヒートポンプを併設して構成され、各ヒートポン
プは、水素平衡圧力の異なる2種類の水素吸蔵合金を内
蔵した高温側反応容器と低温側反応容器を互いに連結し
てなり、高温側反応容器から低温側反応容器へ水素ガス
を流す再生モードと、低温側反応容器から高温側反応容
器へ水素ガスを流す冷熱発生モードが設定されるべきヒ
ートポンプ装置と、 熱源から何れか一方のヒートポンプの高温側反応容器へ
選択的に高温の熱媒を供給するための熱媒系統と、 何れか一方のヒートポンプの低温側反応容器から選択的
に冷凍負荷へ低温の冷媒を供給するための冷媒系統と、 再生モードに設定すべきヒートポンプの高温側反応容器
から低温側反応容器へ流れる水素ガスの流量の積算値、
若しくは、該積算値に相当する物理量を計測する計測手
段と、 計測手段による計測値が所定値に達したとき、前記熱媒
系統及び冷媒系統を制御して、各ヒートポンプを再生モ
ードと冷熱発生モードの間で切り換える制御手段とを具
えている太陽熱駆動冷凍機。
2. A solar heat driven refrigerator for supplying a refrigerant to a refrigeration load using solar heat as a heat source, comprising a pair of heat pumps, wherein each heat pump has two types of hydrogen having different hydrogen equilibrium pressures. A high-temperature side reaction vessel and a low-temperature side reaction vessel containing an occlusion alloy are connected to each other, and a regeneration mode in which hydrogen gas flows from the high-temperature side reaction vessel to the low-temperature side reaction vessel, and a hydrogen mode from the low-temperature side reaction vessel to the high-temperature side reaction vessel A heat pump device in which a cold heat generation mode for flowing gas is to be set; a heat medium system for selectively supplying a high-temperature heat medium from a heat source to a high-temperature side reaction vessel of one of the heat pumps; A refrigerant system for selectively supplying low-temperature refrigerant from the low-temperature side reaction vessel to the refrigeration load, and a high-temperature side reaction vessel from the high-temperature side reaction vessel of the heat pump to be set to the regeneration mode Flow rate integrated value of the hydrogen gas flowing into the reaction container vessel,
Or, a measuring means for measuring a physical quantity corresponding to the integrated value, and when the measured value by the measuring means reaches a predetermined value, the heat medium system and the refrigerant system are controlled to set each heat pump in a regeneration mode and a cold heat generation mode. And a control means for switching between the two.
【請求項3】 更に、両ヒートポンプの高温側反応容器
を交互に冷却するための高温側冷却系統と、両ヒートポ
ンプの低温側反応容器を交互に冷却するための低温側冷
却系統とを具えている請求項2に記載の太陽熱駆動冷凍
機。
3. A high-temperature side cooling system for alternately cooling the high-temperature side reaction vessels of both heat pumps, and a low-temperature side cooling system for alternately cooling the low-temperature side reaction vessels of both heat pumps. The solar-powered refrigerator according to claim 2.
【請求項4】 前記物理量は、高温側反応容器から低温
側反応容器へ水素ガスが移動を開始した後における、該
高温側反応容器へ供給される熱媒と該高温側反応容器か
ら排出される熱媒の温度差の積算値である請求項2又は
請求項3に記載の太陽熱駆動冷凍機。
4. The heat medium supplied to the high-temperature side reaction vessel and discharged from the high-temperature side reaction vessel after the hydrogen gas starts moving from the high-temperature side reaction vessel to the low-temperature side reaction vessel. The solar heat driven refrigerator according to claim 2 or 3, which is an integrated value of a temperature difference of the heat medium.
【請求項5】 前記物理量は、再生モードに設定すべき
ヒートポンプの低温側反応容器から低温側冷却手段へ戻
る冷媒と低温側冷却手段から低温側反応容器へ供給され
る冷媒の温度差の積算値である請求項3に記載の太陽熱
駆動冷凍機。
5. The physical quantity is an integrated value of a temperature difference between a refrigerant returning from the low-temperature side reaction vessel of the heat pump to be set to the regeneration mode to the low-temperature side cooling means and a refrigerant supplied from the low-temperature side cooling means to the low-temperature side reaction vessel. The solar-powered refrigerator according to claim 3, which is:
【請求項6】 太陽熱を熱源として、冷凍負荷へ冷媒を
供給するための太陽熱駆動冷凍機であって、 ヒートポンプ装置(1)に、高温側切換え装置(2)を介し
て集熱器(4)と空水冷型熱交換器(6)とが切り換え可能
に接続されると共に、低温側切換え装置(3)を介して空
水冷型熱交換器(5)と冷凍庫(7)とが切り換え可能に接
続され、 ヒートポンプ装置(1)は、第1及び第2のヒートポンプ
を併設して構成され、第1ヒートポンプは、水素平衡圧
力の低い水素吸蔵合金MH1を内蔵した高温側第1反応
容器(11)と水素平衡圧力の高い水素吸蔵合金MH2を内
蔵した低温側第1反応容器(12)とを互いに連結してな
り、第2ヒートポンプは、水素平衡圧力の低い水素吸蔵
合金MH1を内蔵した高温側第2反応容器(13)と水素平
衡圧力の高い水素吸蔵合金MH2を内蔵した低温側第2
反応容器(14)とを互いに連結してなり、夫々、高温側の
反応容器から低温側の反応容器へ水素ガスを流す再生モ
ードと、低温側の反応容器から高温側の反応容器へ水素
ガスを流す冷熱発生モードの設定が可能であり、 前記高温側切換え装置(2)及び低温側切換え装置(3)は
制御回路(8)によって制御され、該制御回路(8)には、
再生モードに設定すべきヒートポンプの高温側の反応容
器から低温側の反応容器へ流れる水素ガスの流量の積算
値、若しくは、該積算値に相当する物理量を計測するた
めの計測手段が接続され、前記積算値若しくは物理量が
所定値に達したとき、各ヒートポンプを再生モードと冷
熱発生モードの間で切り換えることを特徴とする太陽熱
駆動冷凍機。
6. A solar heat driven refrigerator for supplying a refrigerant to a refrigeration load using solar heat as a heat source, wherein the heat pump device (1) is connected to a heat collector (4) via a high temperature side switching device (2). And the air / water cooling type heat exchanger (6) are switchably connected, and the air / water cooling type heat exchanger (5) and the freezer (7) are switchably connected via the low temperature side switching device (3). The heat pump device (1) includes a first heat pump and a second heat pump, and the first heat pump includes a high-temperature side first reaction vessel (11) containing a hydrogen storage alloy MH1 having a low hydrogen equilibrium pressure. A low-temperature first reaction vessel (12) containing a hydrogen storage alloy MH2 with a high hydrogen equilibrium pressure is connected to each other, and a second heat pump is connected to a high-temperature second reaction vessel containing a hydrogen storage alloy MH1 with a low hydrogen equilibrium pressure. Reaction vessel (13) and hydrogen storage alloy MH2 with high hydrogen equilibrium pressure Built-in low-temperature side second
A reaction mode in which hydrogen gas flows from the high-temperature side reaction vessel to the low-temperature side reaction vessel, and a regeneration mode in which hydrogen gas is supplied from the low-temperature side reaction vessel to the high-temperature side reaction vessel. It is possible to set a cooling heat generation mode to flow, and the high temperature side switching device (2) and the low temperature side switching device (3) are controlled by a control circuit (8).
Measurement means for measuring the integrated value of the flow rate of hydrogen gas flowing from the reaction vessel on the high-temperature side to the reaction vessel on the low-temperature side of the heat pump to be set to the regeneration mode, or a measuring means for measuring a physical quantity corresponding to the integrated value, is connected. When the integrated value or the physical quantity reaches a predetermined value, each heat pump is switched between a regeneration mode and a cold heat generation mode.
【請求項7】 計測手段は、第1ヒートポンプの高温側
第1反応容器(11)と低温側第1反応容器(12)を連結する
連結管(17)に設置された流量計(81)と、第2ヒートポン
プの高温側第2反応容器(13)と低温側第2反応容器(14)
を連結する連結管(18)に設置された流量計(82)によって
構成される請求項6に記載の太陽熱駆動冷凍機。
7. A measuring means includes a flow meter (81) installed in a connecting pipe (17) connecting the high temperature side first reaction vessel (11) and the low temperature side first reaction vessel (12) of the first heat pump. A second reaction vessel (13) on the high temperature side of the second heat pump and a second reaction vessel (14) on the low temperature side
The solar-powered refrigerator according to claim 6, which is constituted by a flow meter (82) installed in a connecting pipe (18) connecting the two.
【請求項8】 計測手段は、集熱器(4)と高温側切換え
装置(2)の間を繋ぐ熱媒供給管(41)及び熱媒戻り管(42)
に設置された温度計(83)(83)によって構成される請求項
6に記載の太陽熱駆動冷凍機。
8. A heating medium supply pipe (41) and a heating medium return pipe (42) connecting between a heat collector (4) and a high temperature side switching device (2).
The solar-powered refrigerator according to claim 6, which is constituted by thermometers (83) and (83) installed in the refrigerator.
【請求項9】 計測手段は、低温側切換え装置(3)と低
温側の空水冷型熱交換器(5)を繋ぐ冷媒供給管(51)及び
冷媒戻り管(52)に設置された温度計(85)(86)によって構
成される請求項6に記載の太陽熱駆動冷凍機。
9. A thermometer installed in a refrigerant supply pipe (51) and a refrigerant return pipe (52) connecting the low temperature side switching device (3) and the low temperature side air / water heat exchanger (5). The solar-powered refrigerator according to claim 6, comprising (85) and (86).
JP8149698A 1998-03-27 1998-03-27 Solar powered refrigerator Expired - Fee Related JP2950474B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8149698A JP2950474B1 (en) 1998-03-27 1998-03-27 Solar powered refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8149698A JP2950474B1 (en) 1998-03-27 1998-03-27 Solar powered refrigerator

Publications (2)

Publication Number Publication Date
JP2950474B1 JP2950474B1 (en) 1999-09-20
JPH11281191A true JPH11281191A (en) 1999-10-15

Family

ID=13748003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8149698A Expired - Fee Related JP2950474B1 (en) 1998-03-27 1998-03-27 Solar powered refrigerator

Country Status (1)

Country Link
JP (1) JP2950474B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432547C (en) * 2006-11-03 2008-11-12 江苏大学 Solar energy-ground source united heat supply, hot water supply, power supply and refrigerating system and its operation method
JP2010503823A (en) * 2006-09-18 2010-02-04 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Adsorption heat pump
CN102997484A (en) * 2012-12-27 2013-03-27 中国科学院广州能源研究所 Metal hydride refrigerating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503823A (en) * 2006-09-18 2010-02-04 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Adsorption heat pump
US8631667B2 (en) 2006-09-18 2014-01-21 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Adsorption heat pump with heat accumulator
CN100432547C (en) * 2006-11-03 2008-11-12 江苏大学 Solar energy-ground source united heat supply, hot water supply, power supply and refrigerating system and its operation method
CN102997484A (en) * 2012-12-27 2013-03-27 中国科学院广州能源研究所 Metal hydride refrigerating device

Also Published As

Publication number Publication date
JP2950474B1 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
EP0071271B1 (en) Metal hydride heat pump system
Li et al. Experimental study on an adsorption icemaker driven by parabolic trough solar collector
CN104075443A (en) Heat pump hot water supply device
US4875346A (en) Two-statge sorption type cryogenic refrigerator including heat regeneration system
US10527294B2 (en) Control of a pump to optimize heat transfer
JP2950474B1 (en) Solar powered refrigerator
US5409676A (en) Heat transfer system utilizing hydrogen absorbing metals
EP0388132B1 (en) Thermal utilization system using hydrogen absorbing alloys
Núñez et al. Development of a small-capacity adsorption system for heating and cooling applications
JP3938831B2 (en) Solar-powered refrigeration system
CN107178903A (en) Solar heat pump water heating apparatus and its control method
JP3059964B1 (en) Solar powered refrigerator and its operation method
JP3126086B2 (en) Compression metal hydride heat pump
CN104582921A (en) Device and method for changing the temperature of objects
CN101017038A (en) Heat pump hot-water air-conditioning unit
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JPH0849941A (en) Double effect absorption refrigerating machine
JPH02242055A (en) Hydrogen occluded alloy-based heat application system
CN210522489U (en) One-driving-two temperature control system of high-low temperature all-in-one machine
CN208520078U (en) A kind of full-liquid type vapo(u)rization system preparing supercooled water ice slurry
JPH05296599A (en) Adsorption type heat accumulator and heat accumulation operating control method
JPH02242054A (en) Hydrogen occluded alloy-based heat application system
KR20170119540A (en) Control device of the cool water purifier and method thereof
JPH1073337A (en) Method for cooling and heating and equipment therefor
JPS61119955A (en) Air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees