JPH02242054A - Hydrogen occluded alloy-based heat application system - Google Patents

Hydrogen occluded alloy-based heat application system

Info

Publication number
JPH02242054A
JPH02242054A JP6168289A JP6168289A JPH02242054A JP H02242054 A JPH02242054 A JP H02242054A JP 6168289 A JP6168289 A JP 6168289A JP 6168289 A JP6168289 A JP 6168289A JP H02242054 A JPH02242054 A JP H02242054A
Authority
JP
Japan
Prior art keywords
heat
cycle operation
types
heat source
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6168289A
Other languages
Japanese (ja)
Other versions
JP2623002B2 (en
Inventor
Kenji Nasako
名迫 賢二
Takahiro Yonezaki
米崎 孝広
Akio Furukawa
明男 古川
Naoki Ko
直樹 広
Toshihiko Saito
俊彦 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6168289A priority Critical patent/JP2623002B2/en
Priority to US07/490,999 priority patent/US5174367A/en
Priority to EP90302631A priority patent/EP0388132B1/en
Priority to DE90302631T priority patent/DE69004718T2/en
Publication of JPH02242054A publication Critical patent/JPH02242054A/en
Application granted granted Critical
Publication of JP2623002B2 publication Critical patent/JP2623002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve the operation efficiency and stabilize the operation in response to fluctuations in a heat source for drive by changing over between a heat cycle operation which uses three types of hydrogen occluded alloys and a heat cycle operation which uses two types of hydrogen occluded alloys out of said hydrogen occluded alloys responding with a temperature level of a drive heat source in said heat cycle operation. CONSTITUTION:Three types of hydrogen occluded alloys MH1, MH2, and MH3 execute a heat cycle operation which uses total alloy when the supply heat of a drive heat source is relatively low, say, 90 deg.C. When the supply heat of a drive heat source is relatively high, say, 130 deg.C and over, the alloy MH2 is eliminated and MH1 and MH3-based heat cycle operation is executed. A control device in which a measured temperature value of the supply heat of a drive heat source 18 is input, compares with 130 deg.C or equivalent intensity of solar radiation. The contrl device, if it exceeds this standard, indicates a heat cycle operation which uses two types of alloy MH1 and MH3, or if it fails to exceed the standard, the control device indicates a heat cycle operation which uses a total of three types alloy and opens and closes on/off valves 19 to 16 and a change over valve 20 so that they may conform to each operation.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、水素吸蔵合金を用いたヒートポンプ、冷凍等
の熱利用システムに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to heat utilization systems such as heat pumps and refrigeration using hydrogen storage alloys.

(ロ)従来の技術 このような熱利用システムは、例えば特公昭58−19
955号公報、特開昭61−202054号公報に開示
されている。
(b) Conventional technology Such a heat utilization system is known, for example, from the Japanese Patent Publication Publication No. 58-19
It is disclosed in Japanese Patent Application Laid-open No. 955 and Japanese Patent Application Laid-Open No. 61-202054.

これらは、2種類の水素吸蔵合金を用い、一方を130
℃〜150℃の駆動用熱源で加熱して他方に水素を送り
且つ吸収させ、他方が水素を一方に戻す際の吸熱反応に
より冷凍熱を得るようにしている。
These use two types of hydrogen storage alloys, one with 130%
By heating with a driving heat source at a temperature of 150°C to 150°C, hydrogen is sent to and absorbed by the other side, and the other side returns the hydrogen to one side to obtain refrigeration heat through an endothermic reaction.

(ハ)発明が解決しようとする課題 しかし、これらの従来例は駆動用熱源で常に130℃〜
150℃の熱を得ることを条件としており、コージェネ
レーションシステムがらの熱、工場の廃熱、太陽熱等を
熱源とした場合、熱変動が大きすぎて稼動効率が上らな
い。
(c) Problems to be solved by the invention However, in these conventional examples, the driving heat source always
The condition is to obtain heat of 150 degrees Celsius, and if the heat source is heat from a cogeneration system, waste heat from a factory, solar heat, etc., the heat fluctuations will be too large and the operating efficiency will not increase.

本発明は、駆動用熱源の変動に対応して稼動効率を向上
させ且つ安定させるものである。
The present invention improves and stabilizes operating efficiency in response to fluctuations in the driving heat source.

(ニ)課題を解決するための手段 本発明による解決手段は、3種類の水素吸蔵合金を用い
た熱サイクル運転と、上記水素吸蔵合金の内の2種類の
水素吸蔵合金を用いた熱サイクル運転とを、上記熱サイ
クル運転に於ける駆動用熱源の温度レベルに応じて切替
えて成る構成である。
(D) Means for Solving the Problems The solution according to the present invention is a thermal cycle operation using three types of hydrogen storage alloys, and a thermal cycle operation using two types of hydrogen storage alloys among the above-mentioned hydrogen storage alloys. This is a configuration in which these are switched according to the temperature level of the drive heat source during the thermal cycle operation.

(ホ)作用 襄−1図及び第2図の圧力−温度線図で示される3種類
の水素吸蔵合金MH,、MH,、MH,は、駆動用熱源
の供給熱が90℃程度の比較的低温であるときには、全
合金を用いた熱サイクル運転を実行し、駆動用熱源の供
給熱が130℃以上の比較的高温であるときには、合金
MH,を外してMHlとMH,を用いた熱サイクル運転
を実行する。
(e) Effect The three types of hydrogen storage alloys MH, MH, MH, shown in the pressure-temperature diagrams in Figures 1 and 2, have a relatively high heat supply of about 90°C from the driving heat source. When the temperature is low, a thermal cycle operation using all alloys is performed, and when the heat supplied from the drive heat source is relatively high temperature of 130°C or higher, alloy MH is removed and a thermal cycle using MHL and MH is performed. Execute driving.

即ち、第1図に於いて、駆動用熱源が約90℃の熱で合
金MH,を加熱し、合金MH,を20℃の冷却水で冷却
すると、MH+は吸蔵していた水素ガスを解離状態のM
H,に移動させる(再生第1過程)。次に、熱源が90
℃の熱でMH,を加熱し、合金MH,を2θ℃の冷却水
で冷却すると、水素ガスは解離状態のMH,に移動する
(再生第2過程)。そして、MW、からMH,に水素ガ
スを移動させ、MH,での吸熱反応により約−20℃の
冷凍熱を回収するのである(冷凍熱発生過程)。
That is, in Fig. 1, when the driving heat source heats the alloy MH, with heat of approximately 90°C, and cools the alloy MH, with cooling water of 20°C, MH+ dissociates the hydrogen gas that was occluded. M of
H, (first reproduction process). Next, the heat source is 90
When MH, is heated with heat of 0.degree. C. and the alloy MH, is cooled with cooling water of 2.theta..degree. C., hydrogen gas moves to MH, which is in a dissociated state (second regeneration step). Hydrogen gas is then transferred from the MW to the MH, and the freezing heat of about -20°C is recovered by an endothermic reaction at the MH (freezing heat generation process).

一方、第2図に於いては、駆動用熱源が130℃以上の
熱で合金MH,を加熱し、合金MH,を20℃の冷却水
で冷却すると、MH,は吸蔵していた水素ガスを解離状
態のMH,に移動させる(再生過程)。そして、MH,
からMH,に水素ガスを移動させ、MH,での吸熱反応
により約−20℃の冷凍熱を回収するのである(冷凍熱
発生過程)。
On the other hand, in Fig. 2, when the driving heat source heats the alloy MH, with heat of 130°C or higher, and the alloy MH, is cooled with cooling water of 20°C, the MH, absorbs the hydrogen gas it has occluded. MH is transferred to a dissociated state (regeneration process). And MH,
Hydrogen gas is transferred from the MH to the MH, and the freezing heat of about -20°C is recovered by an endothermic reaction at the MH (freezing heat generation process).

更に、これらの熱サイクル運転を連続的に行なう場合を
第3図(イ)(ロ)及び第4図(イ)(ロ)で説明する
とまず容器1〜6は、順に合金MH,、MH,、MH,
、MH,、MH,、MH,を充填し、駆動用熱源、冷却
水による冷却源、冷凍負荷のいずれかに熱的に接続でき
るように配管してあり、必要に応じて水素ガスを互いに
移送できるように配管しである。
Furthermore, the case where these thermal cycle operations are performed continuously will be explained with reference to FIGS. , M.H.
, MH,, MH,, MH, are filled with piping so that they can be thermally connected to either a drive heat source, a cooling water source, or a refrigeration load, and hydrogen gas can be transferred to each other as necessary. It is plumbed in such a way that it can be used.

駆動用熱源の供給熱が比較的低い(90℃)場合は、第
3図(イ)(ロ)で示されており、第3図(イ)では容
器2から容器3へ、容器4から容器5へ、容器6から容
9klへ夫々水素ガスが同時に移送され、容器6のMH
,の吸熱反応により約−20℃の冷凍熱を回収し、これ
を冷凍負荷に与える。この反応終了後には、第3図(ロ
)で示すように、容81から容器2へ、容l!3から容
器4へ容器5から容器6へ夫々水素ガスを同時に移送し
、容器3のM H=の吸熱反応により約−20℃の冷凍
熱を回収し、これを冷凍負荷に与える。以下、第3図(
イ)(ロ)の各状態を交互に繰返していく。
When the heat supplied by the drive heat source is relatively low (90°C), it is shown in Figure 3 (a) and (b). Hydrogen gas is simultaneously transferred from container 6 to container 5 and container 6 with a capacity of 9 kl, respectively, and the MH of container 6 is
, the refrigeration heat of about -20°C is recovered and applied to the refrigeration load. After this reaction is completed, as shown in FIG. 3 (b), the volume 1! is transferred from the volume 81 to the container 2! Hydrogen gas is simultaneously transferred from container 3 to container 4 and from container 5 to container 6, and refrigeration heat of about -20° C. is recovered by an endothermic reaction of M H= in container 3, and this is applied to the refrigeration load. Below, Figure 3 (
Each state of (a) and (b) is repeated alternately.

駆動用熱源の供給熱が比較的高い(130℃以上)場合
は、第4図(イ)(ロ)で示されており、容器3から容
器lへ、容器4から容器6に夫々水素ガスを同時に移送
し、容@3で吸熱する。次に容器1から容器3へ、容器
6から容器4に夫々水素ガスを同時に移送し、容器6で
吸熱するのである。以下、第4図(イ)(ロ)の各状態
を交互に繰返していく。
When the heat supplied by the drive heat source is relatively high (130°C or higher), as shown in Figure 4 (a) and (b), hydrogen gas is supplied from container 3 to container l and from container 4 to container 6, respectively. Transfer at the same time and absorb heat at volume @3. Next, hydrogen gas is simultaneously transferred from container 1 to container 3 and from container 6 to container 4, and the container 6 absorbs heat. Hereinafter, the states shown in FIGS. 4(a) and 4(b) are alternately repeated.

このように駆動用熱源の供給熱の温度レベルに応じて、
3種類の合金を用いた熱サイクル運転と、2種類の合金
を用いた熱サイクル運転を切替えて実行させるのである
が、温度レベルは熱源の温度をセンサーで測定する、或
いは太陽熱利用熱源では日射計で日射強度を測定する等
の方法で調べ 例えば130℃を切替えのための基準と
する。
In this way, depending on the temperature level of the heat supplied by the driving heat source,
The heat cycle operation using three types of alloys and the heat cycle operation using two types of alloys are executed by switching, but the temperature level is determined by measuring the temperature of the heat source with a sensor, or in the case of a solar heat source, using a pyranometer. For example, 130°C is used as the standard for switching.

(へ)実施例 本発明による熱利用システムとして、冷凍熱利用システ
ムの例を第5図に基づいて説明する。
(f) Example As a heat utilization system according to the present invention, an example of a refrigeration heat utilization system will be explained based on FIG.

容器1〜6は並設され、順に水素吸蔵合金MH,1MH
,、MH,、MH,、MH,、M H、を充填している
。容器1と容器6間は2本の水素ガスの第1、第2移送
配管7.8によって接続されている。第1移送配管7に
は他の容器2〜5も接続され、隣接する容器間の配管7
には夫々開閉弁9.10.11.12.13が設けであ
る。
Containers 1 to 6 are arranged in parallel, and hydrogen storage alloys MH and 1MH are placed in order.
,,MH,,MH,,MH,,MH,. The containers 1 and 6 are connected by two first and second hydrogen gas transfer pipes 7.8. The other containers 2 to 5 are also connected to the first transfer pipe 7, and the pipe 7 between adjacent containers
are provided with on-off valves 9, 10, 11, 12, and 13, respectively.

第2移送配管8には開閉弁14が設けてあり、この弁1
4を挟むように、容器3と容器4は配管8にも夫々開閉
弁15.16を介して接続しである。
The second transfer pipe 8 is provided with an on-off valve 14.
The containers 3 and 4 are also connected to piping 8 via on-off valves 15 and 16, respectively, so as to sandwich the containers 3 and 4 between them.

容器1〜6は、充填した合金を加熱したり、合金の反応
熱(熱、冷熱)を回収するために、熱交換器17・・・
を内装している。そして、容器l、2.4.5は、その
熱交換器17・・・を駆動用熱源18と20℃の冷却源
19とに切替弁20・・・によって夫々選択的に切替え
ることができるように配管接続している。また、容器3
.6は、その熱交換器17.17を冷却源19と冷凍負
荷21とに切替弁20・・・によって夫々選択的に切替
えることができるように配管接続している。熱交換l5
17・・・と熱源18、冷却源19、冷凍負有21との
間の配管は、熱媒冷媒をポンプ等で強制循環させる配管
である。
The containers 1 to 6 are equipped with heat exchangers 17 for heating the filled alloy and recovering the reaction heat (heat, cold) of the alloy.
It's decorated. The heat exchanger 17 of the container l, 2.4.5 can be selectively switched between the drive heat source 18 and the 20°C cooling source 19 by the switching valve 20. Piping is connected to. Also, container 3
.. 6 has its heat exchangers 17 and 17 connected by piping to the cooling source 19 and the refrigeration load 21 so that they can be selectively switched to each other by switching valves 20 . heat exchange l5
17... and the heat source 18, the cooling source 19, and the refrigeration unit 21 are piping that forcefully circulate the heat medium refrigerant using a pump or the like.

上記駆動用熱源18の供給熱の温度レベルは、温度セン
サーや日射針等で測定され、この測定値が入力された制
御装置(図示せず)が例えば130℃或いはこれに見合
う日射強度と比較する。そして、制御装置は、この基準
以上であれば、2類の合金M H+とM Hsを用いた
熱サイクル運転を、また、基準未満であれば3種類の合
金の全てを用いた熱サイクル運転を夫々指示し、開閉弁
9〜16及び切替弁20・・・を各運転に合致するよう
開閉させる。
The temperature level of the heat supplied by the driving heat source 18 is measured by a temperature sensor, a solar radiation needle, etc., and a control device (not shown) into which this measured value is input compares it with, for example, 130° C. or an equivalent solar radiation intensity. . Then, if it is above this standard, the control device can perform thermal cycle operation using the second type of alloys M H+ and M Hs, and if it is below this standard, it can perform thermal cycle operation using all three types of alloys. The on-off valves 9 to 16 and the switching valves 20 are opened and closed in accordance with each operation.

次に、この実施例の動作を説明すると、制御装置は駆動
用熱源18の温度レベルが低いとの比較結果があれば、
容iS1.3.5の熱交換器17・・・を冷却源19に
、容器2.4の熱交換器17.17を熱源18に、容器
6の熱交換器17を冷凍負荷21に接続すべく切替弁2
0・・・を夫々開閉させ、容器1と6、容器2と3、容
器4と5を夫々接続すべく開閉弁14.10.12を開
放させる。こうして、容器6での水素放出による吸熱反
応により冷凍負荷21に約−20℃の冷熱を与える。ま
た、この反応終了後は1.制御装置は容器1.5の熱交
換器17.17を熱源18に、容器2.4.6の熱交換
器17・・・を冷却源19に、容器3の熱交換器17を
冷凍負荷21に夫々接続すべく切替弁20・・・を開閉
させ、容器1と2、容器3と4、容器5と6を夫々接続
すべく開閉弁9.11.13を開閉させる。このときに
は、容器3が冷凍負荷21に冷熱を与える。こうして、
切替弁20・・・と開閉弁9〜16を開閉制御すること
により、二状態を交互に繰返し、3種類の水素吸蔵合金
MH,、MH,、MH,を各−肘用いた連続的な熱サイ
クル運転を行なう。
Next, to explain the operation of this embodiment, if there is a comparison result that the temperature level of the drive heat source 18 is low, the control device
The heat exchanger 17 of the container iS1.3.5... is connected to the cooling source 19, the heat exchanger 17.17 of the container 2.4 is connected to the heat source 18, and the heat exchanger 17 of the container 6 is connected to the refrigeration load 21. Switching valve 2
0... are opened and closed, respectively, and opening/closing valves 14, 10, and 12 are opened to connect containers 1 and 6, containers 2 and 3, and containers 4 and 5, respectively. In this way, cold heat of about -20° C. is imparted to the refrigeration load 21 by an endothermic reaction due to hydrogen release in the container 6. Moreover, after this reaction is completed, 1. The control device uses the heat exchanger 17.17 of the container 1.5 as the heat source 18, the heat exchanger 17 of the container 2.4.6 as the cooling source 19, and the heat exchanger 17 of the container 3 as the refrigeration load 21. The switching valves 20... are opened and closed to connect the containers 1 and 2, the containers 3 and 4, and the containers 5 and 6, respectively. At this time, the container 3 provides cold heat to the refrigeration load 21. thus,
By controlling the opening and closing of the switching valves 20... and the on-off valves 9 to 16, two states are alternately repeated, and three types of hydrogen storage alloys MH, MH, MH are continuously heated using each elbow. Perform cycle operation.

一方、制御装置は、駆動用熱源18の温度レベルが高い
との比較結果があれば、容器1.6の熱交換rjP17
.17を冷却源19に、容器4の熱交換器17を熱源1
8に、容83の熱交換器17を冷凍負4r121に夫々
接続すべく切替弁20・・・を開閉させ、容器1と3、
容t154と6を夫々接続すべく開閉弁15.16を開
放させる。こうして、容器3での水素放出による吸熱反
応により冷凍負荷21に約−20℃の冷熱を与える。ま
たこの反応終了後は、制御装置は、容器3.4の熱交換
1S17.17を冷却源19に、容器lの熱交換器17
を熱源18に、容器6の熱交換1S17を冷凍負荷21
に夫々接続すべく切替弁20・・・を開閉させる。こう
して、容956に移送した水素ガスを容器4に戻し、容
器6での吸熱反応による冷熱を冷凍負荷21に与えるの
である。こうして、切替弁20・・・と開閉弁15.1
6を開閉制御することにより、二状態を交互に繰返し、
2種類の水素吸蔵合金MH,,MH,を各一対兼用した
連続的な熱サイクル運転を行なう。
On the other hand, if the comparison result shows that the temperature level of the drive heat source 18 is high, the control device controls the heat exchange rjP17 of the container 1.6.
.. 17 as the cooling source 19, and the heat exchanger 17 of the container 4 as the heat source 1.
8, the switching valves 20... are opened and closed to connect the heat exchanger 17 of the container 83 to the refrigeration negative 4r121, respectively, and the containers 1 and 3,
The on-off valves 15 and 16 are opened to connect the vessels t154 and t6, respectively. In this way, the refrigeration load 21 is given cold heat of about -20° C. by an endothermic reaction due to hydrogen release in the container 3. After the reaction is finished, the control device uses the heat exchanger 1S17.17 of the container 3.4 as the cooling source 19 and the heat exchanger 17 of the container 1.
to the heat source 18, and the heat exchanger 1S17 of the container 6 to the refrigeration load 21.
The switching valves 20... are opened and closed in order to connect to the respective terminals. In this way, the hydrogen gas transferred to the container 956 is returned to the container 4, and cold heat due to the endothermic reaction in the container 6 is given to the refrigeration load 21. In this way, the switching valve 20... and the on-off valve 15.1
By controlling the opening and closing of 6, the two states are alternately repeated,
Continuous thermal cycle operation is performed using each pair of two types of hydrogen storage alloys MH, , MH.

駆動用熱源18に太陽熱集熱装置を用いて、3種類合金
での熱サイクル運転と、2種類合金での熱サイクル運転
とを行ない、日射強度に応じた総合効率を求めた。これ
が、第6図で示しである。
Using a solar heat collector as the drive heat source 18, thermal cycle operation with three types of alloys and thermal cycle operation with two types of alloys were performed to determine the overall efficiency according to the solar radiation intensity. This is shown in FIG.

この図から明らかなように、2種類合金での熱サイクル
運転は、日射強度600 Kcal/hr−m’を境に
日射強度が大の領域では効率が高いが、小の領域では稼
動できない。一方、3種類合金の熱サイクル運転は、日
射強度が小の領域でも稼動できて所定の効率を得るが、
大の領域では複雑な分だけ損失がある。
As is clear from this figure, the thermal cycle operation with the two types of alloys is highly efficient in the region where the solar radiation intensity is high, with the solar radiation intensity being 600 Kcal/hr-m' as the boundary, but cannot be operated in the low solar radiation intensity region. On the other hand, the thermal cycle operation of the three types of alloys can be operated even in areas with low solar radiation intensity and achieves a certain level of efficiency;
In large areas, there is a loss due to the complexity.

従って、本実施例のように、日射強度に応じて3種類合
金での熱サイクル運転と2種類合金での熱サイクル運転
とを使い分ければ(第6図点線参照)、1日の中で稼動
時間帯を長くでき、稼動効率を向上し且つ安定させるこ
とができるのである。
Therefore, as in this example, if thermal cycle operation with three types of alloys and thermal cycle operation with two types of alloys are used depending on the solar radiation intensity (see the dotted line in Figure 6), the operation can be completed within a day. This makes it possible to lengthen the time period, improve operating efficiency, and stabilize it.

尚、本実施例では、両運転を温度、日射等で自動的−に
切替えているが、この切替を所定の表示・報知により手
動で行なっても良い。また、太陽熱々源の場合、1日の
運転を時間(タイマー)制御で切替えるようにしても良
い。
In this embodiment, the two operations are automatically switched based on temperature, solar radiation, etc., but this switching may also be done manually using a predetermined display or notification. Further, in the case of a hot solar source, the daily operation may be changed by time (timer) control.

(ト)発明の効果 本発明に依れば、駆動用熱源の温度レベルに応じて熱サ
イクル運転を切替えるので、熱源の温度変動に対応して
運転でき、稼動率を向上でき、全体の運転を安定させる
ことができる。従って、熱エネルギーを極めて効率良(
利用したシステムを提供できるものである。
(G) Effects of the Invention According to the present invention, the thermal cycle operation is switched according to the temperature level of the driving heat source, so the operation can be performed in response to temperature fluctuations of the heat source, the operation rate can be improved, and the overall operation can be improved. It can be stabilized. Therefore, thermal energy can be used extremely efficiently (
It is possible to provide the system used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明システムに於ける3種類合金での熱サイ
クル運転を原理的に説明する圧力−温度線図、第2図は
2種類合金での第1図相当図、第3図(イ)(ロ)は3
種類合金での連続的な熱サイクル運転の説明図、第4図
(イ)(ロ)は2種類合金での第3図(イ)(ロ)相当
図、第5図は実施例の配管系統図、第6図は太陽熱々源
での日射強度−効率特性図である。 1〜6・・・容器、9〜16・・・開閉弁、18・・・
駆動用熱源、19・・・冷却源、20・・・切替弁、2
1・・・冷凍負荷。
Figure 1 is a pressure-temperature diagram that explains the principle of thermal cycle operation with three types of alloys in the system of the present invention, Figure 2 is a diagram equivalent to Figure 1 with two types of alloys, and Figure 3 (I )(b) is 3
An explanatory diagram of continuous thermal cycle operation with two types of alloys, Figures 4 (a) and (b) are equivalent to Figures 3 (a) and (b) with two types of alloys, and Figure 5 is the piping system of the example FIG. 6 is a solar radiation intensity-efficiency characteristic diagram for a hot solar source. 1-6...Container, 9-16...Opening/closing valve, 18...
Drive heat source, 19...Cooling source, 20...Switching valve, 2
1... Refrigeration load.

Claims (1)

【特許請求の範囲】[Claims] (1)3種類の水素吸蔵合金を用いた熱サイクル運転と
、上記水素吸蔵合金の内の2種類の水素吸蔵合金を用い
た熱サイクル運転とを、上記熱サイクル運転に於ける駆
動用熱源の温度レベルに応じて切替えて成る水素吸蔵合
金を用いた熱利用システム。
(1) A heat cycle operation using three types of hydrogen storage alloys and a heat cycle operation using two types of hydrogen storage alloys among the above hydrogen storage alloys are performed using the heat source for driving in the above heat cycle operation. A heat utilization system using a hydrogen storage alloy that switches depending on the temperature level.
JP6168289A 1989-03-13 1989-03-13 Heat utilization system using hydrogen storage alloy Expired - Fee Related JP2623002B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6168289A JP2623002B2 (en) 1989-03-13 1989-03-13 Heat utilization system using hydrogen storage alloy
US07/490,999 US5174367A (en) 1989-03-13 1990-03-09 Thermal utilization system using hydrogen absorbing alloys
EP90302631A EP0388132B1 (en) 1989-03-13 1990-03-13 Thermal utilization system using hydrogen absorbing alloys
DE90302631T DE69004718T2 (en) 1989-03-13 1990-03-13 Thermal recovery system using hydrogen absorbing alloys.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6168289A JP2623002B2 (en) 1989-03-13 1989-03-13 Heat utilization system using hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH02242054A true JPH02242054A (en) 1990-09-26
JP2623002B2 JP2623002B2 (en) 1997-06-25

Family

ID=13178281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6168289A Expired - Fee Related JP2623002B2 (en) 1989-03-13 1989-03-13 Heat utilization system using hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2623002B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409676A (en) * 1992-12-28 1995-04-25 Sanyo Electric Co., Ltd. Heat transfer system utilizing hydrogen absorbing metals
WO1997048887A1 (en) * 1996-06-21 1997-12-24 World Fusion Limited Power generating device employing hydrogen absorbing alloy and low heat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409676A (en) * 1992-12-28 1995-04-25 Sanyo Electric Co., Ltd. Heat transfer system utilizing hydrogen absorbing metals
WO1997048887A1 (en) * 1996-06-21 1997-12-24 World Fusion Limited Power generating device employing hydrogen absorbing alloy and low heat

Also Published As

Publication number Publication date
JP2623002B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
EP0071271B1 (en) Metal hydride heat pump system
JP2652456B2 (en) Operating method of heat utilization system using hydrogen storage alloy
JPS6134335A (en) Waste heat utilization system for engine and absorption-type water heating/cooling unit
JPH02242054A (en) Hydrogen occluded alloy-based heat application system
JP3126086B2 (en) Compression metal hydride heat pump
JPH02242055A (en) Hydrogen occluded alloy-based heat application system
JPH109709A (en) Metal hydride adsorption type thermally driven refrigerating machine
JP2001296074A (en) Waste heat recovery system
JP2703360B2 (en) Heat-driven chiller using metal hydride
JPS5895154A (en) Solar heat collecting device
JP2001263853A (en) Solar heat driven refrigerating system
JPS6329184B2 (en)
JPH01142356A (en) Air-conditioner
JPH11281191A (en) Solar-heat-driven refrigerating machine
JP3418047B2 (en) Operating method of cold heat generator
JPH1026376A (en) Heat supply device
JP2000234820A (en) Solar heat driven freezing machine and its operation method
JPS6332262A (en) Heat pump type hot-water supply machine utilizing hydrogen occluding alloy
JPH0646975Y2 (en) Circulating medium utilization device for sintering furnace
JPH02259375A (en) Cooling apparatus using metal hydride
JP3464337B2 (en) Cold heat generator using hydrogen storage alloy and method of operating the same
JPS5721733A (en) Cooler using solar heat
JPH1073337A (en) Method for cooling and heating and equipment therefor
JPH0493593A (en) Heat application system utilizing hydrogen storage alloy
JPH0953846A (en) Heat pump type cooling and heating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees