JP3639960B2 - Ice storage method using cold sensible heat - Google Patents

Ice storage method using cold sensible heat Download PDF

Info

Publication number
JP3639960B2
JP3639960B2 JP2000220350A JP2000220350A JP3639960B2 JP 3639960 B2 JP3639960 B2 JP 3639960B2 JP 2000220350 A JP2000220350 A JP 2000220350A JP 2000220350 A JP2000220350 A JP 2000220350A JP 3639960 B2 JP3639960 B2 JP 3639960B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
ice
storage tank
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000220350A
Other languages
Japanese (ja)
Other versions
JP2002031377A (en
Inventor
田中良彦
昇 陶
窪川清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Chemical Engineering Corp
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Chemical Engineering Corp filed Critical Chubu Electric Power Co Inc
Priority to JP2000220350A priority Critical patent/JP3639960B2/en
Publication of JP2002031377A publication Critical patent/JP2002031377A/en
Application granted granted Critical
Publication of JP3639960B2 publication Critical patent/JP3639960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【0001】
【産業上の利用分野】
本発明は、冷顕熱利用による氷蓄熱方法に係わり、特に氷蓄熱槽の蓄熱容量を小さく設計して負荷がピーク時には、冷熱発生機器を過冷却運転することにより実負荷に適する蓄熱容量とすることができ、一方、負荷が小さい時には、製氷運転を行わず、0℃以上の冷顕熱のみを蓄熱・放熱する氷蓄熱方法に関する。
【0002】
【従来の技術】
周知の通り、潜熱蓄熱材を用いた蓄熱法は、顕熱利用技術に比して、蓄熱密度が大であって、かなりの熱量が得られることや、装置をコンパクトにまとめること等の理由により、近時注目されている。従って、従来からも潜熱蓄熱材、それを使用する蓄熱槽、それら用いた潜熱蓄熱方法、装置、システム等の技術が開発され、特に太陽等の温熱を対象とした潜熱蓄熱材を中心とした提案が成されている。
【0003】
例えば、図11に示されるように、圧縮機A、凝縮機Bを出た伝熱媒体を蓄熱槽Cに通し、再び元に循環させる蓄熱モードと、伝熱媒体を蓄熱槽Cと空気冷却器Dの間に循環させる放熱モードを可能にする蓄熱冷房装置が知られている。
【0004】
これは、かなり有効な技術ではあるが、この従来技術は、放熱モード時に於いて、常時空気冷却器Dを出た伝熱媒体の全量が蓄熱槽Cを通り、再び空気冷却器Dに戻される単純な構造であり、空気冷却器等使用機器側の熱使用条件に合わせて、その条件に合った温度の伝熱媒体を当該熱使用機器に制御して供給する特段の工夫がないから、この点で試験的研究の範囲を出ず実用化するには、多くの解決課題を残している。
【0005】
そこで、本出願人等は、蓄熱槽を通過する伝熱媒体の流量を変化させれば、蓄熱槽から伝熱媒体への放熱量が変化することに着目し、放熱モード時に於いて、熱使用機器側熱交換器に入る伝熱媒体の実際温度を検出して、それを動作信号として蓄熱槽を通る伝熱媒体の流量を操作することによって、熱使用機器側の熱交換器に供給される伝熱媒体の温度を、予め定めた熱使用機器側の熱使用条件に合わせて常時適合制御させることができ、而もその制御が簡単容易に実施できる装置を開発した、これは出願されて特公平5−81832号公報として開示されている。
【0006】
【発明が解決しようとする課題】
ところが、この技術は冷却についてみると、氷蓄熱槽を設計するに際し蓄熱容量を決定する条件として、夏場の暑い時期のピーク時の負荷に合わせて設計されていることから、それ以外の負荷が少ない大半の期間では、冷熱発生機器が全出力の60%程度の出力で運転されているため、氷蓄熱槽としては可成り余裕のある容量を有することとなり、一方、冬場の冷熱負荷が小さい時期でも、熱効率の低い製氷運転を行っていた。
【0007】
そこで、出願人等は更に研究を進め、氷蓄熱槽の蓄熱容量を上記以外の期間に合わせた小さな容量としても、この容量を上回る負荷がピーク時のみ冷熱発生機器を過冷却運転すれば、放熱初期には、冷顕熱として放熱することにより小容量化することができ、負荷が小さい時期では、製氷しなくても0℃以上の冷顕熱だけで負荷に対応可能である点に着目し本発明を完成させた。
【0008】
従って、本発明の目的とする所は、実際の負荷の大きさに対応した運転冷却温度を設定することで、実負荷に最適な蓄熱容量を得ることができるとともに、小容量でも大きな負荷に対応することができ、また、負荷が小さい場合では、0℃以上の蓄熱運転とすることにより熱効率が向上し、運転コストの低廉化を図ることができる氷蓄熱方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成する為に、本発明は次の技術的手段を有する。即ち、発明の実施の形態に対応する添付図面中の符号を用いてこれを説明すると、本発明は、冷熱発生機器1の熱交換器3から出た伝熱媒体をポンプ10により蓄熱モード時伝熱管9を介して氷蓄熱槽8に通したのち、再び冷熱発生機器1の熱交換器3に循環することにより冷熱発生機器1で発生した冷熱を氷蓄熱槽8に蓄え、該氷蓄熱槽8から出た伝熱媒体を、ポンプ18によって蓄熱モード時伝熱管9に於ける氷蓄熱槽8の上流から分岐して冷熱使用機器2の熱交換器7を通したのち、氷蓄熱槽8の下流に接続された放熱モード時伝熱管17を介して上記氷蓄熱槽8に通し、
再び冷熱使用機器2の熱交換器7に戻して該氷蓄熱槽8に蓄えられた冷熱を放熱するようにした氷蓄熱方法に於いて、
上記氷蓄熱槽8は、建築物内における年間の平均負荷を基準とする蓄熱容量として設計製作されて成り、負荷が通常時は、氷蓄熱槽8内の温度を0℃とする通常の製氷運転を行い、負荷がピーク時にのみ、冷熱発生機器1が氷蓄熱槽8内を0℃以下とする過冷却運転を行い、熱交換器3により過冷却された伝熱媒体を、蓄熱モード時伝熱管9を介して上記氷蓄熱槽8に通して蓄熱し、放熱モード時における氷蓄熱槽8からの初期放熱時には冷顕熱の放熱を行い、負荷が小さい冬期では、製氷運転を行わず、氷蓄熱槽8内に0℃以上の冷熱を貯え、放熱モード時は、その冷顕熱のみの放熱を行うようにしたことを特徴とする冷顕熱利用による氷蓄熱方法である。
上記によると、氷蓄熱槽8の蓄熱容量を、建築物内における年間の平均負荷を基準とする蓄熱容量として設計製作することで、この容量を上回る負荷がピーク時のみ冷熱発生機器1を過冷却運転すれば、初期放熱時には氷蓄熱槽8から冷顕熱の放熱を行うようにすることにより、建築物内の実際の負荷の大きさに対応した運転冷却温度を設定することで、実負荷に最適な蓄熱容量を得ることができるとともに、冷顕熱を利用することにより小容量でも大きな負荷に対応することができ、併せてイニシャルコストを軽減することができる。また、負荷が小さい冬期においては、製氷運転を行わず、0℃以上の冷顕熱のみを蓄熱して負荷に対応させることにより蓄熱運転の熱効率が向上し、運転コストを軽減することができる。
【0010】
【発明の実施の形態】
次に、添付図面、図1〜図10に従い、本発明の実施の形態を順次詳細に説明する。はじめに本発明の第1実施形態に係る冷顕熱利用による氷蓄熱方法を実施するための氷蓄熱装置につき説明する。図1は本発明の第1実施形態における氷蓄熱方法を実施するための氷蓄熱装置の一例を示す全体図、図2は上記氷蓄熱方法を実施するための氷蓄熱装置の一例を示すもので冷蓄熱槽の一部を破断した側面図である。
【0011】
図1の氷蓄熱装置の全体図において、1は冷熱発生機器としての冷凍機、2は冷熱使用機器を示し、冷凍機1は、熱交換器としての蒸発器3、圧縮機4、凝縮機5、膨張弁6で構成され、冷熱使用機器2は熱交換器としての冷却器7を有する。
【0012】
そして、上記の蒸発器3と氷蓄熱槽8の間に蓄熱モード時に於いて熱媒体を循環させるべく、その間に伝熱管9を配管し、この蓄熱モード時伝熱管9に於ける蒸発器3の下流に、ポンプ10を配設すると共に、氷蓄熱槽8の上流側と下流側に各々開閉弁11、12を配設し、且つ蒸発器3の上流及びポンプ10の下流に各々開閉弁13、14を配設する。
【0013】
また、この蓄熱モード時伝熱管9に於ける氷蓄熱槽8の上流の分岐点15から分岐した放熱モード時伝熱管17は、冷却器7を通過して氷蓄熱槽8の下流の分岐点16に連なり、この伝熱管17の冷却器7の上流にポンプ18を配設する。
【0014】
次に、放熱モード時伝熱管17に於ける冷却器7の上流であって、ポンプ18と分岐点15との間の分岐点19と、冷却器7下流の分岐点20の間をバイパス管21で接続し、上記分岐点19に三方向制御弁22を配設する。
【0015】
この三方向制御弁22は、建築物内に於ける検出温度、人の体感温度、またはプログラム上でスケジューリングされた設定温度等の負荷検出部23からの信号を動作信号として調節器により比例制御のもと三方向切換動作せしめられるもので、図中24は温度発信器、25は調節器、26は設定器を示している。
【0016】
また、冷凍機1もまた負荷検出部23からの信号を動作信号として過負荷運転開始の条件としている。
【0017】
更に、蓄熱モード時伝熱管9に配したポンプ10は、蓄熱モードをとる時のみ駆動するよう操作、または自動動作されるよう制御系が組込まれ、放熱モード時伝熱管17に配したポンプ18は放熱モードをとる時のみ駆動するよう操作、又は自動動作されるようになっている。
【0018】
次に、この装置を構成する氷蓄熱槽8について説明する。
【0019】
図2に示されるように、氷蓄熱槽8は、カプセル式氷蓄熱槽であって、水平静置型として構成されていて、円筒形の胴体27と、この左右両端に取着された胴体蓋28、29を有している。
【0020】
上記胴体蓋28、29の中央には各々接続口30、31が形成され、この接続口30、31を介して伝熱管9に接続されている。
【0021】
上記胴体27の左右両端付近には、上記の接続口30、31に対向して胴体内に仕切壁状に流れ拡散部材32、33が取付けられており、この部材32、33には複数の流通口34が形成され、胴体27の底部にはドレン抜き手段41が設けられている。
【0022】
すなわち、流通口34は、部材32によって仕切られた仕切室35と槽内部36の間を連通する為に形成されていて、その形成態様は中心から周方向へ放射状に形成され、単位面積当りの形成個数が各部略均しくなるように周方向に行くに従い形成個数が増大するようにするのが望ましい。
【0023】
そして、この氷蓄熱槽8の槽内部36には、球状のシェルとして形成された小球状蓄熱体37の多数が槽いっぱい密に収容されている。この小球状蓄熱体37は、凝固温度で液相から固相に変わる時に、固化の潜熱として冷熱を蓄熱し、固相から液相に変わる時に先に蓄熱した冷熱を放出する蓄熱媒体(不図示)を球状のシェル内に充填したものである。
【0024】
上記小球状蓄熱体37の個々の大きさは、直径20mm〜200mmの範囲、例えば90mm程度であるが、この事は冷房、冷凍の条件、蓄放熱運転条件等によって必要な蓄熱槽全体を確保することを基準として定められればよい。望ましくは同時に、氷蓄熱槽8の一定容積中に収容する数が多くなればなるほど、即ち個々の小球状蓄熱体37の直径が小さくなればなるほど製作費が嵩むから、上記の条件を満たすと同時に、この製作上の条件を満たすようにして加工するとよい。
【0025】
また、上記球状シェルの材質としては、金属、合成樹脂等種々あり、外力及び内力に抗して球状を保持できる点や、耐熱性の点、生産加工上の点等から選んで用いられるが、この発明では蓄熱媒体が液相の時に、球状シェル内に蓄熱媒体の非占有の空間が形成されるようにシェルの大きさを定めるものである。同時に蓄熱媒体の凝固による体積膨張時の膨張量を、上記空間と球状シェルの膨張によって、吸収するように空間の大きさを定めるものである。
【0026】
さらに、この発明では、小球状蓄熱体37内には相変化温度が+200℃以下となる蓄熱材が蓄熱媒体として充填される。
【0027】
次に、本発明の冷顕熱利用による氷蓄熱方法に係る第1実施形態につき説明する。図3〜図5は本発明の氷蓄熱方法の第1実施形態に係る蓄熱、放熱モード時の説明図である。
【0028】
上記図に基づいて一連の動作を説明する。図3は蓄熱モードを示している。通常この蓄熱動作は料金の安い深夜の時間帯を利用して行われる。
【0029】
ここで、負荷検出部23からの信号は、動作信号として図示しない制御系の制御により冷凍機1のバックアップ運転制御、または熱交換器7への送り温度一定制御の条件とされる。
【0030】
即ち、この駆動により蒸発器3で発生する冷媒蒸気は、圧縮機4で圧縮されて高圧の過熱蒸気となり、凝縮器5で冷却水に熱を奪われて液体となる。この高圧の液を膨張弁6で減圧し、低圧低温の冷媒を蒸発器3で蒸発させて、凝固点の低い伝熱媒体から蒸発熱をとって、それを冷却する。
【0031】
他方、ポンプ10が運転されると共に、三方向制御弁22は入口aが閉、入口bが開、出口cが開に切換えられていると共にポンプ18も停止しているので、蒸発器3によって冷却された伝熱媒体はポンプ10によって、矢示49のように蒸発器3と氷蓄熱槽8の間を循環する。
【0032】
伝熱媒体が氷蓄熱槽8を通過する時に氷蓄熱槽8内の多数の小球状蓄熱体37と蓄熱媒体が接触することにより、小球状蓄熱体37内の蓄熱媒体が凝固点に於いて固まる。凝固時に固化の潜熱として冷熱が小球状蓄熱体37の蓄熱媒体中に蓄熱される。
【0033】
次に、図4は放熱モードを示しており、この時、図示しない制御系の制御を介して冷凍機1は停止され、ポンプ10も停止されている。他方、ポンプ18が駆動し、三方向制御弁22は負荷の度合(負荷検出部23の例えば電気信号)によって開度制御し、矢示50のように伝熱媒体をポンプ18により、氷蓄熱槽8と冷却器7の間に循環させるものである。
【0034】
冷却器7を経由した後の伝熱媒体が氷蓄熱槽8中を通過すると、氷蓄熱槽8内を小球状蓄熱体37に伝えられ、融解点に至ると、それを融解し、先に蓄熱した冷熱を融解の潜熱として放熱する。従って、伝熱媒体が冷却されて、冷房、冷凍負荷に応ずる。
【0035】
次に図5は、バックアップ運転の放熱モードを示すものであり、必要に応じて実施される。即ち前述の放熱モードにおいて、実際検出温度と設定温度とが均等にコントロールされていくと、三方向制御弁22が切換えられて、放熱モードと同じように負荷の度合によって開度制御し、蓄熱槽では対応できない負荷の一部については、ポンプ10及び冷凍機1の運転により対応する。
【0036】
これにより、冷却器7を出た伝熱媒体が、矢示52のように、氷蓄熱槽8のみならずポンプ10によって蒸発器3をも通り、氷蓄熱槽8を出た伝熱媒体と分岐点15の所で合流し冷却器7に送られるものである。
【0037】
本実施形態の場合では、夏季などの負荷ピーク時のみ冷凍機1を、氷蓄熱槽8内を0℃以下になるよう過冷却運転させることにより、冷顕熱分、蓄熱量を増やすことができ、小さな蓄熱容量でありながら非常に大きな負荷に対応することができ、併せてイニシャルコストを軽減することができる。
【0038】
また、負荷が小さい冬期においては、蓄熱モード(図3参照)において、冷凍機1の出力温度を0℃以上に設定し、蓄熱槽での製氷運転を行わず、0℃以上の冷顕熱のみを貯える。これにより、冷凍機の運転効率が向上し、運転コストを削減することができる。放熱モード(図4、図5参照)においては前述のとおりである。
【0039】
次に、本発明の第2実施形態に係る氷蓄熱方法を実施するための氷蓄熱装置につき説明する。なお、上記実施形態の構成部分と同一構成部分については同一符号を付し、詳細な説明を省略する。
【0040】
図6は、本発明の第2実施形態における氷蓄熱装置の一例を示す全体図である。この氷蓄熱装置は、図1に示される氷蓄熱装置に対し更に付加冷熱発生機器としての付加冷凍機を付加したものである。
【0041】
図6において、38は付加冷凍機であり、この付加冷凍機38は上記冷凍機1と同一構成を有しており、冷凍機1と氷蓄熱槽8の間に配置されている。
【0042】
更に詳しくは、付加冷凍機38は、蓄熱モード時伝熱管9に於ける蒸発器3下流の分岐点42に接続されたバイパス管48に設けられており、蒸発器3の上流側にはポンプ43が、下流側には開閉弁44が配設され、上記分岐点42には三方向制御弁40が配設されている。
【0043】
三方向制御弁40は、建築物内に於ける検出温度、人の体感温度、または制御系のプログラム上でスケジューリングされた設定温度等の負荷検出部23からの信号を動作信号として比例制御のもと三方向切換動作せしられるもので、冷凍機1のバックアップ運転制御、または熱交換器7への送り温度一定制御の条件としている。
【0044】
次に、本発明の氷蓄熱方法に係る第2実施形態につき説明する。図7〜図10は本発明の氷蓄熱方法の第2実施形態に係る蓄熱、放熱モード時の説明図である。なお、上記実施形態の作用、構成並びに効果と同一部分については同一符号を付し、詳細な説明を省略する。
【0045】
上記図に基づいて一連の動作を説明する。図7は蓄熱モードを示している。ここで、負荷検出部23からの信号は、動作信号として図示しない制御系の制御により冷凍機1のバックアップ運転、または熱交換器7への送り温度一定制御の条件とされる。
【0046】
ポンプ10が運転されると、三方向制御弁40は入口aが開、入口bが閉、出口cが開に切換えられているので、蒸発器3によって冷却された伝熱媒体はポンプ10によって、矢示50のように蒸発器3と氷蓄熱槽8の間を循環する。
【0047】
次に、図8は蓄熱モードを示しており、建築物内の温度が上昇し、これが負荷検出部23により例えば電気的に検出されると、三方向制御弁40が切換えられて入口aが開、入口bが開、出口cが閉に切換えられてバイパス管48の流路が開放され、同時に冷凍機38が過冷却運転を始める。
【0048】
この蓄熱モードの場合では、負荷ピーク時のみ冷凍機38を過冷却運転することにより、氷蓄熱槽8は通常期以上の蓄熱量を過冷却された冷顕熱として蓄熱される。
【0049】
次に、図9は放熱モードを示しており、この循環経路を示す矢示53は図4に示される上記実施形態における放熱モードの循環経路の矢示50と同一経路がとられる。
【0050】
更に、図10はバックアップ運転の放熱モードを示すものであり、必要に応じて実施される。即ち前述の放熱モードにおいて、建築物内の温度が上昇し、これが負荷検出部23により例えば電気的に検出されると、この検出信号により三方向制御弁40は入口a開、入口bが開、出口cが閉に切換えられてバイパス管48の流路が開放されると同時に、ポンプ43及び冷凍機38が運転される。
【0051】
これにより、冷却器7を出た伝熱媒体が、矢示54のように、氷蓄熱槽8のみならずポンプ10によって蒸発器3を通り、更に切換えられた三方向制御弁40からポンプ43によって矢示51に沿って付加冷凍機38の蒸発器3をも通り、氷蓄熱槽8を出た伝熱媒体と分岐点15の所で合流し冷却器7に送られるものである。
【0052】
本実施形態の場合では、負荷ピーク時にのみ冷凍機38を、過冷却運転させることにより、冷顕熱分、蓄熱量を増やすことができ、小さな蓄熱容量でありながら非常に大きな負荷に対応することができ、実負荷に最適な蓄熱容量を得ることができる。
【0053】
負荷が小さい冬期においては、蓄熱モード(図7参照)において、冷凍機1の出力温度を0℃以上に設定して蓄熱槽での製氷運転を行わず、0℃以上の冷顕熱のみを貯える。これにより、冷凍機の運転効率が向上し、運転コストを削減することができる。放熱モード(図9、図10参照)においては、前述のとおりである。
【0054】
【発明の効果】
本発明は次の効果を奏する。
【0055】
以上詳述した如く本願の請求項1記載の発明によると、氷蓄熱槽8の蓄熱容量を、建築物内における年間の平均負荷を基準とする蓄熱容量として設計製作することで、この容量 を上回る負荷がピーク時のみ冷熱発生機器1を過冷却運転すれば、初期放熱時には冷顕熱の放熱を行うことにより、実際の負荷の大きさに対応した運転冷却温度を設定することで、氷蓄熱槽が実負荷に最適な蓄熱容量を得ることができるとともに、小容量でも大きな負荷に対応することができ、併せてイニシャルコストを軽減することができる。また、設計負荷の変更に対応することができ、さらに蓄熱槽設計の自由度も向上する。
また、負荷が小さい冬期では、製氷運転を行わず、0℃以上の冷顕熱のみを蓄熱、放熱するため、蓄熱運転時の運転効率が向上し、運転コストを軽減することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態における氷蓄熱方法を実施するための氷蓄熱装置の一例を示す全体図である。
【図2】 氷蓄熱方法を実施するための氷蓄熱装置の一例を示すもので冷蓄熱槽の一部を破断した側面図である。
【図3】 本発明の氷蓄熱方法の第1実施形態に係る蓄熱、放熱モード時の説明図である。
【図4】 本発明の氷蓄熱方法の第1実施形態に係る蓄熱、放熱モード時の説明図である。
【図5】 本発明の氷蓄熱方法の第1実施形態に係る蓄熱、放熱モード時の説明図である。
【図6】 本発明の第2実施形態における氷蓄熱装置の一例を示す全体図である。
【図7】 本発明の氷蓄熱方法の第2実施形態に係る蓄熱、放熱モード時の説明図である。
【図8】 本発明の氷蓄熱方法の第2実施形態に係る蓄熱、放熱モード時の説明図である。
【図9】 本発明の氷蓄熱方法の第2実施形態に係る蓄熱、放熱モード時の説明図である。
【図10】 本発明の氷蓄熱方法の第2実施形態に係る蓄熱、放熱モード時の説明図である。
【図11】 従来の蓄熱冷房装置の全体図である。
【符号の説明】
1 冷凍機(冷熱発生機器)
2 冷熱使用機器
3 蒸発器(熱交換器)
4 圧縮機
5 凝縮機
6 膨張弁
7 冷却器(熱交換器)
8 氷蓄熱槽
9 蓄熱モード時伝熱管
10 ポンプ
11、12 開閉弁
13、14 開閉弁
15、16 分岐点
17 放熱モード時伝熱管
18 ポンプ
19、20 分岐点
21 バイパス管
22 三方向制御弁
23 負荷検出部
27 胴体
28、29 胴体蓋
30、31 接続口
32、33 拡散部材
34 流通口
35 仕切室
36 槽内部
37 小球状蓄熱体
38 付加冷凍機
40 三方向制御弁
41 ドレン抜き手段
42 分岐点
43 ポンプ
44 開閉弁
48 バイパス管
[0001]
[Industrial application fields]
The present invention relates to an ice heat storage method using cold sensible heat, and in particular, the heat storage capacity of an ice heat storage tank is designed to be small, and when the load is at a peak, a heat storage capacity suitable for an actual load is obtained by supercooling operation of the cold heat generating device. On the other hand, when the load is small, the present invention relates to an ice heat storage method in which ice making operation is not performed and only cold sensible heat of 0 ° C. or higher is stored and radiated.
[0002]
[Prior art]
As is well known, the heat storage method using a latent heat storage material has a large heat storage density compared to the sensible heat utilization technology, so that a considerable amount of heat can be obtained and the device can be made compact. , Has been attracting attention recently. Therefore, technologies such as latent heat storage materials, heat storage tanks using them, and latent heat storage methods, devices, systems, etc. using them have been developed, and proposals centered on latent heat storage materials especially for solar heat. Is made.
[0003]
For example, as shown in FIG. 11, a heat storage mode in which the heat transfer medium exiting the compressor A and the condenser B is passed through the heat storage tank C and circulated again, and the heat transfer medium is stored in the heat storage tank C and the air cooler. Thermal storage cooling devices that enable a heat dissipation mode to circulate during D are known.
[0004]
This is a considerably effective technique, but in this prior art, in the heat dissipation mode, the entire amount of the heat transfer medium that has always left the air cooler D passes through the heat storage tank C and is returned to the air cooler D again. This is a simple structure, and there is no special device to control and supply the heat transfer medium to the heat using device according to the heat using condition of the device such as the air cooler. In order to put it into practical use without leaving the scope of experimental research, many problems remain to be solved.
[0005]
Therefore, the present applicants pay attention to the fact that if the flow rate of the heat transfer medium passing through the heat storage tank is changed, the amount of heat released from the heat storage tank to the heat transfer medium will change. By detecting the actual temperature of the heat transfer medium entering the equipment-side heat exchanger and using it as an operation signal, the flow rate of the heat transfer medium passing through the heat storage tank is manipulated to supply the heat exchanger on the heat-using equipment side We have developed a device that can constantly adapt and control the temperature of the heat transfer medium in accordance with the heat use conditions of the heat-use equipment that has been determined in advance. This is disclosed as Japanese Patent Publication No. 5-81832.
[0006]
[Problems to be solved by the invention]
However, this technology is designed to match the peak load during the hot summer season as a condition for determining the heat storage capacity when designing an ice storage tank, so there is little other load. During most of the period, the cold heat generator is operated at an output of about 60% of the total output, so it has a considerable capacity as an ice heat storage tank, while the cold load in winter is small. The ice making operation with low thermal efficiency was performed.
[0007]
Therefore, the applicants have further researched, and even if the heat storage capacity of the ice storage tank is set to a small capacity combined with a period other than the above, if the cooling generator is supercooled only when the load exceeding this capacity is at its peak , heat dissipation Initially, the capacity can be reduced by dissipating heat as cold sensible heat, and it is possible to respond to the load only with cold sensible heat of 0 ° C or higher without ice making when the load is small. The present invention has been completed.
[0008]
Therefore, the object of the present invention is to set the operation cooling temperature corresponding to the actual load size, so that the optimum heat storage capacity for the actual load can be obtained, and even a small capacity corresponds to a large load. It is also possible to provide an ice heat storage method that can improve the thermal efficiency and reduce the operating cost by performing the heat storage operation at 0 ° C. or higher when the load is small.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following technical means. That is, this will be described using reference numerals in the accompanying drawings corresponding to the embodiments of the present invention. In the present invention, the heat transfer medium discharged from the heat exchanger 3 of the cold heat generating device 1 is transferred by the pump 10 in the heat storage mode. After passed through the ice heat storage tank 8 via the heat pipe 9, stored cold thermal energy generated in the cold generating apparatus 1 to the ice heat storage tank 8 by circulating back to the heat exchanger 3 of the cold generating apparatus 1, the ice heat storage tank 8 The heat transfer medium discharged from the pipe 18 is branched from the upstream of the ice heat storage tank 8 in the heat transfer pipe 9 in the heat storage mode 9 by the pump 18 , passes through the heat exchanger 7 of the cold energy use device 2, and then downstream of the ice heat storage tank 8. Through the ice heat storage tank 8 through the heat transfer pipe 17 in the heat dissipation mode connected to
In the ice thermal storage method so as to radiate the cold stored in the ice heat storage tank 8 to return to the heat exchanger 7 of cold using apparatus 2 again,
The ice heat storage tank 8 is made is engineered load average annual in buildings within the heat storage capacity of the reference, the load is normal, the normal ice making that the temperature in the ice heat storage tank 8 and 0 ℃ performs the operation, load only during peak performs supercooling operation cold generating device 1 through the ice heat storage tank 8, 0 ℃ less, the heat transfer medium which is supercooled by the heat exchanger 3, the heat storage mode Heat is stored through the ice heat storage tank 8 through the heat transfer tube 9, and heat is released from the cold sensible heat at the time of initial heat release from the ice heat storage tank 8 in the heat release mode. In the winter when the load is small, ice making operation is not performed. The ice heat storage method using cold sensible heat is characterized in that cold heat of 0 ° C. or higher is stored in the ice heat storage tank 8 and only the cold sensible heat is radiated in the heat release mode.
According to the above, the heat storage capacity of the ice storage tank 8 is designed and manufactured as a heat storage capacity based on the annual average load in the building, so that the cold heat generating device 1 is supercooled only when the load exceeding this capacity is at its peak. If it is operated , the cold cooling heat is radiated from the ice heat storage tank 8 at the time of initial heat radiation, and by setting the operation cooling temperature corresponding to the actual load in the building, An optimum heat storage capacity can be obtained, and by using cold sensible heat, a large load can be accommodated even with a small capacity, and the initial cost can be reduced. Further, in winter when the load is small, the ice making operation is not performed, and only the cold sensible heat of 0 ° C. or higher is stored to correspond to the load, thereby improving the thermal efficiency of the heat storage operation and reducing the operation cost.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be sequentially described in detail with reference to the accompanying drawings and FIGS. First, an ice heat storage device for implementing an ice heat storage method using cold sensible heat according to a first embodiment of the present invention will be described. FIG. 1 is an overall view showing an example of an ice heat storage device for carrying out the ice heat storage method according to the first embodiment of the present invention, and FIG. 2 shows an example of an ice heat storage device for carrying out the ice heat storage method. It is the side view which fractured | ruptured a part of cold storage tank.
[0011]
In the overall view of the ice heat storage device of FIG. 1, reference numeral 1 denotes a refrigerator as a cold heat generating device, 2 denotes a cold heat using device, and the refrigerator 1 includes an evaporator 3, a compressor 4 and a condenser 5 as heat exchangers. The apparatus 2 for use with cold heat has a cooler 7 as a heat exchanger.
[0012]
In order to circulate the heat medium between the evaporator 3 and the ice heat storage tank 8 in the heat storage mode, a heat transfer tube 9 is piped between them, and the evaporator 3 in the heat transfer tube 9 in the heat storage mode 9 The pump 10 is disposed downstream, the on-off valves 11 and 12 are disposed on the upstream side and the downstream side of the ice heat storage tank 8, and the on-off valves 13 and 12 are disposed upstream of the evaporator 3 and downstream of the pump 10, respectively. 14 is disposed.
[0013]
In addition, the heat transfer mode heat transfer pipe 17 branched from the branch point 15 upstream of the ice heat storage tank 8 in the heat storage mode heat transfer pipe 9 passes through the cooler 7 and the branch point 16 downstream of the ice heat storage tank 8. The pump 18 is disposed upstream of the cooler 7 of the heat transfer tube 17.
[0014]
Next, a bypass pipe 21 is provided between the branch point 19 upstream of the cooler 7 in the heat transfer pipe 17 in the heat dissipation mode and between the pump 18 and the branch point 15 and the branch point 20 downstream of the cooler 7. The three-way control valve 22 is disposed at the branch point 19.
[0015]
The three-way control valve 22 is controlled proportionally by a regulator using a signal from the load detection unit 23 such as a detected temperature in the building, a human sensory temperature, or a set temperature scheduled in a program as an operation signal. Originally, three-way switching operation is performed. In the figure, 24 indicates a temperature transmitter, 25 indicates a regulator, and 26 indicates a setter.
[0016]
The refrigerator 1 also uses the signal from the load detection unit 23 as an operation signal as a condition for starting overload operation.
[0017]
In addition, the pump 10 disposed in the heat transfer mode 9 heat transfer tube 9 has a control system incorporated so as to be operated or automatically operated only when the heat storage mode is taken. It is designed to be operated or automatically operated only when the heat dissipation mode is taken.
[0018]
Next, the ice heat storage tank 8 which comprises this apparatus is demonstrated.
[0019]
As shown in FIG. 2, the ice heat storage tank 8 is a capsule-type ice heat storage tank, and is configured as a horizontal stationary type, and has a cylindrical body 27 and a body lid 28 attached to both left and right ends. , 29.
[0020]
Connection ports 30 and 31 are formed in the center of the body lids 28 and 29, respectively, and are connected to the heat transfer tube 9 through the connection ports 30 and 31.
[0021]
Near the left and right ends of the body 27, flow diffusion members 32 and 33 are attached in the form of partition walls in the body so as to face the connection ports 30 and 31. A mouth 34 is formed, and a draining means 41 is provided at the bottom of the body 27.
[0022]
That is, the circulation port 34 is formed to communicate between the partition chamber 35 partitioned by the member 32 and the tank interior 36, and the formation mode is formed radially from the center to the circumferential direction, and per unit area. It is desirable to increase the number of formations as it goes in the circumferential direction so that the number of formations becomes approximately equal.
[0023]
And in the tank inside 36 of this ice heat storage tank 8, many of the small spherical heat storage bodies 37 formed as a spherical shell are accommodated densely in the whole tank. The small spherical heat storage body 37 stores a cold heat as latent heat of solidification when changing from a liquid phase to a solid phase at a solidification temperature, and releases a cold heat stored earlier when changing from a solid phase to a liquid phase (not shown). ) In a spherical shell.
[0024]
The individual size of the small spherical heat storage body 37 is in the range of 20 mm to 200 mm in diameter, for example, about 90 mm. This means that the necessary heat storage tank is ensured depending on the cooling, freezing conditions, heat storage and heat dissipation operation conditions, and the like. It may be determined on the basis of this. Desirably, at the same time, the more the number accommodated in the fixed volume of the ice heat storage tank 8, that is, the smaller the diameter of each small spherical heat storage body 37, the higher the production cost. Then, it is preferable to process so as to satisfy the manufacturing conditions.
[0025]
The material of the spherical shell is various, such as metal and synthetic resin, and can be selected and used from the point of being able to hold the sphere against external force and internal force, heat resistance, production processing point, etc. In the present invention, when the heat storage medium is in a liquid phase, the size of the shell is determined so that a space not occupied by the heat storage medium is formed in the spherical shell. At the same time, the size of the space is determined so as to absorb the expansion amount at the time of volume expansion due to solidification of the heat storage medium by the expansion of the space and the spherical shell.
[0026]
Further, in the present invention, the small spherical heat storage body 37 is filled with a heat storage material having a phase change temperature of + 200 ° C. or less as a heat storage medium.
[0027]
Next, a first embodiment according to the ice heat storage method using cold sensible heat of the present invention will be described. 3-5 is explanatory drawing at the time of the thermal storage and heat dissipation mode which concern on 1st Embodiment of the ice thermal storage method of this invention.
[0028]
A series of operations will be described with reference to the above figure. FIG. 3 shows the heat storage mode. Usually, this heat storage operation is performed by using a midnight time zone where the charge is low.
[0029]
Here, the signal from the load detection unit 23 is set as a condition for controlling the backup operation of the refrigerator 1 or controlling the feed temperature to the heat exchanger 7 by the control of a control system (not shown) as an operation signal.
[0030]
That is, the refrigerant vapor generated in the evaporator 3 by this driving is compressed by the compressor 4 to become high-pressure superheated steam, and the condenser 5 removes heat from the cooling water to become liquid. The high-pressure liquid is decompressed by the expansion valve 6, the low-pressure and low-temperature refrigerant is evaporated by the evaporator 3, the heat of evaporation is taken from the heat transfer medium having a low freezing point, and it is cooled.
[0031]
On the other hand, as the pump 10 is operated, the three-way control valve 22 is cooled by the evaporator 3 because the inlet a is closed, the inlet b is opened, the outlet c is switched to open, and the pump 18 is also stopped. The heat transfer medium is circulated between the evaporator 3 and the ice heat storage tank 8 by the pump 10 as indicated by an arrow 49.
[0032]
When the heat transfer medium passes through the ice heat storage tank 8, the heat storage medium comes into contact with the large number of small spherical heat storage bodies 37 in the ice heat storage tank 8, so that the heat storage medium in the small spherical heat storage body 37 is hardened at the freezing point. Cold heat is stored in the heat storage medium of the small spherical heat storage body 37 as latent heat of solidification during solidification.
[0033]
Next, FIG. 4 shows a heat radiation mode. At this time, the refrigerator 1 is stopped and the pump 10 is also stopped through control of a control system (not shown). On the other hand, the pump 18 is driven, the opening degree of the three-way control valve 22 is controlled by the degree of load (for example, an electric signal of the load detection unit 23), and the heat transfer medium is pumped by the pump 18 as indicated by an arrow 50, and the ice storage tank 8 and the cooler 7 are circulated.
[0034]
When the heat transfer medium after passing through the cooler 7 passes through the ice heat storage tank 8, the inside of the ice heat storage tank 8 is transmitted to the small spherical heat storage body 37, and when it reaches the melting point, it is melted and heat storage is performed first. The cold heat is released as latent heat of melting. Therefore, the heat transfer medium is cooled and responds to cooling and refrigeration loads.
[0035]
Next, FIG. 5 shows the heat radiation mode of the backup operation, which is performed as necessary. That is, in the above-described heat dissipation mode, when the actually detected temperature and the set temperature are controlled uniformly, the three-way control valve 22 is switched, and the opening degree is controlled according to the degree of load as in the heat dissipation mode. However, some of the loads that cannot be handled are handled by the operation of the pump 10 and the refrigerator 1.
[0036]
As a result, the heat transfer medium that has exited the cooler 7 passes through the evaporator 3 by the pump 10 as well as the ice heat storage tank 8 and branches off from the heat transfer medium that has exited the ice heat storage tank 8 as indicated by arrow 52. They are merged at point 15 and sent to the cooler 7.
[0037]
In the case of the present embodiment, the sensible heat amount and the amount of heat storage can be increased by performing the supercooling operation of the refrigerator 1 so that the inside of the ice heat storage tank 8 is 0 ° C. or lower only at a load peak such as summer. Although it has a small heat storage capacity, it can cope with a very large load, and the initial cost can be reduced.
[0038]
In winter, when the load is small, in the heat storage mode (see Fig. 3), the output temperature of the refrigerator 1 is set to 0 ° C or higher, and ice making operation is not performed in the heat storage tank, and only cold sensible heat of 0 ° C or higher is performed. Store. Thereby, the operating efficiency of the refrigerator can be improved and the operating cost can be reduced. The heat dissipation mode (see FIGS. 4 and 5) is as described above.
[0039]
Next, an ice heat storage device for carrying out the ice heat storage method according to the second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected about the component same as the component of the said embodiment, and detailed description is abbreviate | omitted.
[0040]
FIG. 6 is an overall view showing an example of the ice heat storage device in the second embodiment of the present invention. This ice heat storage device is obtained by adding an additional refrigerator as an additional cold heat generating device to the ice heat storage device shown in FIG.
[0041]
In FIG. 6, reference numeral 38 denotes an additional refrigerator, and this additional refrigerator 38 has the same configuration as the refrigerator 1 and is disposed between the refrigerator 1 and the ice heat storage tank 8.
[0042]
More specifically, the additional refrigerator 38 is provided in a bypass pipe 48 connected to a branch point 42 downstream of the evaporator 3 in the heat transfer pipe 9 in the heat storage mode, and a pump 43 is provided upstream of the evaporator 3. However, an on-off valve 44 is disposed on the downstream side, and a three-way control valve 40 is disposed at the branch point 42.
[0043]
The three-way control valve 40 performs proportional control using a signal from the load detection unit 23 such as a detected temperature in the building, a human sensory temperature, or a set temperature scheduled in a control system program as an operation signal. The three-way switching operation is performed as a condition for controlling the backup operation of the refrigerator 1 or controlling the feed temperature to the heat exchanger 7 constant.
[0044]
Next, a second embodiment according to the ice heat storage method of the present invention will be described. FIGS. 7-10 is explanatory drawing at the time of the thermal storage and heat dissipation mode which concern on 2nd Embodiment of the ice thermal storage method of this invention. In addition, the same code | symbol is attached | subjected about the part same as the effect | action of the said embodiment, a structure, and an effect, and detailed description is abbreviate | omitted.
[0045]
A series of operations will be described with reference to the above figure. FIG. 7 shows the heat storage mode. Here, the signal from the load detection unit 23 is set as a condition for the backup operation of the refrigerator 1 or the constant control of the feed temperature to the heat exchanger 7 under the control of a control system (not shown) as an operation signal.
[0046]
When the pump 10 is operated, the three-way control valve 40 is switched to the inlet a being opened, the inlet b being closed, and the outlet c being opened, so that the heat transfer medium cooled by the evaporator 3 is It circulates between the evaporator 3 and the ice heat storage tank 8 as indicated by an arrow 50.
[0047]
Next, FIG. 8 shows a heat storage mode. When the temperature in the building rises and this is detected electrically, for example, by the load detector 23, the three-way control valve 40 is switched to open the inlet a. , The inlet b is opened and the outlet c is switched to be closed, the flow path of the bypass pipe 48 is opened, and at the same time, the refrigerator 38 starts a supercooling operation.
[0048]
In the case of this heat storage mode, the ice storage tank 8 stores the amount of heat stored in the ice storage tank 8 as the overcooled cold sensible heat by supercooling the refrigerator 38 only at the load peak.
[0049]
Next, FIG. 9 shows a heat radiation mode, and an arrow 53 indicating this circulation path is the same as the arrow 50 of the circulation path in the heat radiation mode in the embodiment shown in FIG.
[0050]
Further, FIG. 10 shows a heat release mode of the backup operation, which is performed as necessary. That is, in the above-described heat dissipation mode, when the temperature in the building rises and this is detected electrically, for example, by the load detection unit 23, the three-way control valve 40 opens the inlet a and opens the inlet b by this detection signal. At the same time as the outlet c is switched to close and the flow path of the bypass pipe 48 is opened, the pump 43 and the refrigerator 38 are operated.
[0051]
As a result, the heat transfer medium exiting the cooler 7 passes through the evaporator 3 by the pump 10 as well as the ice heat storage tank 8 as indicated by an arrow 54, and is further switched by the pump 43 from the switched three-way control valve 40. It passes through the evaporator 3 of the additional refrigerator 38 along the arrow 51, joins the heat transfer medium exiting the ice heat storage tank 8 at the branch point 15, and is sent to the cooler 7.
[0052]
In the case of the present embodiment, the chiller 38 can be increased in the amount of cold sensible heat and the amount of heat stored by performing the supercooling operation only at the load peak, and can handle a very large load while having a small heat storage capacity. And the optimum heat storage capacity for the actual load can be obtained.
[0053]
In the winter when the load is small, in the heat storage mode (see FIG. 7), the output temperature of the refrigerator 1 is set to 0 ° C. or higher and ice making operation in the heat storage tank is not performed, and only cold sensible heat of 0 ° C. or higher is stored. . Thereby, the operating efficiency of the refrigerator can be improved and the operating cost can be reduced. The heat dissipation mode (see FIGS. 9 and 10) is as described above.
[0054]
【The invention's effect】
The present invention has the following effects.
[0055]
As described in detail above, according to the invention described in claim 1 of the present application, the heat storage capacity of the ice heat storage tank 8 is designed and manufactured as a heat storage capacity based on the average annual load in the building, and thus exceeds this capacity . If the cooling generator 1 is supercooled only when the load is at its peak, the sensible heat is dissipated during the initial heat release, thereby setting the operation cooling temperature corresponding to the actual load size, so that the ice heat storage tank However, it is possible to obtain an optimum heat storage capacity for an actual load, to cope with a large load even with a small capacity, and to reduce the initial cost. Moreover, it can respond to the change of design load, and also the freedom degree of heat storage tank design improves.
In winter, when the load is small, ice making operation is not performed, and only cold sensible heat of 0 ° C. or higher is stored and dissipated, so that the operation efficiency during the heat storage operation is improved and the operation cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an overall view showing an example of an ice heat storage device for carrying out an ice heat storage method according to a first embodiment of the present invention.
FIG. 2 is a side view showing an example of an ice heat storage device for carrying out an ice heat storage method, with a part of a cold heat storage tank cut away.
FIG. 3 is an explanatory view in a heat storage and heat dissipation mode according to the first embodiment of the ice heat storage method of the present invention.
FIG. 4 is an explanatory view in a heat storage and heat dissipation mode according to the first embodiment of the ice heat storage method of the present invention.
FIG. 5 is an explanatory diagram in a heat storage and heat dissipation mode according to the first embodiment of the ice heat storage method of the present invention.
FIG. 6 is an overall view showing an example of an ice heat storage device in a second embodiment of the present invention.
FIG. 7 is an explanatory diagram of a heat storage and heat dissipation mode according to a second embodiment of the ice heat storage method of the present invention.
FIG. 8 is an explanatory view in a heat storage and heat dissipation mode according to a second embodiment of the ice heat storage method of the present invention.
FIG. 9 is an explanatory view in a heat storage and heat dissipation mode according to a second embodiment of the ice heat storage method of the present invention.
FIG. 10 is an explanatory view in a heat storage and heat dissipation mode according to a second embodiment of the ice heat storage method of the present invention.
FIG. 11 is an overall view of a conventional heat storage cooling device.
[Explanation of symbols]
1 Refrigerator (Cooling heat generator)
2 Chilled equipment 3 Evaporator (heat exchanger)
4 Compressor 5 Condenser 6 Expansion valve 7 Cooler (heat exchanger)
8 Ice storage tank 9 Heat transfer mode heat transfer pipe 10 Pump 11, 12 On-off valve 13, 14 On-off valve 15, 16 Branch point 17 Heat release pipe in heat release mode 18 Pump 19, 20 Branch point 21 Bypass pipe 22 Three-way control valve 23 Load Detector 27 Body 28, 29 Body lid 30, 31 Connection port 32, 33 Diffusion member 34 Flow port 35 Partition chamber 36 Inside the tank 37 Small spherical heat storage body 38 Additional refrigerator 40 Three-way control valve 41 Drain removal means 42 Branch point 43 Pump 44 On-off valve 48 Bypass pipe

Claims (1)

冷熱発生機器1の熱交換器3から出た伝熱媒体をポンプ10により蓄熱モード時伝熱管9を介して氷蓄熱槽8に通したのち、再び冷熱発生機器1の熱交換器3に循環する事により冷熱発生機器1で発生した冷熱を氷蓄熱槽8に蓄え、該氷蓄熱槽8から出た伝熱媒体を、ポンプ18によって蓄熱モード時伝熱管9に於ける氷蓄熱槽8の上流から分岐して冷熱使用機器2の熱交換器7を通したのち、氷蓄熱槽8の下流に接続された放熱モード時伝熱管17を介して上記氷蓄熱槽8に通し、再び冷熱使用機器2の熱交換器7に戻して該氷蓄熱槽8に蓄えられた冷熱を放熱するようにした氷蓄熱方法に於いて、
上記氷蓄熱槽8は、建築物内における年間の平均負荷を基準とする蓄熱容量として設計製作されて成り、負荷が通常時は、氷蓄熱槽8内の温度を0℃とする通常の製氷運転を行い、負荷がピーク時にのみ、冷熱発生機器1が氷蓄熱槽8内を0℃以下とする過冷却運転を行い、熱交換器3により過冷却された伝熱媒体を、蓄熱モード時伝熱管9を介して上記氷蓄熱槽8に通して蓄熱し、放熱モード時における氷蓄熱槽8からの初期放熱時には冷顕熱の放熱を行い、負荷が小さい冬期では、製氷運転を行わず、氷蓄熱槽8内に0℃以上の冷熱を貯え、放熱モード時は、その冷顕熱のみの放熱を行うようにしたことを特徴とする冷顕熱利用による氷蓄熱方法。
After passing the heat transfer medium exiting from the heat exchanger 3 of the cold generating apparatus 1 in the ice heat storage tank 8 through the heat storage mode heat transfer tube 9 by a pump 10 to circulate again to the heat exchanger 3 of the cold generating apparatus 1 stored cold thermal energy generated in the cold generating apparatus 1 by thing into the ice heat storage tank 8, a heat transfer medium exiting from the ice heat storage tank 8, from upstream in the ice heat storage tank 8 to the heat storage mode heat transfer tube 9 by a pump 18 After branching and passing through the heat exchanger 7 of the cold energy storage device 2, it passes through the ice heat storage tank 8 via the heat transfer pipe 17 in the heat dissipation mode connected downstream of the ice heat storage tank 8, and again of the cold energy use device 2. in the ice thermal storage method so as to radiate the cold stored in the ice heat storage tank 8 to return to the heat exchanger 7,
The ice heat storage tank 8 is made is engineered load average annual in buildings within the heat storage capacity of the reference, the load is normal, the normal ice making that the temperature in the ice heat storage tank 8 and 0 ℃ performs the operation, load only during peak performs supercooling operation cold generating device 1 through the ice heat storage tank 8, 0 ℃ less, the heat transfer medium which is supercooled by the heat exchanger 3, the heat storage mode Heat is stored through the ice heat storage tank 8 through the heat transfer tube 9, and heat is released from the cold sensible heat during the initial heat release from the ice heat storage tank 8 in the heat release mode, and in the winter when the load is small, ice making operation is not performed. An ice heat storage method using cold sensible heat, wherein cold heat of 0 ° C. or higher is stored in the ice heat storage tank 8 and only the cold sensible heat is radiated in the heat release mode.
JP2000220350A 2000-07-21 2000-07-21 Ice storage method using cold sensible heat Expired - Fee Related JP3639960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220350A JP3639960B2 (en) 2000-07-21 2000-07-21 Ice storage method using cold sensible heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220350A JP3639960B2 (en) 2000-07-21 2000-07-21 Ice storage method using cold sensible heat

Publications (2)

Publication Number Publication Date
JP2002031377A JP2002031377A (en) 2002-01-31
JP3639960B2 true JP3639960B2 (en) 2005-04-20

Family

ID=18714971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220350A Expired - Fee Related JP3639960B2 (en) 2000-07-21 2000-07-21 Ice storage method using cold sensible heat

Country Status (1)

Country Link
JP (1) JP3639960B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281650A (en) * 2008-05-21 2009-12-03 Daikin Ind Ltd Heating system
CN110848839A (en) * 2019-11-06 2020-02-28 珠海新源热力有限公司 Regional cold supply system and method capable of dynamically accumulating cold

Also Published As

Publication number Publication date
JP2002031377A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
JP2004257586A (en) Refrigerator using carbon dioxide as refrigerant
US4712387A (en) Cold plate refrigeration method and apparatus
JP2010175136A (en) Geothermal heat pump device
KR100789436B1 (en) Complex heating and cooling system
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2013083439A5 (en)
JP2013083439A (en) Hot water supply air conditioning system
JP3639960B2 (en) Ice storage method using cold sensible heat
KR200419304Y1 (en) Complex heating and cooling system
JP2000205774A (en) Capsulated heat storage apparatus
JPS61243284A (en) Cold heat accumulating tank provided with plural temperature zone
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
KR101770806B1 (en) cold or hot storage system
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
KR102287461B1 (en) Hybrid adsorption chiller having dual condensers with renewable energy and method for operating the same
KR102329432B1 (en) Hybrid adsorption chiller having super colling chain with renewable energy and method for operating the same
CN211146775U (en) Ice-making air conditioner
JPS58124138A (en) Controlling method of driving auxiliary heat source in regenerative air conditioner
JPS5855434B2 (en) Method and device for preventing supercooling of heat storage device
JPS5920943B2 (en) Air conditioning equipment
JPS5916764Y2 (en) Refrigeration equipment for nuclear power plants
JPH04139363A (en) Hydrogen occlusion heat pump
JP2751695B2 (en) Heat storage type cooling device
JPH1038401A (en) Heat storage type freezer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees