JPH04139363A - Hydrogen occlusion heat pump - Google Patents

Hydrogen occlusion heat pump

Info

Publication number
JPH04139363A
JPH04139363A JP26069990A JP26069990A JPH04139363A JP H04139363 A JPH04139363 A JP H04139363A JP 26069990 A JP26069990 A JP 26069990A JP 26069990 A JP26069990 A JP 26069990A JP H04139363 A JPH04139363 A JP H04139363A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
hydrogen
hydrogen storage
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26069990A
Other languages
Japanese (ja)
Other versions
JP2876764B2 (en
Inventor
Hideto Kubo
秀人 久保
Bunichi Isotani
磯谷 文一
Masayoshi Miura
三浦 正芳
Hironori Maeda
前田 洋規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP26069990A priority Critical patent/JP2876764B2/en
Publication of JPH04139363A publication Critical patent/JPH04139363A/en
Application granted granted Critical
Publication of JP2876764B2 publication Critical patent/JP2876764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To prevent variation in a heat transfer capacity by thermally separating at least one of a heat absorption side heat exchanger and a heat radiation side heat exchanger from both hydrogen occlusion heat exchanger pair during a heat transfer capacity decreasing period due to switching of a hydrogen flowing direction between the pair of the hydrogen occlusion exchangers. CONSTITUTION:If temperature of a hydrogen occlusion heat exchanger 2 is higher than that of a hydrogen occlusion heat exchanger 1, two-way valves 61, 63, 66, 68 are opened, and two-way valves 62, 64, 65, 67 are closed. Accordingly, a brine circulation pump 7 circulates low temperature brine through the exchanger 1, a heat absorption side heat exchanger 4, a heat accumulator 9a, and a brine circulation pump 8 circulates high temperature brine through the exchanger 2, a heat radiation side heat exchanger 5, and a heat accumulator 9b. If the temperature of the exchanger 2 is lower than that of the exchanger 1, the valves 61, 63, 66, 68 are closed, and the valves 62, 64, 65, 67 are opened. Accordingly, the pump 7 circulates the low temperature brine through the exchanger 2, the exchanger 4, and the accumulator 9a, and the pump 8 circulates the high temperature brine through the exchanger 1, the exchanger 5 and the accumulator 9b.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱輸送能力の変動か少ない水素吸蔵ヒートポ
ンプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydrogen storage heat pump with little variation in heat transport capacity.

[従来の技術] 特開昭62−194164号公報は、水素吸蔵合金を有
し空気と熱交換する一対の水素吸蔵熱交換器と、圧縮機
及び四方弁を有し画然交換器間で水素を往復させる水素
圧送管路部とを備える水素吸蔵ヒートポンプ型式の空調
装置を開示する。
[Prior Art] JP-A-62-194164 discloses a pair of hydrogen storage heat exchangers that have a hydrogen storage alloy and exchange heat with air, and a compressor and a four-way valve that allows hydrogen to be transferred between the exchangers. Disclosed is a hydrogen storage heat pump type air conditioner comprising a hydrogen pressure-feeding pipe section that reciprocates hydrogen.

この装置では、上記水素往復により画然交換器はそれぞ
れ吸熱、放熱を繰返し、結果、画然交換器から出る低温
空気及び高温空気の一方は学内に供給され、使方は大気
中に排出される。
In this device, the hydrogen exchanger repeatedly absorbs and radiates heat through the hydrogen reciprocation, and as a result, one of the low-temperature air and the high-temperature air coming out of the Ganzen exchanger is supplied to the campus, and the other is discharged into the atmosphere. .

特開昭62−294868号公報は、水素吸蔵合金を有
する二対の水素吸蔵熱交換器を設け、圧縮機により各水
素吸蔵熱交換器対が相互に異なる位相で水素を往復させ
る水素吸蔵ヒートポンプを開示する。そして、この装置
では、水素放出側の2個の水素吸蔵熱交換器と吸熱側熱
交換器との間でブラインを循環させ、同じく水素吸収側
の2個の水素吸蔵熱交換器と放熱側熱交換器との間でブ
ラインを循環させて、熱輸送を実施する。
JP-A No. 62-294868 discloses a hydrogen storage heat pump in which two pairs of hydrogen storage heat exchangers each having a hydrogen storage alloy are provided, and each pair of hydrogen storage heat exchangers reciprocates hydrogen at different phases using a compressor. Disclose. In this device, brine is circulated between the two hydrogen storage heat exchangers on the hydrogen release side and the heat exchanger on the heat absorption side, and the brine is circulated between the two hydrogen storage heat exchangers on the hydrogen absorption side and the heat exchanger on the heat radiation side. Brine is circulated to and from the exchanger to provide heat transfer.

この装置では二対の水素吸蔵熱交換器の熱輸送ピークか
位相差(時間差〉をもつので、総合した熱輸送波形の変
動を抑圧できる。
In this device, the heat transport peaks of the two pairs of hydrogen storage heat exchangers have a phase difference (time difference), so fluctuations in the overall heat transport waveform can be suppressed.

[発明が解決しようとする課題] しかしながら上記した一対の水素吸蔵熱交換器をもつ水
素吸蔵ヒートポンプは、水素及び空気を切換える度に水
素系の熱容量等の影響などにより熱輸送能力すなわち吸
熱及び放熱能力が低下し、その結果として熱輸送能力が
大きく変動する不具合がある。
[Problems to be Solved by the Invention] However, in the hydrogen storage heat pump having the pair of hydrogen storage heat exchangers described above, each time the hydrogen and air are switched, the heat transport capacity, that is, the heat absorption and heat dissipation capacity decreases due to the influence of the heat capacity of the hydrogen system. As a result, there is a problem that the heat transport capacity fluctuates greatly.

一方、上記した二対の水素吸蔵熱交換器をもつ水素吸蔵
ヒートポンプは、熱輸送能力の変動を縮小できるものの
、水素吸蔵熱交換器の増設を必要とし、更に構造が複雑
化するので実用性に欠ける難がおる。
On the other hand, although the above-mentioned hydrogen storage heat pump with two pairs of hydrogen storage heat exchangers can reduce fluctuations in heat transport capacity, it requires additional hydrogen storage heat exchangers and the structure becomes more complicated, making it impractical. There is a problem of lack.

本発明はこのような問題に鑑みなされたものであり、構
成の複雑化をできるだけ回避しつつ、熱輸送能力の変動
を抑止できる水素吸蔵ヒートポンプを提供することをそ
の解決すべき課題としている。
The present invention has been made in view of these problems, and an object to be solved is to provide a hydrogen storage heat pump that can suppress fluctuations in heat transport capacity while avoiding complication of the configuration as much as possible.

[課題を解決するための手段1 本発明の水素吸蔵ヒートポンプは、水素吸蔵合金を有す
る一対の水素吸蔵熱交換器と、該両水素吸蔵熱交換器間
で水素を往復させる水素圧送管路部と、吸熱側熱交換器
及び放熱側熱交換器と、水素放出側の上記水素吸蔵熱交
換器及び上記吸熱側熱交換器の間で熱流体を循環させる
吸熱配管部と、水素吸収側の上記水素吸蔵熱交換器及び
上記放熱側熱交換器の間で熱流体を循環させる放熱配管
部とを備え、上記両水素吸蔵熱交換器間における水素流
通方向の切換による熱輸送能低下期間に、上記吸熱側熱
交換器及び放熱側熱交換器の少なくとも一方を上記水素
吸蔵熱交換器対の双方から分離する分離手段を設けたこ
とを特徴としている。
[Means for Solving the Problems 1] The hydrogen storage heat pump of the present invention includes a pair of hydrogen storage heat exchangers having a hydrogen storage alloy, and a hydrogen pressure transmission pipe section for reciprocating hydrogen between the two hydrogen storage heat exchangers. , an endothermic piping section that circulates a thermal fluid between the endothermic side heat exchanger and the endothermic side heat exchanger, the hydrogen storage heat exchanger and the endothermic side heat exchanger on the hydrogen release side, and the hydrogen absorbing side heat exchanger. A heat radiation piping section that circulates thermal fluid between the heat storage heat exchanger and the heat radiation side heat exchanger is provided, and during a period when the heat transport capacity is reduced due to switching of the direction of hydrogen flow between the two hydrogen storage heat exchangers, the heat absorption piping part is provided. The present invention is characterized in that a separation means is provided for separating at least one of the side heat exchanger and the heat radiation side heat exchanger from both of the hydrogen storage heat exchanger pair.

[作用] 本発明の水素吸蔵ヒートポンプにおいて、水素圧送管路
部は水素流通経路の切換により一対の水素吸蔵熱交換器
の間で水素を往復させる。水素を吸収する水素吸蔵熱交
換器は放熱し、水素を放出する水素吸蔵熱交換器は吸熱
する。吸熱側熱交換器は吸熱対象から吸熱し、吸熱配管
部は吸熱側熱交換器から水素放出側の水素吸蔵熱交換器
に熱輸送する。放熱配管部は水素吸収側の水素吸蔵熱交
換器から放熱側熱交換器に熱輸送し、放熱側熱交換器は
放熱対象に放熱する。
[Function] In the hydrogen storage heat pump of the present invention, the hydrogen pressure feed pipe section reciprocates hydrogen between the pair of hydrogen storage heat exchangers by switching the hydrogen flow path. A hydrogen storage heat exchanger that absorbs hydrogen radiates heat, and a hydrogen storage heat exchanger that releases hydrogen absorbs heat. The endothermic side heat exchanger absorbs heat from the object of heat absorption, and the endothermic piping section transports heat from the endothermic side heat exchanger to the hydrogen storage heat exchanger on the hydrogen release side. The heat radiation piping section transports heat from the hydrogen storage heat exchanger on the hydrogen absorption side to the heat radiation side heat exchanger, and the heat radiation side heat exchanger radiates heat to the heat radiation target.

特に本発明の特徴である分離手段は、両水素吸蔵熱交換
器間における水素流通方向の切換による熱輸送能低下期
間に、吸熱側熱交換器及び放熱側熱交換器の少なくとも
一方を水素吸蔵熱交換器対の双方から熱分離する。
In particular, the separation means that is a feature of the present invention is such that during a period when the heat transport capacity decreases due to switching of the hydrogen flow direction between both hydrogen storage heat exchangers, at least one of the heat absorption side heat exchanger and the heat radiation side heat exchanger is Thermal separation from both sides of the exchanger pair.

このようにすれば、ある程度の運転時間経過後には、熱
流体を含む吸熱側熱交換器及び吸熱配管部はある平均温
度範囲内に冷却され、放熱側熱交換器及び放熱配管部は
ある平均温度範囲内に加熱されているために、自己の熱
容量により吸熱又は放熱を実施する。そして、水素流通
方向を切換えて一定時間が経過し、水素を吸収する水素
吸蔵熱交換器が十分高温となり、水素を放出する水素吸
蔵熱交換器が十分低温となると、上記分離手段は分離を
解除し、それにより、両水素吸蔵熱交換器から吸熱側熱
交換器及び放熱側熱交換器に個別に熱輸送が再開される
In this way, after a certain amount of operation time has elapsed, the endothermic side heat exchanger and endothermic piping section containing the thermal fluid are cooled to a certain average temperature range, and the heat radiating side heat exchanger and the heat radiating piping section are cooled to a certain average temperature. Because it is heated within this range, it absorbs or radiates heat by its own heat capacity. Then, after a certain period of time has elapsed after switching the direction of hydrogen flow, when the hydrogen storage heat exchanger that absorbs hydrogen reaches a sufficiently high temperature and the hydrogen storage heat exchanger that releases hydrogen becomes sufficiently low, the separation means releases the separation. As a result, heat transport is restarted individually from both hydrogen storage heat exchangers to the heat absorption side heat exchanger and the heat radiation side heat exchanger.

「実施例1 (実施例1) 本発明の水素吸蔵ヒートポンプの一実施例を、第1図に
より説明する。
Example 1 (Example 1) An example of the hydrogen storage heat pump of the present invention will be described with reference to FIG.

この装置は、水素吸蔵合金が充填される一対の水素吸蔵
熱交換器1.2を有しており、水素吸蔵熱交換器1.2
はそれぞれ水素吸蔵合金(MmNis)の粉末が充填さ
れ水素ガスが出入可能な通気孔付きの密閉容器(図示せ
ず)を有する。この密閉容器の周囲にはブライン(本発
明でいう熱流体)が流れるパイプ(図示せず)が巻着さ
れており、また、水素吸蔵熱交換器1.2は、圧縮機3
及び水素配管により水素往復可能に連結されている。
This device has a pair of hydrogen storage heat exchangers 1.2 filled with hydrogen storage alloy.
Each has a closed container (not shown) filled with hydrogen storage alloy (MmNis) powder and equipped with a ventilation hole through which hydrogen gas can enter and exit. A pipe (not shown) through which brine (thermal fluid in the present invention) flows is wrapped around this closed container, and the hydrogen storage heat exchanger 1.2 is connected to the compressor 3.
and are connected by hydrogen piping so that hydrogen can be reciprocated.

すなわち、圧縮機3の吸入口と水素吸蔵熱交換器1.2
とは二方弁3L 32を介して個別に管路接続されてい
る。また、圧縮l1130の吐出口と水素吸蔵熱交換器
1.2とは二方弁33.34を介して個別に管路接続さ
れている。圧縮@3、二方弁31〜34、及びそれらを
連結する水素配管は本発明でいう水索圧送管路部を構成
している。
That is, the suction port of the compressor 3 and the hydrogen storage heat exchanger 1.2
and are individually connected via a two-way valve 3L32. Further, the discharge port of the compressor 1130 and the hydrogen storage heat exchanger 1.2 are individually connected via two-way valves 33,34. The compressor @3, the two-way valves 31 to 34, and the hydrogen pipes connecting them constitute the water cable pressure feed pipe section in the present invention.

上記した水素吸蔵熱交換器1に巻着されたパイプの一端
は配管1a及び二方弁61.62を介して吸熱側熱交換
器4及び放熱側熱交換器5のブライン流入口に連結され
、上記パイプの他端は配管1b及び二方弁63.64を
介してブライン循環ポンプ7.8の吐出口に接続されて
いる。
One end of the pipe wrapped around the hydrogen storage heat exchanger 1 described above is connected to the brine inlet of the heat absorption side heat exchanger 4 and the heat radiation side heat exchanger 5 via the piping 1a and the two-way valves 61 and 62, The other end of the pipe is connected to the outlet of a brine circulation pump 7.8 via a pipe 1b and a two-way valve 63.64.

同様に、水素吸蔵熱交換器2に巻着されたパイプの一端
は配管2a及び二方弁65.66を介して吸熱側熱交換
器4及び放熱側熱交換器5のブライン流入口に連結され
、上記パイプの他端は配管2b及び二方弁67.68を
介してブライン循環ポンプ7.8の吐出口に接続されて
いる。
Similarly, one end of the pipe wrapped around the hydrogen storage heat exchanger 2 is connected to the brine inlet of the heat absorption side heat exchanger 4 and the heat radiation side heat exchanger 5 via the piping 2a and two-way valves 65 and 66. , the other end of the pipe is connected to the outlet of the brine circulation pump 7.8 via the pipe 2b and two-way valves 67, 68.

ブライン循環ポンプ7の吸入口は、蓄熱器9aを介して
吸熱側熱交換器4のブライン流出口に連結され、ブライ
ン循環ポンプ8の吸入口は、蓄熱器9bを介して放熱側
熱交換器5のブライン流出口に連結されている。
The suction port of the brine circulation pump 7 is connected to the brine outlet of the heat absorption side heat exchanger 4 via the heat storage device 9a, and the suction port of the brine circulation pump 8 is connected to the heat radiation side heat exchanger 5 via the heat storage device 9b. connected to the brine outlet.

ここで、二方弁61.63.65.67及びそれらと吸
熱側熱交換器4との間のブライン配管は本発明でいう吸
熱配管部を構成し、同様に、二方弁62.64.66.
68及びそれらと放熱側熱交換器5との間のブライン配
管は本発明でいう放熱配管部を構成している。なお、こ
こでは冷房モードであって吸熱側熱交換器4が室内側、
放熱側熱交換器5が室外側とするが、暖房時には三方弁
61〜68の切換により容易に室内側の吸熱側熱交換器
4を放熱側熱交換器として、室外側の放熱側熱交換器5
を吸熱側熱交換器として作動させ得ることはもちろんで
ある。
Here, the two-way valves 61, 63, 65, 67 and the brine piping between them and the endothermic side heat exchanger 4 constitute the endothermic piping section in the present invention, and similarly, the two-way valves 62, 64, . 66.
68 and the brine piping between them and the heat radiation side heat exchanger 5 constitute a heat radiation piping section in the present invention. In this case, the cooling mode is set, and the endothermic side heat exchanger 4 is on the indoor side,
The heat radiation side heat exchanger 5 is placed on the outdoor side, but during heating, by switching the three-way valves 61 to 68, the heat absorption side heat exchanger 4 on the indoor side can be easily changed to the heat radiation side heat exchanger 4 on the outdoor side. 5
Of course, it is also possible to operate it as an endothermic heat exchanger.

また、ブライン配管1a、1bは水素吸蔵熱交換器1を
バイパスするべくバイパス弁6aを通じて連結されてお
り、ブライン配管2a、2bは水素吸蔵熱交換器2をバ
イパスするべくバイパス弁6bを通じて連結されている
。更にブライン配管1bにはバイパス弁6aの下流側か
つ水素吸熱交換器1の上流側において三方弁6Cか設け
られ、同様に、ブライン配管2bにはバイパス弁6bの
下流側かつ水素吸熱交換器2の上流側において三方弁6
dが設けられている。
Further, the brine pipes 1a and 1b are connected through a bypass valve 6a to bypass the hydrogen storage heat exchanger 1, and the brine pipes 2a and 2b are connected through a bypass valve 6b to bypass the hydrogen storage heat exchanger 2. There is. Furthermore, the brine pipe 1b is provided with a three-way valve 6C on the downstream side of the bypass valve 6a and on the upstream side of the hydrogen endothermic exchanger 1, and similarly, the brine pipe 2b is provided with a three-way valve 6C on the downstream side of the bypass valve 6b and on the upstream side of the hydrogen endothermic exchanger 2. Three-way valve 6 on the upstream side
d is provided.

これらバイパス弁5a、5b及び二方弁6C16dは本
発明でいう分離手段を構成している。
These bypass valves 5a, 5b and two-way valve 6C16d constitute separation means in the present invention.

更に、水素吸蔵熱交換器1の水素出入口付近に温度セン
サ11が設けられ、同様に、水素吸蔵熱交換器2の水素
出入口付近に温度センサ12が設けられている。そして
、これら温度センサ11.12の出力信号V11、V1
2は第2図及び第3図の回路に送られ、二方弁61〜6
8及びバイパス弁6a、6bが切換えられる。
Furthermore, a temperature sensor 11 is provided near the hydrogen inlet/outlet of the hydrogen storage heat exchanger 1, and a temperature sensor 12 is similarly provided near the hydrogen inlet/outlet of the hydrogen storage heat exchanger 2. The output signals V11 and V1 of these temperature sensors 11 and 12 are
2 is sent to the circuits shown in FIGS. 2 and 3, and the two-way valves 61 to 6
8 and bypass valves 6a, 6b are switched.

なお、上記蓄熱器9a、9bはブラインを貯溜するタン
クからなる。
Note that the heat accumulators 9a and 9b are made up of tanks that store brine.

次に、この装置の動作を説明する。Next, the operation of this device will be explained.

まず水素往復について説明する。最初に水素吸蔵熱交換
器1に水素が貯溜されており、二方弁31.34は開、
二方弁32.33は閉状態にある。
First, we will explain hydrogen round trip. Initially, hydrogen is stored in the hydrogen storage heat exchanger 1, and the two-way valves 31 and 34 are opened.
Two-way valves 32,33 are in the closed state.

かかる状態において圧縮@3の運転により水素吸蔵熱交
換器1から水素吸蔵熱交換器2に水素ガスが圧送される
と、水素を放出する水素吸蔵熱交換器1はブラインから
吸熱し、水素を吸収する水素吸蔵熱交換器2はブライン
に放熱する。
In such a state, when hydrogen gas is pressure-fed from the hydrogen storage heat exchanger 1 to the hydrogen storage heat exchanger 2 by the compression@3 operation, the hydrogen storage heat exchanger 1 that releases hydrogen absorbs heat from the brine and absorbs hydrogen. The hydrogen storage heat exchanger 2 radiates heat to the brine.

水素吸蔵熱交換器1が所定時間、水素ガスを放出した後
、圧縮機3を停止し、二方弁31.32を開、三方弁3
3.34を閉状態に切換えれば、大量に水素を吸蔵する
水素吸蔵熱交換器2中の水素ガス圧力が高いので、水素
吸蔵熱交換器2から水素吸蔵熱交換器1に水素ガスが流
れ、その結果、水素吸蔵熱交換器2はブラインから吸熱
し、水素を吸収する水素吸蔵熱交換器1はブラインに放
熱する。
After the hydrogen storage heat exchanger 1 releases hydrogen gas for a predetermined period of time, the compressor 3 is stopped, the two-way valves 31 and 32 are opened, and the three-way valve 3 is opened.
3. If 34 is switched to the closed state, hydrogen gas will flow from the hydrogen storage heat exchanger 2 to the hydrogen storage heat exchanger 1 because the hydrogen gas pressure in the hydrogen storage heat exchanger 2 that stores a large amount of hydrogen is high. As a result, the hydrogen storage heat exchanger 2 absorbs heat from the brine, and the hydrogen storage heat exchanger 1, which absorbs hydrogen, radiates heat to the brine.

水素吸蔵熱交換器1.2の圧力差が一定レベル以下にな
れば、ざらに二方弁31.34を閉、二方弁32.33
を開状態に切換えて圧縮機3を運転する。その結果、水
素吸蔵熱交換器2から水素吸蔵熱交換器1に水素ガスが
継続して圧送され、水素を放出する水素吸蔵熱交換器2
はブラインから吸熱し、水素を吸収する水素吸蔵熱交換
器1はブラインに放熱する。
When the pressure difference in the hydrogen storage heat exchanger 1.2 falls below a certain level, the two-way valve 31.34 is roughly closed, and the two-way valve 32.33 is closed.
The compressor 3 is operated by switching to the open state. As a result, hydrogen gas is continuously fed under pressure from the hydrogen storage heat exchanger 2 to the hydrogen storage heat exchanger 1, and the hydrogen storage heat exchanger 2 releases hydrogen.
absorbs heat from the brine, and the hydrogen storage heat exchanger 1 that absorbs hydrogen radiates heat to the brine.

水素吸蔵熱交換器2か所定時間、水素ガスを放出した後
、圧縮l113を停止し、再度三方弁31.32を開、
二方弁33.34を開状態に切換えれば、大量に水素を
吸蔵する水素吸蔵熱交換器1中の水素ガス圧力が高いの
で、水素吸蔵熱交換器1から水素吸蔵熱交換器2に水素
ガスが流れ、その結果、水素吸蔵熱交換器1はブライン
から吸熱し、水素を吸収する水素吸蔵熱交換器2はブラ
インに放熱する。
After the hydrogen storage heat exchanger 2 releases hydrogen gas for a predetermined period of time, the compression l113 is stopped, and the three-way valves 31 and 32 are opened again.
If the two-way valves 33 and 34 are switched to the open state, the hydrogen gas pressure in the hydrogen storage heat exchanger 1 that stores a large amount of hydrogen is high, so hydrogen is transferred from the hydrogen storage heat exchanger 1 to the hydrogen storage heat exchanger 2. The gas flows, so that the hydrogen storage heat exchanger 1 absorbs heat from the brine, and the hydrogen storage heat exchanger 2, which absorbs hydrogen, radiates heat to the brine.

このよう(して水素ガスの一往復(1サイクル)が完了
するが、以下このサイクルを繰返すことにより、水素吸
蔵熱交換器1から出るブラインは一定周期で加熱、冷却
される。
In this way, one round trip (one cycle) of the hydrogen gas is completed, and by repeating this cycle thereafter, the brine coming out of the hydrogen storage heat exchanger 1 is heated and cooled at regular intervals.

なお、このサイクル運転における二方弁31〜34の切
換及び圧縮機3の断続運転は全てタイマにより一定時間
毎に定周期制御すればよいので、それ以上の説明は省略
する。
The switching of the two-way valves 31 to 34 and the intermittent operation of the compressor 3 in this cycle operation can all be periodically controlled by a timer at regular intervals, so further explanation will be omitted.

水素配管系の熱容量などのために、水素吸蔵熱交換器1
.2の温度は例えば第4図(a>のようになる。
Hydrogen storage heat exchanger 1 is installed for heat capacity of hydrogen piping system, etc.
.. The temperature at point 2 is, for example, as shown in FIG. 4 (a>).

次に、吸熱側熱交換器4に常に冷却ブラインを循環させ
る吸熱配管部、及び、放熱側熱交換器5に常に加熱ブラ
インを循環させる放熱配管部の作動について説明する。
Next, the operations of the heat absorption piping section that always circulates cooling brine to the heat exchanger 4 on the heat absorption side and the heat radiation piping section that always circulates heating brine to the heat exchanger 5 on the heat radiation side will be described.

温度センサ11.12の出力信号V11、v12は第2
図に示す」ンパレータ100に送られ、コンパレータ1
00はVllがVl2より大きい場合(すなわち、水素
吸蔵熱交換器1が水素吸蔵熱交換器2より高温の場合)
にローレベル、v12がVllより大きい場合(すなわ
ち、水素吸蔵熱交換器2が水素吸蔵熱交換器1より高温
の場合)にハイレベルとなる。したがって、トランジス
タ101〜104はVl2がより大きい場合にオンし、
逆にインバータ105の出力反転によりトランジスタ1
06〜109はVllがより大きい場合にオンする。
The output signals V11 and v12 of the temperature sensors 11 and 12 are the second
is sent to the comparator 100 shown in the figure, and the comparator 1
00 is when Vll is larger than Vl2 (that is, when hydrogen storage heat exchanger 1 is higher temperature than hydrogen storage heat exchanger 2)
It becomes a low level when v12 is larger than Vll (that is, when the hydrogen storage heat exchanger 2 is at a higher temperature than the hydrogen storage heat exchanger 1). Therefore, transistors 101-104 turn on when Vl2 is larger;
Conversely, due to the inversion of the output of inverter 105, transistor 1
06 to 109 are turned on when Vll is larger.

その結果、水素吸蔵熱交換器2の温度が水素吸蔵熱交換
器1の温度より高い場合(Vl 2>Vll)に、ソレ
ノイドバルブである二方弁61.63.66.68が開
き、二方弁62.64.65.67か閉じる。よって、
ブライン循環ポンプ7は水素吸蔵熱交換器1、吸熱側熱
交換器4、蓄熱器9aに低温ブラインを循環させ、ブラ
イン循環ポンプ8は水素吸蔵熱交換器2、放熱側熱交換
器5、蓄熱器9bに高温ブラインを循環させる。
As a result, when the temperature of the hydrogen storage heat exchanger 2 is higher than the temperature of the hydrogen storage heat exchanger 1 (Vl 2 > Vll), the two-way valve 61.63.66.68, which is a solenoid valve, opens and the two-way valve 61.63.66.68 opens. Close valves 62, 64, 65, 67. Therefore,
The brine circulation pump 7 circulates low-temperature brine through the hydrogen storage heat exchanger 1, the heat absorption side heat exchanger 4, and the heat storage device 9a, and the brine circulation pump 8 circulates the low temperature brine through the hydrogen storage heat exchanger 2, the heat radiation side heat exchanger 5, and the heat storage device. 9b circulate hot brine.

また、水素吸蔵熱交換器2の温度か水素吸蔵熱交換器1
の温度より低い場合(Vll>Vl2)に、二方弁61
.63.66.68が閉じ、二方弁62.64.65.
67が開く。よって、ブライン循環ポンプ7は水素吸蔵
熱交換器2、吸熱側熱交換器4、蓄熱器9aに低温ブラ
インを循環させ、ブライン循環ポンプ8は水素吸蔵熱交
換器1、放熱側熱交換器5、蓄熱器9bに高温ブライン
を循環させる。
Also, the temperature of the hydrogen storage heat exchanger 2 or the temperature of the hydrogen storage heat exchanger 1
(Vll>Vl2), the two-way valve 61
.. 63.66.68 are closed, two-way valves 62.64.65.
67 opens. Therefore, the brine circulation pump 7 circulates low-temperature brine to the hydrogen storage heat exchanger 2, the heat absorption side heat exchanger 4, and the heat storage device 9a, and the brine circulation pump 8 circulates the low temperature brine to the hydrogen storage heat exchanger 1, the heat radiation side heat exchanger 5, High temperature brine is circulated through the heat storage device 9b.

これらの結果として、吸熱側熱交換器4には常時、低温
ブラインが供給され、放熱側熱交換器5には常時、高温
ブラインが供給される。
As a result, the heat exchanger 4 on the endothermic side is always supplied with low-temperature brine, and the heat exchanger 5 on the heat-radiating side is always supplied with high-temperature brine.

蓄熱器9aは、上記した動作切換時間帯において低温ブ
ラインから吸熱し、切換時刻から離れた時間帯において
低温ブラインに放熱する。同様に、蓄熱器9bは、上記
した動作切換時間帯(おいて高温ブラインに放熱し、切
換時刻から離れた時間帯において高温ブラインから吸熱
する。以上の結果として、ブライン温度の変動が抑止さ
れるので、吸熱側熱交換器(室内機)4の冷却能力(す
なわち、低温ブラインの温度)の変動は低減される。
The heat storage device 9a absorbs heat from the low-temperature brine during the above-described operation switching time period, and radiates heat to the low-temperature brine during a time period away from the switching time. Similarly, the heat accumulator 9b radiates heat to the high temperature brine during the operation switching time period described above, and absorbs heat from the high temperature brine during a time period away from the switching time.As a result of the above, fluctuations in the brine temperature are suppressed. Therefore, fluctuations in the cooling capacity of the endothermic side heat exchanger (indoor unit) 4 (that is, the temperature of the low-temperature brine) are reduced.

次に、バイパス弁6a、6b及び二方弁6C16dの切
換動作を第3図の制御回路で説明する。
Next, the switching operation of the bypass valves 6a, 6b and the two-way valve 6C16d will be explained using the control circuit shown in FIG.

コンパレータ100(第2図参照)から出力される二値
信号はモノマルチバイブレータ110に入力され、イン
バータ105(第2図参照)から出力される二値信号は
モノマルチバイブレータ111に入力される。その結果
、モノマルチバイブレータ110はVl2がVllより
大きくなった時点から一定期間ハイレベルとなり、モノ
マルチバイブレータ111はVllがVl2より大きく
なった時点から一定期間ハイレベルとなる。モノマルチ
バイブレータ110.111はオア回路112を介して
ドライバトランジスタ113.114を駆動する。すな
わち、モノマルチバイブレタ110.111がハイレベ
ルとなると(すなわち、VllがV12より高温になっ
た時点及びV12がVllより高温になった時点からそ
れぞれ一定期間だけ)、ドライバトランジスタ113.
114は、それぞれソレノイドバルブであるバイパス弁
5a、6bを開き、ドライバトランジスタ115.11
6はソレノイドバルブである二方弁5c、5dを閉じる
A binary signal output from comparator 100 (see FIG. 2) is input to mono multivibrator 110, and a binary signal output from inverter 105 (see FIG. 2) is input to mono multivibrator 111. As a result, the mono multivibrator 110 is at a high level for a certain period of time from the time when Vl2 becomes larger than Vll, and the mono multivibrator 111 is at a high level for a certain period of time from the time when Vll becomes larger than Vl2. Mono multivibrator 110.111 drives driver transistor 113.114 via OR circuit 112. That is, when mono-multivibrator 110.111 becomes high level (that is, only for a certain period of time after Vll becomes higher temperature than V12 and from the time V12 becomes higher temperature than Vll, respectively), driver transistor 113.
114 opens bypass valves 5a and 6b, which are solenoid valves, respectively, and driver transistors 115.11
6 closes the two-way valves 5c and 5d, which are solenoid valves.

その結果、水素流通方向を切換えた直後(水素吸蔵熱交
換器1.2の温度がほぼ同程度である期間)の一定期間
、ブラインはバイパス弁6a、6bを通過するので、水
素吸蔵熱交換器1.2にはブラインが流れず、その結果
、水素吸蔵熱交換器1.2により吸熱熱交換器4が加熱
され、放熱熱交換器5が冷却されることがない。
As a result, the brine passes through the bypass valves 6a and 6b for a certain period of time immediately after switching the hydrogen flow direction (a period when the temperature of the hydrogen storage heat exchanger 1.2 is approximately the same), so the hydrogen storage heat exchanger 1.2 passes through the bypass valves 6a and 6b. No brine flows through hydrogen storage heat exchanger 1.2, and as a result, endothermic heat exchanger 4 is heated by hydrogen storage heat exchanger 1.2, and exothermic heat exchanger 5 is not cooled.

第4図(b)にバイパス弁6a、6bを設けない場合に
おける低温ブラインの温度変動例を示し、第4図(C)
に本実施例にかかる(バイパス弁6a、6bを設けた場
合の)低温ブラインの温度変動例を示す。
FIG. 4(b) shows an example of temperature fluctuation of low-temperature brine when bypass valves 6a and 6b are not provided, and FIG. 4(C)
An example of temperature fluctuation of the low-temperature brine according to this embodiment (when bypass valves 6a and 6b are provided) is shown in FIG.

なお、上記実施例では、水素吸蔵熱交換器1.2の温度
逆転によりバイパス弁6a、6b及び二方弁6C16d
を制御したが、その前にバイパス弁6a、6b及び二方
弁6C16dを制御してもよい。
In the above embodiment, the bypass valves 6a, 6b and the two-way valve 6C16d are closed due to temperature reversal of the hydrogen storage heat exchanger 1.2.
However, the bypass valves 6a, 6b and the two-way valve 6C16d may be controlled before that.

例えば、二方弁31〜34及び圧縮機3をタイマにより
定周期運転する場合、水素吸蔵熱交換器1.2の温度が
ほぼ同程度である期間すなわちバイパス弁6a、6bを
開き、三方弁6C16dを閉じるべき期間は予め分かつ
ているので、バイパス弁6a、6b及び二方弁6C16
dを二方弁31〜34及び圧縮機3と同期してタイマ制
御すればよい。
For example, when the two-way valves 31 to 34 and the compressor 3 are operated periodically by a timer, the temperature of the hydrogen storage heat exchanger 1.2 is approximately the same, that is, the bypass valves 6a and 6b are opened, and the three-way valve 6C16d is Since the period during which the bypass valves 6a and 6b and the two-way valve 6C16 should be closed is known in advance,
d may be controlled by a timer in synchronization with the two-way valves 31 to 34 and the compressor 3.

なお、上記実施例において水素輸送を圧縮機3による機
械駆動に代えて熱駆動により実施できることは従前通り
である。
Note that in the above embodiment, hydrogen transport can be carried out by thermal drive instead of mechanical drive by the compressor 3, as before.

[発明の効果」 上記説明したように、本発明の水素吸蔵ヒートポンプで
は、両水素吸蔵熱交換器間における水素流通方向の切換
による熱輸送ボトム期間に吸熱側熱交換器及び放熱側熱
交換器の少なくとも一方を水素吸蔵熱交換器対の両方か
ら分離する分離手段を具備している。
[Effects of the Invention] As explained above, in the hydrogen storage heat pump of the present invention, the heat exchanger on the endothermic side and the heat exchanger on the exothermic side are Separation means is provided for separating at least one of the hydrogen storage heat exchangers from both of the pair of hydrogen storage heat exchangers.

したがって、水素流通方向の切換による水素吸蔵熱交換
器と吸熱側熱交換器及び放熱側熱交換器の少なくとも一
方との間における熱輸送能低下期間に、平均温度範囲内
に冷却された吸熱側熱交換器及び吸熱配管部(熱流体を
含む)が高温の水素吸蔵熱交換器を冷却することを防止
することができる。又は、平均温度範囲内に加熱された
放熱側熱交換器及び放熱配管部(熱流体を含む)が低温
の水素吸蔵熱交換器を加熱することを防止することがで
きる。
Therefore, during the period when the heat transport capacity decreases between the hydrogen storage heat exchanger and at least one of the endothermic side heat exchanger and the heat radiating side heat exchanger due to the switching of the hydrogen flow direction, the endothermic side heat is cooled to within the average temperature range. It is possible to prevent the exchanger and endothermic piping (including the thermal fluid) from cooling the high temperature hydrogen storage heat exchanger. Alternatively, it is possible to prevent the radiation-side heat exchanger and the radiation piping section (including the thermal fluid) heated to within the average temperature range from heating the low-temperature hydrogen storage heat exchanger.

それにより、水素吸蔵熱交換器から吸熱側熱交換器及び
放熱側熱交換器の少なくとも一方への熱輸送能力が減少
することを防止できまた、簡単な装置構成により熱輸送
能力の変動を抑止することができる。
As a result, it is possible to prevent a decrease in the heat transport capacity from the hydrogen storage heat exchanger to at least one of the heat absorption side heat exchanger and the heat radiation side heat exchanger, and also suppress fluctuations in the heat transport capacity with a simple device configuration. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示すブロック図、第2図
は弁制御回路図、第3図はバイパス弁制御回路図、第4
図は吸熱量変化を示す波形図である。 1.2・・・水素吸蔵熱交換器 3・・・圧縮機(水素圧送管路部の一部)4・・・吸熱
側熱交換器 5・・・放熱側熱交換器 6a、6b・・・バイパス弁(分離手段)6C16d・
・−二方弁(分離手段) 7.8・・・ポンプ
Fig. 1 is a block diagram showing a first embodiment of the present invention, Fig. 2 is a valve control circuit diagram, Fig. 3 is a bypass valve control circuit diagram, and Fig. 4 is a block diagram showing a first embodiment of the present invention.
The figure is a waveform diagram showing changes in the amount of heat absorbed. 1.2...Hydrogen storage heat exchanger 3...Compressor (part of the hydrogen pressure transmission pipeline) 4...Endothermal side heat exchanger 5...Radiation side heat exchanger 6a, 6b...・Bypass valve (separation means) 6C16d・
・-Two-way valve (separation means) 7.8... Pump

Claims (1)

【特許請求の範囲】  水素吸蔵合金を有する一対の水素吸蔵熱交換器と、該
両水素吸蔵熱交換器間で水素を往復させる水素圧送管路
部と、吸熱側熱交換器及び放熱側熱交換器と、水素放出
側の上記水素吸蔵熱交換器及び上記吸熱側熱交換器の間
で熱流体を循環させる吸熱配管部と、水素吸収側の上記
水素吸蔵熱交換器及び上記放熱側熱交換器の間で熱流体
を循環させる放熱配管部とを備え、 上記両水素吸蔵熱交換器間における水素流通方向の切換
による熱輸送能低下期間に、上記吸熱側熱交換器及び放
熱側熱交換器の少なくとも一方を上記水素吸蔵熱交換器
対の双方から分離する分離手段を設けたことを特徴とす
る水素吸蔵ヒートポンプ。
[Scope of Claims] A pair of hydrogen storage heat exchangers having a hydrogen storage alloy, a hydrogen pressure transmission pipe section for reciprocating hydrogen between the two hydrogen storage heat exchangers, an endothermic heat exchanger, and a heat radiation side heat exchanger. an endothermic piping section that circulates thermal fluid between the hydrogen storage heat exchanger on the hydrogen release side and the heat absorption side heat exchanger, and the hydrogen storage heat exchanger and the heat radiation side heat exchanger on the hydrogen absorption side. and a heat dissipation piping section that circulates thermal fluid between the heat exchanger and the heat exchanger during a period when the heat transport capacity is reduced due to switching of the direction of hydrogen flow between the two hydrogen storage heat exchangers. A hydrogen storage heat pump characterized in that a separation means is provided for separating at least one of the hydrogen storage heat exchangers from both of the pair of hydrogen storage heat exchangers.
JP26069990A 1990-09-28 1990-09-28 Hydrogen storage heat pump Expired - Fee Related JP2876764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26069990A JP2876764B2 (en) 1990-09-28 1990-09-28 Hydrogen storage heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26069990A JP2876764B2 (en) 1990-09-28 1990-09-28 Hydrogen storage heat pump

Publications (2)

Publication Number Publication Date
JPH04139363A true JPH04139363A (en) 1992-05-13
JP2876764B2 JP2876764B2 (en) 1999-03-31

Family

ID=17351548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26069990A Expired - Fee Related JP2876764B2 (en) 1990-09-28 1990-09-28 Hydrogen storage heat pump

Country Status (1)

Country Link
JP (1) JP2876764B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040050758A (en) * 2002-12-09 2004-06-17 엘지전자 주식회사 heating and cooling device for hydrogen storage alloys and method thereof
KR100946235B1 (en) * 2008-02-01 2010-03-09 김병관 Heating and cooling device for hydrogen storage alloys
CN113654141A (en) * 2021-08-06 2021-11-16 青岛海尔空调器有限总公司 Method and device for controlling electrochemical refrigeration system and electrochemical refrigeration system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA34824B1 (en) 2010-12-13 2014-01-02 Ducool Ltd METHOD AND APPARATUS FOR AIR CONDITIONING

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040050758A (en) * 2002-12-09 2004-06-17 엘지전자 주식회사 heating and cooling device for hydrogen storage alloys and method thereof
KR100946235B1 (en) * 2008-02-01 2010-03-09 김병관 Heating and cooling device for hydrogen storage alloys
CN113654141A (en) * 2021-08-06 2021-11-16 青岛海尔空调器有限总公司 Method and device for controlling electrochemical refrigeration system and electrochemical refrigeration system
WO2023011064A1 (en) * 2021-08-06 2023-02-09 青岛海尔空调器有限总公司 Method and apparatus for controlling electrochemical refrigeration system, and electrochemical refrigeration system

Also Published As

Publication number Publication date
JP2876764B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
CN107850354A (en) Fluid circulation system for combination free cooling and machinery cooling
JPH04139363A (en) Hydrogen occlusion heat pump
JPH0794933B2 (en) Air-cooled absorption air conditioner
JP6871015B2 (en) Absorption refrigeration system
JP2010181088A (en) Heat pump device
JP3126086B2 (en) Compression metal hydride heat pump
JPH04113173A (en) Hydrogen absorption heat pump
JPS5855434B2 (en) Method and device for preventing supercooling of heat storage device
JPH08219500A (en) Latent heat storing device
JP2004085008A (en) Hydrate slurry manufacturing system and its operation method
KR101335278B1 (en) Dual cycle heat pump system
JP3831923B2 (en) Latent heat storage device
JP3831924B2 (en) Capsule type latent heat storage system
JP2001165488A (en) Air conditioner
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JP3316859B2 (en) Chemical heat storage system
JPH0275842A (en) Heat storage type heat pump device
JP3143251B2 (en) Absorption refrigerator
JP2002098438A (en) Packaged air-conditioning apparatus
JPH09170824A (en) Heat conveying device
JP3778740B2 (en) Operation method of air conditioner equipped with heat storage unit
JPH0617757B2 (en) Freezing detection method for low temperature cold water production equipment
JP3788391B2 (en) Ice heat storage device
JPH04161766A (en) Control device for absorption type freezer
JPS63220047A (en) Refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees