JPH07243717A - Hydrogen absorbing alloy heat pump - Google Patents

Hydrogen absorbing alloy heat pump

Info

Publication number
JPH07243717A
JPH07243717A JP3140194A JP3140194A JPH07243717A JP H07243717 A JPH07243717 A JP H07243717A JP 3140194 A JP3140194 A JP 3140194A JP 3140194 A JP3140194 A JP 3140194A JP H07243717 A JPH07243717 A JP H07243717A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
heat exchanger
pressure hydrogen
alloy heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3140194A
Other languages
Japanese (ja)
Other versions
JP3246632B2 (en
Inventor
Mitsuo Suzuki
三男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP03140194A priority Critical patent/JP3246632B2/en
Publication of JPH07243717A publication Critical patent/JPH07243717A/en
Application granted granted Critical
Publication of JP3246632B2 publication Critical patent/JP3246632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To to simultaneously obtain a high temperature heat source and a low temperature heat source by effecting absorption heat generation in a heat exchanger containing one of four hydrogen absorbing alloys having the lowest hydrogen equilibrium pressure so as to obtain the high temperature heat source, and effecting decomposition heat absorption in a heat exchanger containing one of the four hydrogen absorbing alloys having the highest hydrogen equilibrium pressure to obtain the low temperature heat source. CONSTITUTION:The interior of a first chamber S1 of a first medium pressure hydrogen absorbing alloy heat exchanger R3 is heated so that hydrogen decomposed from a hydrogen absorbing alloy M2 flow through a hydrogen transfer pipe line L1 into a first low pressure hydrogen absorbing alloy heat exchanger R1 and is absorbed in a hydrogen absorbing alloy M1 in the heat exchanger R1 so as to effect absorption heat generation. The interior of a second chamber S2 of the first heat exchanger R3 as well as the first chamber S1 is cooled, and due to pressure reduction in the second chamber S2 the hydrogen from the first high pressure hydrogen absorbing alloy heat exchanger R5 is guided through a hydrogen transfer pipe L2 into the second chamber S2 of the heat exchanger R3. A hydrogen absorbing alloy M4 in the first high pressure hydrogen absorbing alloy heat exchanger R5 is decomposed to effect decomposition heat absorption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を用いた
水素吸蔵合金ヒートポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy heat pump using a hydrogen storage alloy.

【0002】[0002]

【従来の技術】近時、水素吸蔵合金に水素が吸蔵される
時の吸蔵発熱、および、水素吸蔵合金から水素が放出さ
れる時の分解吸熱を利用した水素吸蔵合金ヒートポンプ
が開発されており、従来、このような水素吸蔵合金ヒー
トポンプとしては、例えば、特開平1−305273号
公報等に開示されるものが知られている。
2. Description of the Related Art Recently, a hydrogen storage alloy heat pump has been developed which utilizes the absorption heat generated when hydrogen is absorbed in a hydrogen storage alloy and the decomposition heat absorption generated when hydrogen is released from the hydrogen storage alloy. Conventionally, as such a hydrogen storage alloy heat pump, one disclosed in, for example, Japanese Patent Laid-Open No. 1-305273 is known.

【0003】そして、従来、熱駆動式ヒートポンプとし
て、図6に示す昇温型ヒートポンプおよび図7に示す増
熱冷凍型ヒートポンプの2種類のヒートポンプが知られ
ている。
Conventionally, two types of heat pumps have been known as heat-driven heat pumps, namely, the temperature raising type heat pump shown in FIG. 6 and the increased temperature refrigerating type heat pump shown in FIG.

【0004】図6に示す昇温型ヒートポンプでは、水素
平衡圧力が異なる2種類の水素吸蔵合金M1,M2が使
用されており、この水素吸蔵合金ヒートポンプは、水素
吸蔵合金M2をTM の温度の熱源を用いて熱分解し、水
素吸蔵合金M1に水素を導き、吸蔵発熱を起こさせるこ
とによりQ0の出力発生を行わせ、反応終了後は、T M
の温度の熱源を水素吸蔵合金の分解に再び用い、水素吸
蔵合金M1から水素吸蔵合金M2へ水素を戻す(1)→
(2)→(3)→(4)のサイクルとされている。
In the temperature raising type heat pump shown in FIG.
Two types of hydrogen storage alloys M1 and M2 with different equilibrium pressures are used.
This hydrogen storage alloy heat pump is used for
T occlusion alloy M2MPyrolysis using a heat source of temperature
Introduce hydrogen into the elementary storage alloy M1 to cause storage heat.
The output of Q0 is generated by and after the reaction is completed, T M
The heat source at the temperature of
Return hydrogen from storage alloy M1 to hydrogen storage alloy M2 (1) →
The cycle is (2) → (3) → (4).

【0005】また、図7に示す増熱冷凍型ヒートポンプ
は、水素吸蔵合金M1をTH の温度の熱源を用いて熱分
解し、水素吸蔵合金M2に水素を導き、吸蔵発熱を起こ
させ、この後、TL の温度の熱源により水素吸蔵合金M
2を熱分解してQ0の吸熱を行わせ、吸熱終了後は、水
素吸蔵合金M2から水素吸蔵合金M1へ水素を戻す
(1)→(2)→(3)→(4)のサイクルとされてい
る。
Further, the temperature-enhancing refrigerating heat pump shown in FIG. 7 thermally decomposes the hydrogen storage alloy M1 using a heat source having a temperature of T H to introduce hydrogen into the hydrogen storage alloy M2 to cause storage heat. Then, the hydrogen storage alloy M is heated by the heat source at the temperature of T L.
2 is thermally decomposed to absorb Q0, and after the endothermic, the hydrogen is returned from the hydrogen storage alloy M2 to the hydrogen storage alloy M1 (1) → (2) → (3) → (4) cycle. ing.

【0006】一方、従来、図8に示すように、環境試験
室11においては、室内の温度を−20℃程度の低温に
空調することが要望されており、このような空調装置で
は、導入する外気は、空調機13のコイル15面でのフ
ロストを防止するために、露点温度を室内温度より下げ
る必要があり、外気を除湿するために、例えば、ロータ
ー17を用いたハニカム式ローター除湿器19が用いら
れている。
On the other hand, conventionally, as shown in FIG. 8, in the environmental test room 11, it has been demanded to air-condition the room temperature to a low temperature of about −20 ° C., and such an air conditioner is used. The outside air needs to have a dew point temperature lower than the indoor temperature in order to prevent frost on the coil 15 surface of the air conditioner 13, and in order to dehumidify the outside air, for example, a honeycomb rotor dehumidifier 19 using a rotor 17 is used. Is used.

【0007】そして、再生用の熱源として蒸気あるいは
電気ヒータ21が用いられ、一方、環境試験室11の冷
却熱源としてブラインチラー等が使用され、コイル15
には、低温のブラインが供給される。
A steam or electric heater 21 is used as a heat source for regeneration, and a brunchler or the like is used as a heat source for cooling the environmental test chamber 11, and the coil 15 is used.
Is supplied with cold brine.

【0008】すなわち、この種の室の空調装置において
は、室内の冷却を行うために低温熱源が必要とされ、一
方、除湿を行うために高温熱源が必要とされる。
That is, in this type of room air conditioner, a low temperature heat source is required to cool the room, while a high temperature heat source is required to dehumidify.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、図6お
よび図7に示した従来の水素吸蔵合金ヒートポンプで
は、低温熱源と高温熱源とを同時に得ることが困難であ
るという問題があった。
However, the conventional hydrogen storage alloy heat pump shown in FIGS. 6 and 7 has a problem that it is difficult to obtain a low temperature heat source and a high temperature heat source at the same time.

【0010】すなわち、図6に示した昇温型ヒートポン
プでは、(2)の吸蔵発熱Q0を高温熱源として使用す
ることができるが、(4)の低温場での反応も吸蔵発熱
Q3となるため、(4)を低温熱源に有効に使用するこ
とができないという問題があった。
That is, in the temperature rising heat pump shown in FIG. 6, the storage heat generation Q0 of (2) can be used as a high temperature heat source, but the reaction in the low temperature field of (4) also causes storage heat generation Q3. , (4) cannot be effectively used as a low temperature heat source.

【0011】一方、図7に示した増熱冷凍型ヒートポン
プでは、(3)の分解吸熱Q0を低温熱源として使用す
ることができるが、(1)の高温場での反応も分解吸熱
Q2となるため、(1)を高温熱源に有効に使用するこ
とができないという問題があった。
On the other hand, in the heat-enhanced freezing type heat pump shown in FIG. 7, the decomposition endotherm Q0 of (3) can be used as a low temperature heat source, but the reaction in the high temperature field of (1) also becomes the decomposition endotherm Q2. Therefore, there is a problem that (1) cannot be effectively used as a high temperature heat source.

【0012】本発明は、かかる従来の問題を解決するた
めになされたもので、高温場において高温熱源を、低温
場において低温熱源を同時に得ることができる昇温冷凍
型の水素吸蔵合金ヒートポンプを提供することを目的と
する。
The present invention has been made in order to solve the conventional problems, and provides a hydrogen storage alloy heat pump of a temperature rise refrigeration type capable of simultaneously obtaining a high temperature heat source in a high temperature field and a low temperature heat source in a low temperature field. The purpose is to do.

【0013】[0013]

【課題を解決するための手段】本発明の水素吸蔵合金ヒ
ートポンプは、水素平衡圧力が異なる4種類の水素吸蔵
合金のうち同一温度で最も水素平衡圧力の小さい水素吸
蔵合金が収容される第1および第2の低圧力水素吸蔵合
金熱交換器と、前記4種類の水素吸蔵合金のうち同一温
度で2番目および3番目に水素平衡圧力が小さい水素吸
蔵合金が伝熱部材を介して第1室および第2室に収容さ
れる第1および第2の中間圧力水素吸蔵合金熱交換器
と、前記4種類の水素吸蔵合金のうち同一温度で最も水
素平衡圧力の大きい水素吸蔵合金が収容される第1およ
び第2の高圧力水素吸蔵合金熱交換器と、前記第1の中
間圧力水素吸蔵合金熱交換器の前記第1室と前記第1の
低圧力水素吸蔵合金熱交換器とを接続する第1の水素搬
送管路と、前記第1の中間圧力水素吸蔵合金熱交換器の
前記第2室と前記第1の高圧力水素吸蔵合金熱交換器と
を接続する第2の水素搬送管路と、前記第2の中間圧力
水素吸蔵合金熱交換器の前記第1室と前記第2の低圧力
水素吸蔵合金熱交換器とを接続する第3の水素搬送管路
と、前記第2の中間圧力水素吸蔵合金熱交換器の前記第
2室と前記第2の高圧力水素吸蔵合金熱交換器とを接続
する第4の水素搬送管路と、前記第1および第2の低圧
力水素吸蔵合金熱交換器との熱交換により高温熱源を取
り出す高温熱源取出管路と、前記第1および第2の高圧
力水素吸蔵合金熱交換器との熱交換により低温熱源を取
り出す低温熱源取出管路と、前記第1の低圧力水素吸蔵
合金熱交換器および第1の高圧力水素吸蔵合金熱交換器
からの高温熱源および低温熱源の取り出し時に、前記第
2の低圧力水素吸蔵合金熱交換器および第1の中間圧力
水素吸蔵合金熱交換器の第1室の加熱を行うとともに、
前記第2の低圧力水素吸蔵合金熱交換器および第2の高
圧力水素吸蔵合金熱交換器からの高温熱源および低温熱
源の取り出し時に、前記第1の低圧力水素吸蔵合金熱交
換器および第2の中間圧力水素吸蔵合金熱交換器の前記
第1室の加熱を行う加熱手段と、前記第1の低圧力水素
吸蔵合金熱交換器および第1の高圧力水素吸蔵合金熱交
換器からの高温熱源および低温熱源の取り出し時に、前
記第1の中間圧力水素吸蔵合金熱交換器の前記第2室お
よび第2の高圧力水素吸蔵合金熱交換器の冷却を行うと
ともに、前記第2の低圧力水素吸蔵合金熱交換器および
第2の高圧力水素吸蔵合金熱交換器からの高温熱源およ
び低温熱源の取り出し時に、前記第2の中間圧力水素吸
蔵合金熱交換器の前記第2室および第1の高圧力水素吸
蔵合金熱交換器の冷却を行う冷却手段とを有するもので
ある。
The hydrogen storage alloy heat pump according to the present invention includes a first hydrogen storage alloy having the smallest hydrogen equilibrium pressure at the same temperature among four types of hydrogen storage alloys having different hydrogen equilibrium pressures. The second low-pressure hydrogen storage alloy heat exchanger and the hydrogen storage alloy having the second and third lowest hydrogen equilibrium pressures at the same temperature among the above-mentioned four types of hydrogen storage alloys pass through the heat transfer member to the first chamber and A first and a second intermediate pressure hydrogen storage alloy heat exchanger housed in the second chamber, and a first hydrogen storage alloy containing the largest hydrogen equilibrium pressure at the same temperature among the four types of hydrogen storage alloys And a first high pressure hydrogen storage alloy heat exchanger, a first intermediate pressure hydrogen storage alloy heat exchanger, the first chamber connecting the first chamber and the first low pressure hydrogen storage alloy heat exchanger. The hydrogen carrier line, and the first A second hydrogen transfer pipeline connecting the second chamber of the intermediate pressure hydrogen storage alloy heat exchanger to the first high pressure hydrogen storage alloy heat exchanger, and the second intermediate pressure hydrogen storage alloy heat exchange A third hydrogen transfer pipeline connecting the first chamber of the reactor with the second low pressure hydrogen storage alloy heat exchanger, and the second chamber of the second intermediate pressure hydrogen storage alloy heat exchanger A high temperature for extracting a high temperature heat source by heat exchange between a fourth hydrogen carrier pipe connecting the second high pressure hydrogen storage alloy heat exchanger and the first and second low pressure hydrogen storage alloy heat exchangers. A low-temperature heat source extraction line for extracting a low-temperature heat source by heat exchange between the heat source extraction line and the first and second high-pressure hydrogen storage alloy heat exchangers, the first low-pressure hydrogen storage alloy heat exchanger, and Removal of high-temperature heat source and low-temperature heat source from the first high-pressure hydrogen storage alloy heat exchanger During, and performs heating of the first chamber of the second low pressure hydrogen absorbing alloy heat exchanger and the first intermediate pressure hydrogen absorbing alloy heat exchanger,
When the high-temperature heat source and the low-temperature heat source are taken out from the second low-pressure hydrogen storage alloy heat exchanger and the second high-pressure hydrogen storage alloy heat exchanger, the first low-pressure hydrogen storage alloy heat exchanger and the second Means for heating the first chamber of the intermediate pressure hydrogen storage alloy heat exchanger, and a high temperature heat source from the first low pressure hydrogen storage alloy heat exchanger and the first high pressure hydrogen storage alloy heat exchanger And when the low temperature heat source is taken out, the second chamber and the second high pressure hydrogen storage alloy heat exchanger of the first intermediate pressure hydrogen storage alloy heat exchanger are cooled, and the second low pressure hydrogen storage alloy is stored. When the high temperature heat source and the low temperature heat source are taken out from the alloy heat exchanger and the second high pressure hydrogen storage alloy heat exchanger, the second chamber and the first high pressure of the second intermediate pressure hydrogen storage alloy heat exchanger are taken out. Hydrogen storage alloy heat exchanger And it has a cooling means for performing retirement.

【0014】[0014]

【作用】本発明の水素吸蔵合金ヒートポンプでは、図2
に示すように、水素平衡圧力が異なる4種類の水素吸蔵
合金M1,M2,M3,M4が用いられる。
The function of the hydrogen storage alloy heat pump of the present invention is shown in FIG.
As shown in (4), four types of hydrogen storage alloys M1, M2, M3 and M4 having different hydrogen equilibrium pressures are used.

【0015】なお、図2において、横軸には温度の逆数
が、縦軸には水素平衡圧力が自然対数でとられている。
このヒートポンプでは、(2)の吸蔵発熱により高温場
において高温熱源が取り出され、(7)の分解吸熱によ
り低温場において低温熱源が取り出される。
In FIG. 2, the horizontal axis represents the reciprocal of temperature and the vertical axis represents the hydrogen equilibrium pressure in natural logarithm.
In this heat pump, the high temperature heat source is taken out in the high temperature field by the occlusion heat generation of (2), and the low temperature heat source is taken out in the low temperature field by the decomposition heat absorption of (7).

【0016】また、(1)および(3)の分解吸熱は、
加熱手段による加熱により行われ、(6)および(8)
の吸蔵発熱は、冷却手段による冷却により行われる。さ
らに、(4)における吸蔵発熱の熱量により、(5)の
分解吸熱が行われる。
Further, the decomposition endotherms of (1) and (3) are
(6) and (8) performed by heating by a heating means.
The occlusion heat generation of is performed by cooling by the cooling means. Furthermore, the decomposition heat absorption of (5) is performed by the heat quantity of the occlusion heat generation in (4).

【0017】すなわち、本発明では、同一温度で水素平
衡圧力が最も小さい水素吸蔵合金が収容される低圧力水
素吸蔵合金熱交換器内の水素吸蔵合金の吸蔵発熱によ
り、高温場において高温熱源が取り出され、一方、同一
温度で水素平衡圧力が最も大きい水素吸蔵合金が収容さ
れる高圧力水素吸蔵合金熱交換器内の水素吸蔵合金の分
解吸熱により低温場において低温熱源が取り出される。
That is, in the present invention, the high temperature heat source is taken out in a high temperature field by the heat generation of the hydrogen storage alloy in the low pressure hydrogen storage alloy heat exchanger in which the hydrogen storage alloy having the smallest hydrogen equilibrium pressure is stored at the same temperature. On the other hand, the low temperature heat source is taken out in the low temperature field by the decomposition and absorption of the hydrogen storage alloy in the high pressure hydrogen storage alloy heat exchanger in which the hydrogen storage alloy having the highest hydrogen equilibrium pressure is stored at the same temperature.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明の水素吸蔵合金ヒートポンプの一
実施例を示しており、図において符号R1,R2は、図
2に示した水素平衡圧力が異なる4種類の水素吸蔵合金
M1,M2,M3,M4のうち同一温度で最も水素平衡
圧力の小さい水素吸蔵合金M1が収容される第1および
第2の低圧力水素吸蔵合金熱交換器を示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a hydrogen storage alloy heat pump of the present invention. In the figure, reference symbols R1 and R2 indicate four types of hydrogen storage alloys M1, M2, M3 having different hydrogen equilibrium pressures shown in FIG. The 1st and 2nd low pressure hydrogen storage alloy heat exchangers which accommodate the hydrogen storage alloy M1 with the smallest hydrogen equilibrium pressure among M4 are shown.

【0019】また、符号R3,R4は、4種類の水素吸
蔵合金のうち同一温度で2番目および3番目に水素平衡
圧力が小さい水素吸蔵合金M2,M3が、伝熱部材Bを
介して第1室S1および第2室S2に収容される第1お
よび第2の中間圧力水素吸蔵合金熱交換器を示してい
る。
Further, reference numerals R3 and R4 denote hydrogen storage alloys M2 and M3 having the second and third lowest hydrogen equilibrium pressures at the same temperature among the four types of hydrogen storage alloys. The 1st and 2nd intermediate pressure hydrogen storage alloy heat exchanger accommodated in the chamber S1 and the 2nd chamber S2 is shown.

【0020】さらに、符号R5,R6は、同一温度で最
も水素平衡圧力の大きい水素吸蔵合金M4が収容される
第1および第2の高圧力水素吸蔵合金熱交換器を示して
いる。
Further, symbols R5 and R6 indicate first and second high pressure hydrogen storage alloy heat exchangers in which the hydrogen storage alloy M4 having the largest hydrogen equilibrium pressure at the same temperature is accommodated.

【0021】そして、第1の中間圧力水素吸蔵合金熱交
換器R3の第1室S1と第1の低圧力水素吸蔵合金熱交
換器R1とは、第1の水素搬送管路L1により接続され
ている。
The first chamber S1 of the first intermediate-pressure hydrogen storage alloy heat exchanger R3 and the first low-pressure hydrogen storage alloy heat exchanger R1 are connected by a first hydrogen transfer line L1. There is.

【0022】第1の中間圧力水素吸蔵合金熱交換器R3
の第2室S2と第1の高圧力水素吸蔵合金熱交換器R5
とは、第2の水素搬送管路L2により接続されている。
第2の中間圧力水素吸蔵合金熱交換器R4の第1室S1
と第2の低圧力水素吸蔵合金熱交換器R2とは、第3の
水素搬送管路L3により接続されている。
First intermediate pressure hydrogen storage alloy heat exchanger R3
Second chamber S2 and first high pressure hydrogen storage alloy heat exchanger R5
And are connected to each other by a second hydrogen transfer pipeline L2.
The first chamber S1 of the second intermediate pressure hydrogen storage alloy heat exchanger R4
The second low-pressure hydrogen storage alloy heat exchanger R2 and the second low-pressure hydrogen storage alloy heat exchanger R2 are connected by a third hydrogen-carrying pipeline L3.

【0023】第2の中間圧力水素吸蔵合金熱交換器R4
の第2室S2と第2の高圧力水素吸蔵合金熱交換器R6
とは、第4の水素搬送管路L4により接続されている。
第1の水素搬送管路L1,第3の水素搬送管路L3に
は、それぞれ電磁開閉弁V13,V14が配置されてい
る。
Second intermediate pressure hydrogen storage alloy heat exchanger R4
Second chamber S2 and second high pressure hydrogen storage alloy heat exchanger R6
And are connected by a fourth hydrogen transfer pipeline L4.
Electromagnetic on-off valves V13 and V14 are arranged in the first hydrogen transfer pipeline L1 and the third hydrogen transfer pipeline L3, respectively.

【0024】第1および第2の低圧力水素吸蔵合金熱交
換器R1,R2には、これ等の熱交換器との熱交換によ
り高温熱源を取り出す高温熱源取出管路L5が配置され
ている。
The first and second low pressure hydrogen storage alloy heat exchangers R1 and R2 are provided with a high temperature heat source extraction line L5 for extracting a high temperature heat source by heat exchange with these heat exchangers.

【0025】高温熱源取出管路L5の第1および第2の
低圧力水素吸蔵合金熱交換器R1,R2への入口側に
は、電磁開閉弁V1,V2が配置されている。また、第
1および第2の高圧力水素吸蔵合金熱交換器R5,R6
には、これ等の熱交換器との熱交換により低温熱源を取
り出す低温熱源取出管路L6が配置されている。
Electromagnetic on-off valves V1 and V2 are arranged on the inlet side of the high temperature heat source extraction line L5 to the first and second low pressure hydrogen storage alloy heat exchangers R1 and R2. In addition, the first and second high pressure hydrogen storage alloy heat exchangers R5, R6
A low temperature heat source take-out pipe line L6 for taking out a low temperature heat source by heat exchange with these heat exchangers is arranged in the.

【0026】低温熱源取出管路L6の第1および第2の
高圧力水素吸蔵合金熱交換器R5,R6への入口側に
は、電磁開閉弁V3,V4が配置されている。第1およ
び第2の低圧力水素吸蔵合金熱交換器R1,R2および
第1および第2の中間圧力水素吸蔵合金熱交換器R3,
R4の第1室S1には、ボイラ50からの温水を供給す
るための加熱管路L7が配置されている。
Electromagnetic on-off valves V3 and V4 are disposed on the inlet side of the low temperature heat source extraction line L6 to the first and second high pressure hydrogen storage alloy heat exchangers R5 and R6. First and second low pressure hydrogen storage alloy heat exchangers R1, R2 and first and second intermediate pressure hydrogen storage alloy heat exchangers R3
A heating pipe line L7 for supplying hot water from the boiler 50 is arranged in the first chamber S1 of R4.

【0027】そして、この加熱管路L7の第1および第
2の低圧力水素吸蔵合金熱交換器R1,R2および第1
および第2の中間圧力水素吸蔵合金熱交換器R3,R4
の第1室S1への入口または出口側には、それぞれ電磁
開閉弁V5,V6,V7,V8が配置されている。
The first and second low pressure hydrogen storage alloy heat exchangers R1 and R2 and the first heating pipe L7 and the first
And second intermediate pressure hydrogen storage alloy heat exchangers R3, R4
Electromagnetic on-off valves V5, V6, V7, and V8 are arranged on the inlet side and the outlet side of the first chamber S1, respectively.

【0028】第1および第2の中間圧力水素吸蔵合金熱
交換器R3,R4の第2室S2および第1および第2の
高圧力水素吸蔵合金熱交換器R5,R6には、冷却塔5
1からの冷水を供給するための冷却管路L8が配置され
ている。
A cooling tower 5 is provided in the second chamber S2 of the first and second intermediate pressure hydrogen storage alloy heat exchangers R3, R4 and the first and second high pressure hydrogen storage alloy heat exchangers R5, R6.
A cooling line L8 for supplying the cold water from 1 is arranged.

【0029】この冷却管路L8の下流側端は、ボイラ5
0に接続され、前述した加熱管路L7の下流側端が冷却
塔51に接続されている。また、冷却管路L8には、循
環ポンプ53が配置されている。
The downstream end of the cooling pipe L8 is connected to the boiler 5
0, and the downstream end of the above-described heating pipe line L7 is connected to the cooling tower 51. A circulation pump 53 is arranged in the cooling pipeline L8.

【0030】そして、この冷却管路L8の第1および第
2の中間圧力水素吸蔵合金熱交換器R3,R4の第2室
S2および第1および第2の高圧力水素吸蔵合金熱交換
器R5,R6への入口または出口側には、それぞれ電磁
開閉弁V9,V10,V11,V12が配置されてい
る。
Then, the first and second intermediate pressure hydrogen storage alloy heat exchangers R3 and R4 in the cooling pipe L8 and the second chamber S2 and the first and second high pressure hydrogen storage alloy heat exchangers R5 and R5. Electromagnetic on-off valves V9, V10, V11, and V12 are arranged on the inlet side and the outlet side of R6, respectively.

【0031】図において、符号Cは、電磁開閉弁V1〜
V14の開閉を行う切替手段である制御装置を示してお
り、この制御装置Cには、各電磁開閉弁V1〜V14へ
の図示しない電線が接続されている。
In the figure, the symbol C indicates the electromagnetic opening / closing valves V1 to V1.
A control device, which is a switching means for opening and closing V14, is shown, and the control device C is connected with electric wires (not shown) to each of the electromagnetic opening / closing valves V1 to V14.

【0032】上述した水素吸蔵合金ヒートポンプは、図
3に示す第1の状態と、図4に示す第2の状態とを所定
時間を置いて交互に繰り返すことにより運転される。す
なわち、図3に示す第1の状態では、第1の低圧力水素
吸蔵合金熱交換器R1および第1の高圧力水素吸蔵合金
熱交換器R5からの高温熱源および低温熱源の取り出し
が行われる。
The above hydrogen storage alloy heat pump is operated by alternately repeating the first state shown in FIG. 3 and the second state shown in FIG. 4 with a predetermined time interval. That is, in the first state shown in FIG. 3, the high temperature heat source and the low temperature heat source are taken out from the first low pressure hydrogen storage alloy heat exchanger R1 and the first high pressure hydrogen storage alloy heat exchanger R5.

【0033】この状態では、制御装置Cにより、図3に
示すように電磁開閉弁V1〜V14の開閉が行われてい
る。なお、図3において、白の電磁開閉弁は開の状態を
示しており、黒の電磁開閉弁は閉の状態を示している。
In this state, the control device C opens and closes the solenoid on-off valves V1 to V14 as shown in FIG. In FIG. 3, the white electromagnetic on-off valve shows an open state, and the black electromagnetic on-off valve shows a closed state.

【0034】この第1の状態では、第1の中間圧力水素
吸蔵合金熱交換器R3の第1室S1内が加熱され、水素
吸蔵合金M2から水素が分解し、分解された水素が第1
の水素搬送管路L1から第1の低圧力水素吸蔵合金熱交
換器R1に流入し、水素の流入により、第1の低圧力水
素吸蔵合金熱交換器R1内の水素吸蔵合金M1に水素が
吸蔵され吸蔵発熱が行われる(図2の(1),(2)に
対応する)。
In this first state, the inside of the first chamber S1 of the first intermediate pressure hydrogen storage alloy heat exchanger R3 is heated, hydrogen is decomposed from the hydrogen storage alloy M2, and the decomposed hydrogen is the first.
Of the hydrogen-carrying pipeline L1 into the first low-pressure hydrogen storage alloy heat exchanger R1 and hydrogen is stored in the hydrogen-storage alloy M1 in the first low-pressure hydrogen storage alloy heat exchanger R1 by the inflow of hydrogen. Then, the storage heat is generated (corresponding to (1) and (2) in FIG. 2).

【0035】そして、電磁開閉弁V7,V13は、熱交
換器R1に水素流入が完了すると閉となる。また、この
第1の状態では、第2の低圧力水素吸蔵合金熱交換器R
2内が加熱され、水素吸蔵合金M1から水素が分解し、
電磁開閉弁V14が開になると同時に分解された水素が
第3の水素搬送管路L3から第2の中間圧力水素吸蔵合
金熱交換器R4の第1室S1に戻される(図2の
(3),(4)に対応する)。
The electromagnetic on-off valves V7 and V13 are closed when the hydrogen flow into the heat exchanger R1 is completed. In this first state, the second low pressure hydrogen storage alloy heat exchanger R
2 is heated, hydrogen is decomposed from the hydrogen storage alloy M1,
At the same time when the electromagnetic opening / closing valve V14 is opened, the decomposed hydrogen is returned to the first chamber S1 of the second intermediate pressure hydrogen storage alloy heat exchanger R4 from the third hydrogen transfer pipeline L3 ((3) in FIG. 2). , (4)).

【0036】つぎに、この第1の状態では、第1の中間
圧力水素吸蔵合金熱交換器R3の第2室S2内が冷却さ
れ、それと同時に第1室S1も冷却され、第2室S2内
の圧力の低下により、第1の高圧力水素吸蔵合金熱交換
器R5からの水素が、第2の水素搬送管路L2から第1
の中間圧力水素吸蔵合金熱交換器R3の第2室S2に導
かれ、これにより第1の高圧力水素吸蔵合金熱交換器R
5内の水素吸蔵合金M4が分解し、分解吸熱が行われる
(図2の(6),(7)に対応する)。
Next, in this first state, the inside of the second chamber S2 of the first intermediate pressure hydrogen storage alloy heat exchanger R3 is cooled, and at the same time, the inside of the second chamber S1 is also cooled and the inside of the second chamber S2 is cooled. Due to the decrease in the pressure of H2, the hydrogen from the first high-pressure hydrogen storage alloy heat exchanger R5 is transferred from the second hydrogen transfer pipeline L2 to the first
Is guided to the second chamber S2 of the intermediate pressure hydrogen storage alloy heat exchanger R3, and thereby the first high pressure hydrogen storage alloy heat exchanger R
The hydrogen storage alloy M4 in 5 is decomposed and decomposition heat absorption is performed (corresponding to (6) and (7) in FIG. 2).

【0037】また、この第1の状態では、第2の中間圧
力水素吸蔵合金熱交換器R4の第1室S1内に水素が供
給され、水素吸蔵合金M2による吸蔵発熱が行われ、吸
蔵発熱により発生した熱量が、伝熱部材Bを介して第2
室S2に伝熱され、この熱量により第2室S2内の水素
吸蔵合金M3の分解吸熱が行われる(図2の(4),
(5)に対応する)。
Further, in this first state, hydrogen is supplied into the first chamber S1 of the second intermediate pressure hydrogen storage alloy heat exchanger R4, and the storage heat of the hydrogen storage alloy M2 is carried out. The generated heat quantity is transferred to the second via the heat transfer member B.
The heat is transferred to the chamber S2, and the amount of this heat decomposes and absorbs the hydrogen storage alloy M3 in the second chamber S2 ((4) in FIG. 2,
(Corresponds to (5)).

【0038】一方、第1の低圧力水素吸蔵合金熱交換器
R1における水素吸蔵合金M1の吸蔵発熱反応および第
1の高圧力水素吸蔵合金熱交換器R5における水素吸蔵
合金M4の分解吸熱反応が一段落すると、制御装置Cに
より電磁開閉弁V1〜V12の開閉が行われ、図4に示
す第2の状態に切り替えられる。
On the other hand, the storage and exothermic reaction of the hydrogen storage alloy M1 in the first low pressure hydrogen storage alloy heat exchanger R1 and the decomposition and endothermic reaction of the hydrogen storage alloy M4 in the first high pressure hydrogen storage alloy heat exchanger R5 are one paragraph. Then, the control device C opens and closes the electromagnetic on-off valves V1 to V12, and switches to the second state shown in FIG.

【0039】なお、図4において、白の電磁開閉弁は開
の状態を示しており、黒の電磁開閉弁は閉の状態を示し
ている。この図4に示す第2の状態では、第2の低圧力
水素吸蔵合金熱交換器R2および第2の高圧力水素吸蔵
合金熱交換器R6からの高温熱源および低温熱源の取り
出しが行われる。
In FIG. 4, the white electromagnetic on-off valve shows an open state, and the black electromagnetic on-off valve shows a closed state. In the second state shown in FIG. 4, the high temperature heat source and the low temperature heat source are taken out from the second low pressure hydrogen storage alloy heat exchanger R2 and the second high pressure hydrogen storage alloy heat exchanger R6.

【0040】この第2の状態では、第2の中間圧力水素
吸蔵合金熱交換器R4の第1室S1内が加熱され、水素
吸蔵合金M2から水素が分解し、分解された水素が第3
の水素搬送管路L3から第2の低圧力水素吸蔵合金熱交
換器R2に流入し、水素の流入により、第2の低圧力水
素吸蔵合金熱交換器R2内の水素吸蔵合金M1に水素が
吸蔵され吸蔵発熱が行われる(図2の(1),(2)に
対応する)。
In this second state, the inside of the first chamber S1 of the second intermediate pressure hydrogen storage alloy heat exchanger R4 is heated, hydrogen is decomposed from the hydrogen storage alloy M2, and the decomposed hydrogen is the third.
From the hydrogen transfer pipeline L3 into the second low pressure hydrogen storage alloy heat exchanger R2, and the hydrogen is stored in the hydrogen storage alloy M1 in the second low pressure hydrogen storage alloy heat exchanger R2 by the inflow of hydrogen. Then, the storage heat is generated (corresponding to (1) and (2) in FIG. 2).

【0041】そして、電磁開閉弁V8,V14は、熱交
換器R2に水素流入が完了すると閉となる。また、この
第2の状態では、第1の低圧力水素吸蔵合金熱交換器R
1内が加熱され、水素吸蔵合金M1から水素が分解し、
電磁開閉弁V14が開になると同時に分解された水素が
第1の水素搬送管路L1から第1の中間圧力水素吸蔵合
金熱交換器R3の第1室S1に戻される(図2の
(3),(4)に対応する)。
The electromagnetic on-off valves V8 and V14 are closed when the hydrogen inflow into the heat exchanger R2 is completed. Also, in this second state, the first low pressure hydrogen storage alloy heat exchanger R
1 is heated, hydrogen is decomposed from the hydrogen storage alloy M1,
At the same time when the electromagnetic opening / closing valve V14 is opened, the decomposed hydrogen is returned to the first chamber S1 of the first intermediate pressure hydrogen storage alloy heat exchanger R3 from the first hydrogen transfer pipe L1 ((3) in FIG. 2). , (4)).

【0042】つぎに、この第2の状態では、第2の中間
圧力水素吸蔵合金熱交換器R4の第2室S2内が冷却さ
れ、それと同時に第1室S1も冷却され、第2室S2内
の圧力の低下により、第2の高圧力水素吸蔵合金熱交換
器R6からの水素が、第4の水素搬送管路L4から第2
の中間圧力水素吸蔵合金熱交換器R4の第2室S2に導
かれ、これにより第2の高圧力水素吸蔵合金熱交換器R
6内の水素吸蔵合金M4が分解し、分解吸熱が行われる
(図2の(6),(7)に対応する)。
Next, in this second state, the inside of the second chamber S2 of the second intermediate pressure hydrogen storage alloy heat exchanger R4 is cooled, and at the same time, the inside of the second chamber S1 is cooled and the inside of the second chamber S2 is cooled. Due to the decrease in the pressure of H2, hydrogen from the second high-pressure hydrogen storage alloy heat exchanger R6 becomes
Is guided to the second chamber S2 of the intermediate pressure hydrogen storage alloy heat exchanger R4, and thereby the second high pressure hydrogen storage alloy heat exchanger R
The hydrogen storage alloy M4 in 6 is decomposed, and decomposition heat absorption is performed (corresponding to (6) and (7) in FIG. 2).

【0043】また、この第2の状態では、第1の中間圧
力水素吸蔵合金熱交換器R3の第1室S1内に水素が供
給され、水素吸蔵合金M2による吸蔵発熱が行われ、吸
蔵発熱により発生した熱量が、伝熱部材Bを介して第2
室S2に伝熱され、この熱量により第2室S2内の水素
吸蔵合金M3の分解吸熱が行われる(図2の(4),
(5)に対応する)。
Further, in this second state, hydrogen is supplied into the first chamber S1 of the first intermediate pressure hydrogen storage alloy heat exchanger R3, and the storage heat of the hydrogen storage alloy M2 is generated. The generated heat quantity is transferred to the second via the heat transfer member B.
The heat is transferred to the chamber S2, and the amount of this heat decomposes and absorbs the hydrogen storage alloy M3 in the second chamber S2 ((4) in FIG. 2,
(Corresponds to (5)).

【0044】しかして、上述した水素吸蔵合金ヒートポ
ンプでは、図2に示したような水素平衡圧力が異なる4
種類の水素吸蔵合金M1,M2,M3,M4を用い、同
一温度で水素平衡圧力が最も小さい水素吸蔵合金M1が
収容される低圧力水素吸蔵合金熱交換器R1,R2内の
水素吸蔵合金M1の吸蔵発熱により、高温場において高
温熱源を取り出し、一方、同一温度で水素平衡圧力が最
も大きい水素吸蔵合金M4が収容される高圧力水素吸蔵
合金熱交換器R5,R6内の水素吸蔵合金M4の分解吸
熱により低温場において低温熱源を取り出すようにした
ので、高温場において高温熱源を、低温場において低温
熱源を同時に得ることができる。
In the hydrogen storage alloy heat pump described above, however, the hydrogen equilibrium pressure as shown in FIG.
Of the hydrogen storage alloys M1, M2, M3, M4 of the kind, the hydrogen storage alloy M1 in the low pressure hydrogen storage alloy heat exchangers R1, R2 in which the hydrogen storage alloy M1 having the smallest hydrogen equilibrium pressure at the same temperature is stored. Due to storage heat, a high temperature heat source is taken out in a high temperature field, while decomposition of the hydrogen storage alloy M4 in the high pressure hydrogen storage alloy heat exchangers R5, R6 in which the hydrogen storage alloy M4 having the largest hydrogen equilibrium pressure is stored at the same temperature. Since the low temperature heat source is taken out in the low temperature field by the heat absorption, it is possible to obtain the high temperature heat source in the high temperature field and the low temperature heat source in the low temperature field at the same time.

【0045】そして、この水素吸蔵合金ヒートポンプ
を、例えば、図8に示した環境試験室等に適用すること
により、コンプレッサなしで低温熱源から低温を容易に
得ることが可能になり、また、蒸気あるいは電気ヒータ
を用いずに高温熱源から再生熱源を得ることが可能にな
るため、COP(成績係数)を従来より大幅に向上する
ことが可能になる。
By applying this hydrogen storage alloy heat pump to, for example, the environment test chamber shown in FIG. 8, it becomes possible to easily obtain a low temperature from a low temperature heat source without using a compressor, and to use steam or Since the regenerative heat source can be obtained from the high temperature heat source without using the electric heater, the COP (coefficient of performance) can be significantly improved as compared with the conventional case.

【0046】また、フロンガスを使用する必要がなくな
るため、環境破壊を引き起こす虞れを解消することがで
きる。さらに、上述した水素吸蔵合金ヒートポンプで
は、第1および第2の中間圧力水素吸蔵合金熱交換器R
3,R4内に、伝熱部材Bにより第1室S1と第2室S
2を形成し、第1室に水素吸蔵合金M2を、第2室に水
素吸蔵合金M3を収容したので、第1室S1と第2室S
2において熱量の授受を直接行うことができ、水素吸蔵
合金ヒートポンプの配管系統を簡略化することが可能に
なる。
Further, since it is not necessary to use CFC gas, it is possible to eliminate the possibility of causing environmental damage. Further, in the hydrogen storage alloy heat pump described above, the first and second intermediate pressure hydrogen storage alloy heat exchangers R
The first chamber S1 and the second chamber S are provided by the heat transfer member B in R3 and R4.
2 is formed, and the hydrogen storage alloy M2 is contained in the first chamber and the hydrogen storage alloy M3 is contained in the second chamber, so that the first chamber S1 and the second chamber S
In 2, the heat quantity can be directly transferred, and the piping system of the hydrogen storage alloy heat pump can be simplified.

【0047】また、冷却管路L8の下流側端をボイラ5
0に接続し、加熱管路L7の下流側端を冷却塔51に接
続したので、冷却管路L8および加熱管路L7を流れる
流体の熱量を効率的に利用することが可能になる。
The downstream end of the cooling pipe L8 is connected to the boiler 5
Since it is connected to 0 and the downstream end of the heating pipeline L7 is connected to the cooling tower 51, the heat quantity of the fluid flowing through the cooling pipeline L8 and the heating pipeline L7 can be efficiently used.

【0048】なお、以上述べた実施例では、コンプレッ
サを使用しない例について説明したが、本発明はかかる
実施例に限定されるものではなく、例えば、図5の点線
に示すように、コンプレッサを併用して高圧力水素吸蔵
合金熱交換器R5,R6内の圧力を低下することによ
り、より低温の低温熱源を得ることができる。
In the embodiment described above, the example in which the compressor is not used has been described, but the present invention is not limited to such an embodiment, and for example, a compressor is used together as shown by a dotted line in FIG. By lowering the pressure in the high-pressure hydrogen storage alloy heat exchangers R5, R6, it is possible to obtain a lower temperature low temperature heat source.

【0049】また、以上述べた実施例では、加熱にボイ
ラを使用し、冷却に冷却塔を使用した例について説明し
たが、本発明はかかる実施例に限定されるものではな
く、例えば、加熱に廃熱あるいはコージェネ等の回収熱
を使用しても良く、冷却に河川の水等を使用しても良
い。
Further, in the above-mentioned embodiment, an example in which a boiler is used for heating and a cooling tower is used for cooling has been described, but the present invention is not limited to such an embodiment. Waste heat or heat recovered from cogeneration may be used, or river water or the like may be used for cooling.

【0050】[0050]

【発明の効果】以上述べたように、本発明の水素吸蔵合
金ヒートポンプでは、水素平衡圧力が異なる4種類の水
素吸蔵合金を用い、同一温度で水素平衡圧力が最も小さ
い水素吸蔵合金が収容される低圧力水素吸蔵合金熱交換
器内の水素吸蔵合金の吸蔵発熱により、高温熱源を取り
出し、一方、同一温度で水素平衡圧力が最も大きい水素
吸蔵合金が収容される高圧力水素吸蔵合金熱交換器内の
水素吸蔵合金の分解吸熱により低温熱源を取り出すよう
にしたので、高温場において高温熱源を、低温場におい
て低温熱源を同時に得ることができるという利点があ
る。
As described above, in the hydrogen storage alloy heat pump of the present invention, four kinds of hydrogen storage alloys having different hydrogen equilibrium pressures are used, and the hydrogen storage alloy having the smallest hydrogen equilibrium pressure is accommodated at the same temperature. Inside the high pressure hydrogen storage alloy heat exchanger where the high temperature heat source is taken out by the storage heat of the hydrogen storage alloy in the low pressure hydrogen storage alloy heat exchanger, while the hydrogen storage alloy with the largest hydrogen equilibrium pressure is stored at the same temperature. Since the low-temperature heat source is taken out by the decomposition endotherm of the hydrogen storage alloy of No. 3, there is an advantage that the high-temperature heat source can be obtained in the high temperature field and the low temperature heat source can be obtained in the low temperature field at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水素吸蔵合金ヒートポンプの一実施例
を示す配管系統図である。
FIG. 1 is a piping system diagram showing an embodiment of a hydrogen storage alloy heat pump of the present invention.

【図2】本発明の水素吸蔵合金ヒートポンプの原理を示
す説明図である。
FIG. 2 is an explanatory diagram showing the principle of the hydrogen storage alloy heat pump of the present invention.

【図3】図1の水素吸蔵合金ヒートポンプにおける第1
の運転状態を示す配管系統図である。
FIG. 3 is a first view of the hydrogen storage alloy heat pump of FIG.
3 is a piping system diagram showing the operating state of FIG.

【図4】図1の水素吸蔵合金ヒートポンプにおける第2
の運転状態を示す配管系統図である。
FIG. 4 is a second view of the hydrogen storage alloy heat pump of FIG.
3 is a piping system diagram showing the operating state of FIG.

【図5】本発明の水素吸蔵合金ヒートポンプにコンプレ
ッサを導入した例を示す説明図である。
FIG. 5 is an explanatory view showing an example in which a compressor is introduced into the hydrogen storage alloy heat pump of the present invention.

【図6】従来の昇温型ヒートポンプの原理を示す説明図
である。
FIG. 6 is an explanatory diagram showing the principle of a conventional temperature rising heat pump.

【図7】従来の増熱冷凍型ヒートポンプの原理を示す説
明図である。
FIG. 7 is an explanatory diagram showing the principle of a conventional heat-enhanced freezing type heat pump.

【図8】従来の環境試験室の空調装置を示す配管系統図
である。
FIG. 8 is a piping system diagram showing a conventional air conditioner in an environmental test room.

【符号の説明】[Explanation of symbols]

R1 第1の低圧力水素吸蔵合金熱交換器 R2 第2の低圧力水素吸蔵合金熱交換器 R3 第1の中間圧力水素吸蔵合金熱交換器 R4 第2の中間圧力水素吸蔵合金熱交換器 R5 第1の高圧力水素吸蔵合金熱交換器 R6 第2の高圧力水素吸蔵合金熱交換器 L1 第1の水素搬送管路 L2 第2の水素搬送管路 L3 第3の水素搬送管路 L4 第4の水素搬送管路 L5 高温熱源取出管路 L6 低温熱源取出管路 L7 加熱管路 L8 冷却管路 V1〜V12 電磁開閉弁 C 制御装置 M1,M2,M3,M4 水素吸蔵合金 R1 First low pressure hydrogen storage alloy heat exchanger R2 Second low pressure hydrogen storage alloy heat exchanger R3 First intermediate pressure hydrogen storage alloy heat exchanger R4 Second intermediate pressure hydrogen storage alloy heat exchanger R5 1 high pressure hydrogen storage alloy heat exchanger R6 2nd high pressure hydrogen storage alloy heat exchanger L1 1st hydrogen transfer pipeline L2 2nd hydrogen transfer pipeline L3 3rd hydrogen transfer pipeline L4 4th Hydrogen carrier pipeline L5 High temperature heat source extraction pipeline L6 Low temperature heat source extraction pipeline L7 Heating pipeline L8 Cooling pipeline V1 to V12 Electromagnetic on-off valve C Controller M1, M2, M3, M4 Hydrogen storage alloy

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年5月16日[Submission date] May 16, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図5】 [Figure 5]

【図8】 [Figure 8]

【図4】 [Figure 4]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素平衡圧力が異なる4種類の水素吸蔵
合金のうち同一温度で最も水素平衡圧力の小さい水素吸
蔵合金が収容される第1および第2の低圧力水素吸蔵合
金熱交換器と、 前記4種類の水素吸蔵合金のうち同一温度で2番目およ
び3番目に水素平衡圧力が小さい水素吸蔵合金が伝熱部
材を介して第1室および第2室に収容される第1および
第2の中間圧力水素吸蔵合金熱交換器と、 前記4種類の水素吸蔵合金のうち同一温度で最も水素平
衡圧力の大きい水素吸蔵合金が収容される第1および第
2の高圧力水素吸蔵合金熱交換器と、 前記第1の中間圧力水素吸蔵合金熱交換器の前記第1室
と前記第1の低圧力水素吸蔵合金熱交換器とを接続する
第1の水素搬送管路と、 前記第1の中間圧力水素吸蔵合金熱交換器の前記第2室
と前記第1の高圧力水素吸蔵合金熱交換器とを接続する
第2の水素搬送管路と、 前記第2の中間圧力水素吸蔵合金熱交換器の前記第1室
と前記第2の低圧力水素吸蔵合金熱交換器とを接続する
第3の水素搬送管路と、 前記第2の中間圧力水素吸蔵合金熱交換器の前記第2室
と前記第2の高圧力水素吸蔵合金熱交換器とを接続する
第4の水素搬送管路と、 前記第1および第2の低圧力水素吸蔵合金熱交換器との
熱交換により高温熱源を取り出す高温熱源取出管路と、 前記第1および第2の高圧力水素吸蔵合金熱交換器との
熱交換により低温熱源を取り出す低温熱源取出管路と、 前記第1の低圧力水素吸蔵合金熱交換器および第1の高
圧力水素吸蔵合金熱交換器からの高温熱源および低温熱
源の取り出し時に、前記第2の低圧力水素吸蔵合金熱交
換器および第1の中間圧力水素吸蔵合金熱交換器の第1
室の加熱を行うとともに、前記第2の低圧力水素吸蔵合
金熱交換器および第2の高圧力水素吸蔵合金熱交換器か
らの高温熱源および低温熱源の取り出し時に、前記第1
の低圧力水素吸蔵合金熱交換器および第2の中間圧力水
素吸蔵合金熱交換器の前記第1室の加熱を行う加熱手段
と、 前記第1の低圧力水素吸蔵合金熱交換器および第1の高
圧力水素吸蔵合金熱交換器からの高温熱源および低温熱
源の取り出し時に、前記第1の中間圧力水素吸蔵合金熱
交換器の前記第2室および第2の高圧力水素吸蔵合金熱
交換器の冷却を行うとともに、前記第2の低圧力水素吸
蔵合金熱交換器および第2の高圧力水素吸蔵合金熱交換
器からの高温熱源および低温熱源の取り出し時に、前記
第2の中間圧力水素吸蔵合金熱交換器の前記第2室およ
び第1の高圧力水素吸蔵合金熱交換器の冷却を行う冷却
手段と、を有することを特徴とする水素吸蔵合金ヒート
ポンプ。
1. A first and a second low-pressure hydrogen storage alloy heat exchangers, each accommodating a hydrogen storage alloy having the smallest hydrogen equilibrium pressure at the same temperature among four types of hydrogen storage alloys having different hydrogen equilibrium pressures, Of the four types of hydrogen storage alloys, the first and second hydrogen storage alloys having the second and third hydrogen equilibrium pressures at the same temperature are housed in the first chamber and the second chamber via the heat transfer member. An intermediate pressure hydrogen storage alloy heat exchanger, and first and second high pressure hydrogen storage alloy heat exchangers accommodating the hydrogen storage alloy having the largest hydrogen equilibrium pressure at the same temperature among the four types of hydrogen storage alloys A first hydrogen transfer pipeline connecting the first chamber of the first intermediate pressure hydrogen storage alloy heat exchanger to the first low pressure hydrogen storage alloy heat exchanger, the first intermediate pressure The second chamber of the hydrogen storage alloy heat exchanger and the above A second hydrogen carrier pipe connecting the high pressure hydrogen storage alloy heat exchanger of No. 1; the first chamber and the second low pressure hydrogen storage alloy of the second intermediate pressure hydrogen storage alloy heat exchanger; A third hydrogen carrying pipe line connecting to a heat exchanger is connected to the second chamber of the second intermediate pressure hydrogen storage alloy heat exchanger and the second high pressure hydrogen storage alloy heat exchanger. A high-temperature heat source take-out line for taking out a high-temperature heat source by heat exchange between a fourth hydrogen-carrying pipeline and the first and second low-pressure hydrogen storage alloy heat exchangers; and the first and second high-pressure hydrogen A low-temperature heat source extraction pipe for extracting a low-temperature heat source by heat exchange with the storage alloy heat exchanger, a high-temperature heat source from the first low-pressure hydrogen storage alloy heat exchanger and the first high-pressure hydrogen storage alloy heat exchanger, and At the time of taking out the low temperature heat source, the second low pressure hydrogen storage alloy heat exchanger Spare the first intermediate pressure hydrogen absorbing alloy heat exchanger first
While heating the chamber, at the time of taking out the high-temperature heat source and the low-temperature heat source from the second low-pressure hydrogen storage alloy heat exchanger and the second high-pressure hydrogen storage alloy heat exchanger, the first
Heating means for heating the first chamber of the low-pressure hydrogen storage alloy heat exchanger and the second intermediate-pressure hydrogen storage alloy heat exchanger, and the first low-pressure hydrogen storage alloy heat exchanger and the first Cooling of the second chamber of the first intermediate pressure hydrogen storage alloy heat exchanger and the second high pressure hydrogen storage alloy heat exchanger when the high temperature heat source and the low temperature heat source are taken out from the high pressure hydrogen storage alloy heat exchanger And at the time of taking out the high temperature heat source and the low temperature heat source from the second low pressure hydrogen storage alloy heat exchanger and the second high pressure hydrogen storage alloy heat exchanger, the second intermediate pressure hydrogen storage alloy heat exchange And a cooling means for cooling the second chamber of the vessel and the first high-pressure hydrogen storage alloy heat exchanger.
JP03140194A 1994-03-01 1994-03-01 Hydrogen storage alloy heat pump Expired - Fee Related JP3246632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03140194A JP3246632B2 (en) 1994-03-01 1994-03-01 Hydrogen storage alloy heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03140194A JP3246632B2 (en) 1994-03-01 1994-03-01 Hydrogen storage alloy heat pump

Publications (2)

Publication Number Publication Date
JPH07243717A true JPH07243717A (en) 1995-09-19
JP3246632B2 JP3246632B2 (en) 2002-01-15

Family

ID=12330244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03140194A Expired - Fee Related JP3246632B2 (en) 1994-03-01 1994-03-01 Hydrogen storage alloy heat pump

Country Status (1)

Country Link
JP (1) JP3246632B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997048887A1 (en) * 1996-06-21 1997-12-24 World Fusion Limited Power generating device employing hydrogen absorbing alloy and low heat
CN1098406C (en) * 1996-06-21 2003-01-08 国际融合有限公司 Power generating device employing hydrogen absorbing alloy and low heat
WO2003106899A1 (en) * 2002-01-10 2003-12-24 Ipトレーディング・ジャパン株式会社 Hydrogen absorbing alloy, hydrogen absorbing alloy unit, heat pump using hydrogen absorbing alloy, and hydrogen compressing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967136B2 (en) * 2014-05-30 2016-08-10 株式会社豊田中央研究所 Hydrogen storage type heat pump and hydrogen storage type heat pump system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997048887A1 (en) * 1996-06-21 1997-12-24 World Fusion Limited Power generating device employing hydrogen absorbing alloy and low heat
US6141966A (en) * 1996-06-21 2000-11-07 Osumi; Yasuaki Power generating device employing hydrogen absorbing alloy and low heat
CN1098406C (en) * 1996-06-21 2003-01-08 国际融合有限公司 Power generating device employing hydrogen absorbing alloy and low heat
WO2003106899A1 (en) * 2002-01-10 2003-12-24 Ipトレーディング・ジャパン株式会社 Hydrogen absorbing alloy, hydrogen absorbing alloy unit, heat pump using hydrogen absorbing alloy, and hydrogen compressing device

Also Published As

Publication number Publication date
JP3246632B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
US4085590A (en) Hydride compressor
EP0168062B1 (en) Metal hydride heat pump assembly
EP0071271B1 (en) Metal hydride heat pump system
JP2539486B2 (en) Heat storage device and operating method thereof
JPH06510595A (en) Dual temperature heat pump equipment and systems
CN108954904A (en) A kind of boosting type heat chemistry adsorption heat pump device
JPH07243717A (en) Hydrogen absorbing alloy heat pump
JP2971239B2 (en) Hydrogen-oxygen combustion steam turbine engine
RU2131987C1 (en) Hear-transfer apparatus using stirling-cycle principle
JPH07243716A (en) Hydrogen absorbing alloy heat pump
CN211507135U (en) Primary circuit thermal test system of high-temperature gas cooled reactor nuclear power station
JPH11117713A (en) Chemical heat-accumulating type intake air cooling device
JPH109709A (en) Metal hydride adsorption type thermally driven refrigerating machine
JP3518963B2 (en) Operating method of heat storage system using hydrogen storage alloy
JP4202057B2 (en) Combined system using waste heat of nuclear reactor plant
EP4368566A1 (en) Hydrogen compression system
JP2004340530A (en) Hydrogen storage alloy vessel
JPS6073013A (en) Intake-gas cooling apparatus for engine equipped with supercharger
JP2643235B2 (en) Metal hydride heating and cooling equipment
GB860534A (en) Improvements in or relating to systems comprising a closed pipe system in which a compressor and an expansion apparatus are included
JP2023027729A (en) Circulating water-type carbon dioxide separation/refinement storage system
JPH03282190A (en) Heat accumulating device
CN116592679A (en) Supercritical carbon dioxide heat storage system and control method
JPS62213663A (en) Heating operation method of absorption type air conditioner
JPS63161365A (en) Heat pump type air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees