JP3246632B2 - Hydrogen storage alloy heat pump - Google Patents

Hydrogen storage alloy heat pump

Info

Publication number
JP3246632B2
JP3246632B2 JP03140194A JP3140194A JP3246632B2 JP 3246632 B2 JP3246632 B2 JP 3246632B2 JP 03140194 A JP03140194 A JP 03140194A JP 3140194 A JP3140194 A JP 3140194A JP 3246632 B2 JP3246632 B2 JP 3246632B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
heat exchanger
low
pressure hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03140194A
Other languages
Japanese (ja)
Other versions
JPH07243717A (en
Inventor
三男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP03140194A priority Critical patent/JP3246632B2/en
Publication of JPH07243717A publication Critical patent/JPH07243717A/en
Application granted granted Critical
Publication of JP3246632B2 publication Critical patent/JP3246632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を用いた
水素吸蔵合金ヒートポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy heat pump using a hydrogen storage alloy.

【0002】[0002]

【従来の技術】近時、水素吸蔵合金に水素が吸蔵される
時の吸蔵発熱、および、水素吸蔵合金から水素が放出さ
れる時の分解吸熱を利用した水素吸蔵合金ヒートポンプ
が開発されており、従来、このような水素吸蔵合金ヒー
トポンプとしては、例えば、特開平1−305273号
公報等に開示されるものが知られている。
2. Description of the Related Art In recent years, a hydrogen storage alloy heat pump has been developed which utilizes heat generation and storage when hydrogen is stored in a hydrogen storage alloy and decomposition heat absorption when hydrogen is released from the hydrogen storage alloy. Conventionally, as such a hydrogen storage alloy heat pump, one disclosed in, for example, JP-A-1-305273 is known.

【0003】そして、従来、熱駆動式ヒートポンプとし
て、図6に示す昇温型ヒートポンプおよび図7に示す増
熱冷凍型ヒートポンプの2種類のヒートポンプが知られ
ている。
[0003] Conventionally, two types of heat pumps are known as heat-driven heat pumps: a heat-up type heat pump shown in FIG. 6 and a heat-increasing refrigeration type heat pump shown in FIG.

【0004】図6に示す昇温型ヒートポンプでは、水素
平衡圧力が異なる2種類の水素吸蔵合金M1,M2が使
用されており、この水素吸蔵合金ヒートポンプは、水素
吸蔵合金M2をTM の温度の熱源を用いて熱分解し、水
素吸蔵合金M1に水素を導き、吸蔵発熱を起こさせるこ
とによりQ0の出力発生を行わせ、反応終了後は、T M
の温度の熱源を水素吸蔵合金の分解に再び用い、水素吸
蔵合金M1から水素吸蔵合金M2へ水素を戻す(1)→
(2)→(3)→(4)のサイクルとされている。
[0004] In the temperature rising heat pump shown in FIG.
Two types of hydrogen storage alloys M1 and M2 with different equilibrium pressures are used.
This hydrogen storage alloy heat pump is
Storage alloy M2 with TMPyrolyzed using a heat source at a temperature of
Hydrogen is led to the elemental storage alloy M1 to generate occlusion heat.
To generate the output of Q0, and after the reaction, T M
The heat source at the temperature of 3 is used again to decompose the hydrogen storage alloy,
Returning hydrogen from storage alloy M1 to hydrogen storage alloy M2 (1) →
The cycle is (2) → (3) → (4).

【0005】また、図7に示す増熱冷凍型ヒートポンプ
は、水素吸蔵合金M1をTH の温度の熱源を用いて熱分
解し、水素吸蔵合金M2に水素を導き、吸蔵発熱を起こ
させ、この後、TL の温度の熱源により水素吸蔵合金M
2を熱分解してQ0の吸熱を行わせ、吸熱終了後は、水
素吸蔵合金M2から水素吸蔵合金M1へ水素を戻す
(1)→(2)→(3)→(4)のサイクルとされてい
る。
Further, increasing heat refrigeration heat pump shown in FIG. 7, the hydrogen storage alloy M1 pyrolyzed using a temperature of the heat source of the T H, lead hydrogen to the hydrogen storage alloy M2, to cause a storage heating, the Then, the hydrogen storage alloy M is heated by a heat source having a temperature of TL.
2 is thermally decomposed to cause heat absorption of Q0, and after the heat absorption is completed, the cycle of (1) → (2) → (3) → (4) is to return hydrogen from the hydrogen storage alloy M2 to the hydrogen storage alloy M1. ing.

【0006】一方、従来、図8に示すように、環境試験
室11においては、室内の温度を−20℃程度の低温に
空調することが要望されており、このような空調装置で
は、導入する外気は、空調機13のコイル15面でのフ
ロストを防止するために、露点温度を室内温度より下げ
る必要があり、外気を除湿するために、例えば、ロータ
ー17を用いたハニカム式ローター除湿器19が用いら
れている。
On the other hand, conventionally, as shown in FIG. 8, in the environmental test room 11, it has been required to air-condition the room to a low temperature of about -20.degree. The outside air needs to have a dew point temperature lower than the room temperature in order to prevent frost on the surface of the coil 15 of the air conditioner 13, and in order to dehumidify the outside air, for example, a honeycomb rotor dehumidifier 19 using a rotor 17 is used. Is used.

【0007】そして、再生用の熱源として蒸気あるいは
電気ヒータ21が用いられ、一方、環境試験室11の冷
却熱源としてブラインチラー等が使用され、コイル15
には、低温のブラインが供給される。
[0007] A steam or electric heater 21 is used as a heat source for regeneration, while a blincher or the like is used as a cooling heat source for the environmental test chamber 11.
Is supplied with cold brine.

【0008】すなわち、この種の室の空調装置において
は、室内の冷却を行うために低温熱源が必要とされ、一
方、除湿を行うために高温熱源が必要とされる。
That is, in this type of room air conditioner, a low-temperature heat source is required to cool the room, and a high-temperature heat source is required to perform dehumidification.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、図6お
よび図7に示した従来の水素吸蔵合金ヒートポンプで
は、低温熱源と高温熱源とを同時に得ることが困難であ
るという問題があった。
However, the conventional hydrogen storage alloy heat pump shown in FIGS. 6 and 7 has a problem that it is difficult to simultaneously obtain a low-temperature heat source and a high-temperature heat source.

【0010】すなわち、図6に示した昇温型ヒートポン
プでは、(2)の吸蔵発熱Q0を高温熱源として使用す
ることができるが、(4)の低温場での反応も吸蔵発熱
Q3となるため、(4)を低温熱源に有効に使用するこ
とができないという問題があった。
That is, in the temperature rising type heat pump shown in FIG. 6, the stored heat Q0 of (2) can be used as a high-temperature heat source, but the reaction in the low temperature field of (4) also becomes the stored heat Q3. , (4) cannot be effectively used as a low-temperature heat source.

【0011】一方、図7に示した増熱冷凍型ヒートポン
プでは、(3)の分解吸熱Q0を低温熱源として使用す
ることができるが、(1)の高温場での反応も分解吸熱
Q2となるため、(1)を高温熱源に有効に使用するこ
とができないという問題があった。
On the other hand, in the heat-increasing refrigeration heat pump shown in FIG. 7, the decomposition endotherm Q0 of (3) can be used as a low-temperature heat source, but the reaction in the high temperature field of (1) also becomes the decomposition endotherm Q2. Therefore, there is a problem that (1) cannot be effectively used as a high-temperature heat source.

【0012】本発明は、かかる従来の問題を解決するた
めになされたもので、高温場において高温熱源を、低温
場において低温熱源を同時に得ることができる昇温冷凍
型の水素吸蔵合金ヒートポンプを提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem, and provides a temperature-raising refrigeration-type hydrogen storage alloy heat pump capable of simultaneously obtaining a high-temperature heat source in a high-temperature field and a low-temperature heat source in a low-temperature field. The purpose is to do.

【0013】[0013]

【課題を解決するための手段】本発明の水素吸蔵合金ヒ
ートポンプは、水素平衡圧力が異なる4種類の水素吸蔵
合金のうち同一温度で最も水素平衡圧力の小さい水素吸
蔵合金が収容される第1および第2の低圧力水素吸蔵合
金熱交換器と、前記4種類の水素吸蔵合金のうち同一温
度で2番目および3番目に水素平衡圧力が小さい水素吸
蔵合金が伝熱部材を介して第1室および第2室に収容さ
れる第1および第2の中間圧力水素吸蔵合金熱交換器
と、前記4種類の水素吸蔵合金のうち同一温度で最も水
素平衡圧力の大きい水素吸蔵合金が収容される第1およ
び第2の高圧力水素吸蔵合金熱交換器と、前記第1の中
間圧力水素吸蔵合金熱交換器の前記第1室と前記第1の
低圧力水素吸蔵合金熱交換器とを接続する第1の水素搬
送管路と、前記第1の中間圧力水素吸蔵合金熱交換器の
前記第2室と前記第1の高圧力水素吸蔵合金熱交換器と
を接続する第2の水素搬送管路と、前記第2の中間圧力
水素吸蔵合金熱交換器の前記第1室と前記第2の低圧力
水素吸蔵合金熱交換器とを接続する第3の水素搬送管路
と、前記第2の中間圧力水素吸蔵合金熱交換器の前記第
2室と前記第2の高圧力水素吸蔵合金熱交換器とを接続
する第4の水素搬送管路と、前記第1および第2の低圧
力水素吸蔵合金熱交換器との熱交換により高温熱源を取
り出す高温熱源取出管路と、前記第1および第2の高圧
力水素吸蔵合金熱交換器との熱交換により低温熱源を取
り出す低温熱源取出管路と、前記第1の低圧力水素吸蔵
合金熱交換器および第1の高圧力水素吸蔵合金熱交換器
からの高温熱源および低温熱源の取り出し時に、前記第
2の低圧力水素吸蔵合金熱交換器および第1の中間圧力
水素吸蔵合金熱交換器の第1室の加熱を行うとともに、
前記第2の低圧力水素吸蔵合金熱交換器および第2の高
圧力水素吸蔵合金熱交換器からの高温熱源および低温熱
源の取り出し時に、前記第1の低圧力水素吸蔵合金熱交
換器および第2の中間圧力水素吸蔵合金熱交換器の前記
第1室の加熱を行う加熱手段と、前記第1の低圧力水素
吸蔵合金熱交換器および第1の高圧力水素吸蔵合金熱交
換器からの高温熱源および低温熱源の取り出し時に、前
記第1の中間圧力水素吸蔵合金熱交換器の前記第2室お
よび第2の高圧力水素吸蔵合金熱交換器の冷却を行うと
ともに、前記第2の低圧力水素吸蔵合金熱交換器および
第2の高圧力水素吸蔵合金熱交換器からの高温熱源およ
び低温熱源の取り出し時に、前記第2の中間圧力水素吸
蔵合金熱交換器の前記第2室および第1の高圧力水素吸
蔵合金熱交換器の冷却を行う冷却手段とを有するもので
ある。
A hydrogen storage alloy heat pump according to the present invention comprises a first and a second hydrogen storage alloy having the lowest hydrogen equilibrium pressure at the same temperature among four types of hydrogen storage alloys having different hydrogen equilibrium pressures. A second low-pressure hydrogen-absorbing alloy heat exchanger, and a hydrogen-absorbing alloy having the second and third lowest hydrogen equilibrium pressures at the same temperature among the four types of hydrogen-absorbing alloys are connected via a heat transfer member to the first chamber and A first and second intermediate-pressure hydrogen storage alloy heat exchanger accommodated in the second chamber; and a first hydrogen storage alloy having the largest hydrogen equilibrium pressure at the same temperature among the four types of hydrogen storage alloys. A first high pressure hydrogen storage alloy heat exchanger, and a first chamber connecting the first chamber of the first intermediate pressure hydrogen storage alloy heat exchanger and the first low pressure hydrogen storage alloy heat exchanger. A hydrogen transfer line, and the first A second hydrogen transfer line connecting the second chamber of the intermediate pressure hydrogen storage alloy heat exchanger and the first high pressure hydrogen storage alloy heat exchanger; and a second intermediate pressure hydrogen storage alloy heat exchange A third hydrogen transfer line connecting the first chamber of the heat exchanger and the second low pressure hydrogen storage alloy heat exchanger, and the second chamber of the second intermediate pressure hydrogen storage alloy heat exchanger. A high-temperature heat source for extracting a high-temperature heat source by heat exchange between a fourth hydrogen transfer pipe connecting the second high-pressure hydrogen storage alloy heat exchanger and the first and second low-pressure hydrogen storage alloy heat exchangers; A low-temperature heat source extraction pipe for extracting a low-temperature heat source by heat exchange between a heat source extraction pipe and the first and second high-pressure hydrogen storage alloy heat exchangers; a first low-pressure hydrogen storage alloy heat exchanger; Removal of high and low temperature heat sources from the first high pressure hydrogen storage alloy heat exchanger During, and performs heating of the first chamber of the second low pressure hydrogen absorbing alloy heat exchanger and the first intermediate pressure hydrogen absorbing alloy heat exchanger,
When removing the high-temperature heat source and the low-temperature heat source from the second low-pressure hydrogen storage alloy heat exchanger and the second high-pressure hydrogen storage alloy heat exchanger, the first low-pressure hydrogen storage alloy heat exchanger and the second Heating means for heating the first chamber of the intermediate-pressure hydrogen storage alloy heat exchanger, and high-temperature heat sources from the first low-pressure hydrogen storage alloy heat exchanger and the first high-pressure hydrogen storage alloy heat exchanger And when the low-temperature heat source is taken out, the second chamber and the second high-pressure hydrogen storage alloy heat exchanger of the first intermediate-pressure hydrogen storage alloy heat exchanger are cooled, and the second low-pressure hydrogen storage alloy heat exchanger is cooled. The second chamber and the first high pressure of the second intermediate-pressure hydrogen storage alloy heat exchanger when removing the high-temperature heat source and the low-temperature heat source from the alloy heat exchanger and the second high-pressure hydrogen storage alloy heat exchanger; Hydrogen storage alloy heat exchanger And it has a cooling means for performing retirement.

【0014】[0014]

【作用】本発明の水素吸蔵合金ヒートポンプでは、図2
に示すように、水素平衡圧力が異なる4種類の水素吸蔵
合金M1,M2,M3,M4が用いられる。
FIG. 2 shows a hydrogen storage alloy heat pump according to the present invention.
As shown in FIG. 4, four types of hydrogen storage alloys M1, M2, M3, and M4 having different hydrogen equilibrium pressures are used.

【0015】なお、図2において、横軸には温度の逆数
が、縦軸には水素平衡圧力が自然対数でとられている。
このヒートポンプでは、(2)の吸蔵発熱により高温場
において高温熱源が取り出され、(7)の分解吸熱によ
り低温場において低温熱源が取り出される。
In FIG. 2, the horizontal axis represents the reciprocal of the temperature, and the vertical axis represents the hydrogen equilibrium pressure in natural logarithm.
In this heat pump, the high-temperature heat source is taken out in the high-temperature field by the occlusion heat generation of (2), and the low-temperature heat source is taken out in the low-temperature field by the decomposition heat absorption of (7).

【0016】また、(1)および(3)の分解吸熱は、
加熱手段による加熱により行われ、(6)および(8)
の吸蔵発熱は、冷却手段による冷却により行われる。さ
らに、(4)における吸蔵発熱の熱量により、(5)の
分解吸熱が行われる。
The decomposition endotherms of (1) and (3) are as follows:
(6) and (8)
Is generated by cooling by the cooling means. Further, the decomposition heat absorption of (5) is performed based on the calorific value of the occlusion heat generated in (4).

【0017】すなわち、本発明では、同一温度で水素平
衡圧力が最も小さい水素吸蔵合金が収容される低圧力水
素吸蔵合金熱交換器内の水素吸蔵合金の吸蔵発熱によ
り、高温場において高温熱源が取り出され、一方、同一
温度で水素平衡圧力が最も大きい水素吸蔵合金が収容さ
れる高圧力水素吸蔵合金熱交換器内の水素吸蔵合金の分
解吸熱により低温場において低温熱源が取り出される。
That is, according to the present invention, a high-temperature heat source is extracted in a high-temperature field by the heat generated by the occlusion of the hydrogen-absorbing alloy in the low-pressure hydrogen-absorbing alloy heat exchanger containing the hydrogen-absorbing alloy having the lowest hydrogen equilibrium pressure at the same temperature. On the other hand, a low-temperature heat source is extracted in a low-temperature field due to decomposition and heat absorption of the hydrogen storage alloy in the high-pressure hydrogen storage alloy heat exchanger containing the hydrogen storage alloy having the highest hydrogen equilibrium pressure at the same temperature.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明の水素吸蔵合金ヒートポンプの一
実施例を示しており、図において符号R1,R2は、図
2に示した水素平衡圧力が異なる4種類の水素吸蔵合金
M1,M2,M3,M4のうち同一温度で最も水素平衡
圧力の小さい水素吸蔵合金M1が収容される第1および
第2の低圧力水素吸蔵合金熱交換器を示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a hydrogen storage alloy heat pump according to the present invention. In the drawing, reference numerals R1 and R2 denote four types of hydrogen storage alloys M1, M2, M3 having different hydrogen equilibrium pressures shown in FIG. The first and second low-pressure hydrogen storage alloy heat exchangers in which the hydrogen storage alloy M1 having the smallest hydrogen equilibrium pressure at the same temperature among M4 are stored.

【0019】また、符号R3,R4は、4種類の水素吸
蔵合金のうち同一温度で2番目および3番目に水素平衡
圧力が小さい水素吸蔵合金M2,M3が、伝熱部材Bを
介して第1室S1および第2室S2に収容される第1お
よび第2の中間圧力水素吸蔵合金熱交換器を示してい
る。
Symbols R3 and R4 indicate that the hydrogen storage alloys M2 and M3 having the second and third lowest hydrogen equilibrium pressures at the same temperature among the four types of hydrogen storage alloys are connected via the heat transfer member B to the first. 1 shows first and second intermediate-pressure hydrogen storage alloy heat exchangers housed in a chamber S1 and a second chamber S2.

【0020】さらに、符号R5,R6は、同一温度で最
も水素平衡圧力の大きい水素吸蔵合金M4が収容される
第1および第2の高圧力水素吸蔵合金熱交換器を示して
いる。
Further, reference numerals R5 and R6 denote first and second high-pressure hydrogen storage alloy heat exchangers in which the hydrogen storage alloy M4 having the highest hydrogen equilibrium pressure at the same temperature is accommodated.

【0021】そして、第1の中間圧力水素吸蔵合金熱交
換器R3の第1室S1と第1の低圧力水素吸蔵合金熱交
換器R1とは、第1の水素搬送管路L1により接続され
ている。
The first chamber S1 of the first intermediate-pressure hydrogen-absorbing alloy heat exchanger R3 and the first low-pressure hydrogen-absorbing alloy heat exchanger R1 are connected by a first hydrogen transfer line L1. I have.

【0022】第1の中間圧力水素吸蔵合金熱交換器R3
の第2室S2と第1の高圧力水素吸蔵合金熱交換器R5
とは、第2の水素搬送管路L2により接続されている。
第2の中間圧力水素吸蔵合金熱交換器R4の第1室S1
と第2の低圧力水素吸蔵合金熱交換器R2とは、第3の
水素搬送管路L3により接続されている。
First intermediate pressure hydrogen storage alloy heat exchanger R3
Of the second chamber S2 and the first high-pressure hydrogen storage alloy heat exchanger R5
And are connected by a second hydrogen transfer pipeline L2.
First chamber S1 of second intermediate pressure hydrogen storage alloy heat exchanger R4
The second low pressure hydrogen storage alloy heat exchanger R2 is connected to the second low pressure hydrogen storage alloy heat exchanger R2 by a third hydrogen transfer pipeline L3.

【0023】第2の中間圧力水素吸蔵合金熱交換器R4
の第2室S2と第2の高圧力水素吸蔵合金熱交換器R6
とは、第4の水素搬送管路L4により接続されている。
第1の水素搬送管路L1,第3の水素搬送管路L3に
は、それぞれ電磁開閉弁V13,V14が配置されてい
る。
Second intermediate pressure hydrogen storage alloy heat exchanger R4
Second chamber S2 and second high pressure hydrogen storage alloy heat exchanger R6
And are connected by a fourth hydrogen transfer pipeline L4.
In the first hydrogen transfer line L1 and the third hydrogen transfer line L3, electromagnetic on-off valves V13 and V14 are arranged, respectively.

【0024】第1および第2の低圧力水素吸蔵合金熱交
換器R1,R2には、これ等の熱交換器との熱交換によ
り高温熱源を取り出す高温熱源取出管路L5が配置され
ている。
The first and second low-pressure hydrogen storage alloy heat exchangers R1 and R2 are provided with a high-temperature heat source extraction line L5 for extracting a high-temperature heat source by heat exchange with these heat exchangers.

【0025】高温熱源取出管路L5の第1および第2の
低圧力水素吸蔵合金熱交換器R1,R2への入口側に
は、電磁開閉弁V1,V2が配置されている。また、第
1および第2の高圧力水素吸蔵合金熱交換器R5,R6
には、これ等の熱交換器との熱交換により低温熱源を取
り出す低温熱源取出管路L6が配置されている。
Electromagnetic on-off valves V1 and V2 are arranged on the inlet side of the first and second low-pressure hydrogen-absorbing alloy heat exchangers R1 and R2 of the high-temperature heat source discharge pipe L5. Further, the first and second high pressure hydrogen storage alloy heat exchangers R5, R6
Is provided with a low-temperature heat source extraction pipe line L6 for extracting a low-temperature heat source by heat exchange with these heat exchangers.

【0026】低温熱源取出管路L6の第1および第2の
高圧力水素吸蔵合金熱交換器R5,R6への入口側に
は、電磁開閉弁V3,V4が配置されている。第1およ
び第2の低圧力水素吸蔵合金熱交換器R1,R2および
第1および第2の中間圧力水素吸蔵合金熱交換器R3,
R4の第1室S1には、ボイラ50からの温水を供給す
るための加熱管路L7が配置されている。
Electromagnetic on-off valves V3 and V4 are arranged on the inlet side of the low-temperature heat source taking-out line L6 to the first and second high-pressure hydrogen storage alloy heat exchangers R5 and R6. First and second low pressure hydrogen storage alloy heat exchangers R1, R2 and first and second intermediate pressure hydrogen storage alloy heat exchangers R3, R3
A heating pipe line L7 for supplying warm water from the boiler 50 is disposed in the first chamber S1 of R4.

【0027】そして、この加熱管路L7の第1および第
2の低圧力水素吸蔵合金熱交換器R1,R2および第1
および第2の中間圧力水素吸蔵合金熱交換器R3,R4
の第1室S1への入口または出口側には、それぞれ電磁
開閉弁V5,V6,V7,V8が配置されている。
The first and second low-pressure hydrogen storage alloy heat exchangers R1, R2 and the first
And second intermediate pressure hydrogen storage alloy heat exchangers R3, R4
Electromagnetic on-off valves V5, V6, V7, V8 are arranged on the inlet or outlet side of the first chamber S1.

【0028】第1および第2の中間圧力水素吸蔵合金熱
交換器R3,R4の第2室S2および第1および第2の
高圧力水素吸蔵合金熱交換器R5,R6には、冷却塔5
1からの冷水を供給するための冷却管路L8が配置され
ている。
The cooling chamber 5 is provided in the second chamber S2 of the first and second intermediate-pressure hydrogen storage alloy heat exchangers R3, R4 and the first and second high-pressure hydrogen storage alloy heat exchangers R5, R6.
A cooling line L8 for supplying the cold water from 1 is provided.

【0029】この冷却管路L8の下流側端は、ボイラ5
0に接続され、前述した加熱管路L7の下流側端が冷却
塔51に接続されている。また、冷却管路L8には、循
環ポンプ53が配置されている。
The downstream end of the cooling line L8 is connected to the boiler 5
0, and the downstream end of the above-mentioned heating line L7 is connected to the cooling tower 51. In addition, a circulation pump 53 is disposed in the cooling line L8.

【0030】そして、この冷却管路L8の第1および第
2の中間圧力水素吸蔵合金熱交換器R3,R4の第2室
S2および第1および第2の高圧力水素吸蔵合金熱交換
器R5,R6への入口または出口側には、それぞれ電磁
開閉弁V9,V10,V11,V12が配置されてい
る。
Then, the second chamber S2 of the first and second intermediate-pressure hydrogen storage alloy heat exchangers R3, R4 of the cooling pipe line L8 and the first and second high-pressure hydrogen storage alloy heat exchangers R5, R5 Electromagnetic on-off valves V9, V10, V11, V12 are arranged on the inlet or outlet side to R6, respectively.

【0031】図において、符号Cは、電磁開閉弁V1〜
V14の開閉を行う切替手段である制御装置を示してお
り、この制御装置Cには、各電磁開閉弁V1〜V14へ
の図示しない電線が接続されている。
In the figure, reference symbol C denotes solenoid on-off valves V1 to V1.
The figure shows a control device which is a switching means for opening and closing V14. The control device C is connected to electric wires (not shown) to the respective solenoid on-off valves V1 to V14.

【0032】上述した水素吸蔵合金ヒートポンプは、図
3に示す第1の状態と、図4に示す第2の状態とを所定
時間を置いて交互に繰り返すことにより運転される。す
なわち、図3に示す第1の状態では、第1の低圧力水素
吸蔵合金熱交換器R1および第1の高圧力水素吸蔵合金
熱交換器R5からの高温熱源および低温熱源の取り出し
が行われる。
The above-described hydrogen storage alloy heat pump is operated by alternately repeating the first state shown in FIG. 3 and the second state shown in FIG. 4 at a predetermined time interval. That is, in the first state shown in FIG. 3, the high-temperature heat source and the low-temperature heat source are taken out from the first low-pressure hydrogen storage alloy heat exchanger R1 and the first high-pressure hydrogen storage alloy heat exchanger R5.

【0033】この状態では、制御装置Cにより、図3に
示すように電磁開閉弁V1〜V14の開閉が行われてい
る。なお、図3において、白の電磁開閉弁は開の状態を
示しており、黒の電磁開閉弁は閉の状態を示している。
In this state, the control device C opens and closes the electromagnetic on-off valves V1 to V14 as shown in FIG. In FIG. 3, the white electromagnetic on-off valve indicates an open state, and the black electromagnetic on-off valve indicates a closed state.

【0034】この第1の状態では、第1の中間圧力水素
吸蔵合金熱交換器R3の第1室S1内が加熱され、水素
吸蔵合金M2から水素が分解し、分解された水素が第1
の水素搬送管路L1から第1の低圧力水素吸蔵合金熱交
換器R1に流入し、水素の流入により、第1の低圧力水
素吸蔵合金熱交換器R1内の水素吸蔵合金M1に水素が
吸蔵され吸蔵発熱が行われる(図2の(1),(2)に
対応する)。
In the first state, the inside of the first chamber S1 of the first intermediate-pressure hydrogen storage alloy heat exchanger R3 is heated, hydrogen is decomposed from the hydrogen storage alloy M2, and the decomposed hydrogen is removed from the first hydrogen.
Flows into the first low-pressure hydrogen-absorbing alloy heat exchanger R1 from the hydrogen-transporting line L1, and the hydrogen is absorbed into the hydrogen-absorbing alloy M1 in the first low-pressure hydrogen-absorbing alloy heat exchanger R1 by the inflow of hydrogen. Then, occlusion heat is generated (corresponding to (1) and (2) in FIG. 2).

【0035】そして、電磁開閉弁V7,V13は、熱交
換器R1に水素流入が完了すると閉となる。また、この
第1の状態では、第2の低圧力水素吸蔵合金熱交換器R
2内が加熱され、水素吸蔵合金M1から水素が分解し、
電磁開閉弁V14が開になると同時に分解された水素が
第3の水素搬送管路L3から第2の中間圧力水素吸蔵合
金熱交換器R4の第1室S1に戻される(図2の
(3),(4)に対応する)。
The solenoid valves V7 and V13 are closed when the flow of hydrogen into the heat exchanger R1 is completed. In the first state, the second low-pressure hydrogen storage alloy heat exchanger R
2 is heated, hydrogen is decomposed from the hydrogen storage alloy M1,
Simultaneously with the opening of the solenoid on-off valve V14, the decomposed hydrogen is returned from the third hydrogen transfer line L3 to the first chamber S1 of the second intermediate-pressure hydrogen storage alloy heat exchanger R4 ((3) in FIG. 2). , (4)).

【0036】つぎに、この第1の状態では、第1の中間
圧力水素吸蔵合金熱交換器R3の第2室S2内が冷却さ
れ、それと同時に第1室S1も冷却され、第2室S2内
の圧力の低下により、第1の高圧力水素吸蔵合金熱交換
器R5からの水素が、第2の水素搬送管路L2から第1
の中間圧力水素吸蔵合金熱交換器R3の第2室S2に導
かれ、これにより第1の高圧力水素吸蔵合金熱交換器R
5内の水素吸蔵合金M4が分解し、分解吸熱が行われる
(図2の(6),(7)に対応する)。
Next, in the first state, the inside of the second chamber S2 of the first intermediate-pressure hydrogen storage alloy heat exchanger R3 is cooled, and at the same time, the first chamber S1 is also cooled. , The hydrogen from the first high-pressure hydrogen storage alloy heat exchanger R5 flows from the second hydrogen transfer pipe L2 to the first
Is introduced into the second chamber S2 of the intermediate pressure hydrogen storage alloy heat exchanger R3, whereby the first high pressure hydrogen storage alloy heat exchanger R
The hydrogen storage alloy M4 in 5 decomposes and the decomposition heat absorption is performed (corresponding to (6) and (7) in FIG. 2).

【0037】また、この第1の状態では、第2の中間圧
力水素吸蔵合金熱交換器R4の第1室S1内に水素が供
給され、水素吸蔵合金M2による吸蔵発熱が行われ、吸
蔵発熱により発生した熱量が、伝熱部材Bを介して第2
室S2に伝熱され、この熱量により第2室S2内の水素
吸蔵合金M3の分解吸熱が行われる(図2の(4),
(5)に対応する)。
In the first state, hydrogen is supplied into the first chamber S1 of the second intermediate-pressure hydrogen storage alloy heat exchanger R4, and heat is absorbed by the hydrogen storage alloy M2. The amount of generated heat is transmitted through the heat transfer member B to the second
The heat is transferred to the chamber S2, and the amount of this heat causes the decomposition and heat absorption of the hydrogen storage alloy M3 in the second chamber S2 ((4) in FIG. 2,
(Corresponding to (5)).

【0038】一方、第1の低圧力水素吸蔵合金熱交換器
R1における水素吸蔵合金M1の吸蔵発熱反応および第
1の高圧力水素吸蔵合金熱交換器R5における水素吸蔵
合金M4の分解吸熱反応が一段落すると、制御装置Cに
より電磁開閉弁V1〜V12の開閉が行われ、図4に示
す第2の状態に切り替えられる。
On the other hand, the heat generation and storage reaction of the hydrogen storage alloy M1 in the first low pressure hydrogen storage alloy heat exchanger R1 and the decomposition and heat absorption reaction of the hydrogen storage alloy M4 in the first high pressure hydrogen storage alloy heat exchanger R5 are completed. Then, the controller C opens and closes the electromagnetic on-off valves V1 to V12, and switches to the second state shown in FIG.

【0039】なお、図4において、白の電磁開閉弁は開
の状態を示しており、黒の電磁開閉弁は閉の状態を示し
ている。この図4に示す第2の状態では、第2の低圧力
水素吸蔵合金熱交換器R2および第2の高圧力水素吸蔵
合金熱交換器R6からの高温熱源および低温熱源の取り
出しが行われる。
In FIG. 4, the white solenoid on-off valve indicates an open state, and the black solenoid on-off valve indicates a closed state. In the second state shown in FIG. 4, high-temperature heat sources and low-temperature heat sources are extracted from the second low-pressure hydrogen storage alloy heat exchanger R2 and the second high-pressure hydrogen storage alloy heat exchanger R6.

【0040】この第2の状態では、第2の中間圧力水素
吸蔵合金熱交換器R4の第1室S1内が加熱され、水素
吸蔵合金M2から水素が分解し、分解された水素が第3
の水素搬送管路L3から第2の低圧力水素吸蔵合金熱交
換器R2に流入し、水素の流入により、第2の低圧力水
素吸蔵合金熱交換器R2内の水素吸蔵合金M1に水素が
吸蔵され吸蔵発熱が行われる(図2の(1),(2)に
対応する)。
In this second state, the inside of the first chamber S1 of the second intermediate pressure hydrogen storage alloy heat exchanger R4 is heated, hydrogen is decomposed from the hydrogen storage alloy M2, and
Flows into the second low-pressure hydrogen-absorbing alloy heat exchanger R2 from the hydrogen-transporting pipe line L3, and the hydrogen is absorbed into the hydrogen-absorbing alloy M1 in the second low-pressure hydrogen-absorbing alloy heat exchanger R2 by the inflow of hydrogen Then, occlusion heat is generated (corresponding to (1) and (2) in FIG. 2).

【0041】そして、電磁開閉弁V8,V14は、熱交
換器R2に水素流入が完了すると閉となる。また、この
第2の状態では、第1の低圧力水素吸蔵合金熱交換器R
1内が加熱され、水素吸蔵合金M1から水素が分解し、
電磁開閉弁V14が開になると同時に分解された水素が
第1の水素搬送管路L1から第1の中間圧力水素吸蔵合
金熱交換器R3の第1室S1に戻される(図2の
(3),(4)に対応する)。
Then, the solenoid valves V8 and V14 are closed when the flow of hydrogen into the heat exchanger R2 is completed. In the second state, the first low-pressure hydrogen storage alloy heat exchanger R
1 is heated, hydrogen is decomposed from the hydrogen storage alloy M1,
Simultaneously with the opening of the solenoid on-off valve V14, the hydrogen decomposed is returned from the first hydrogen transfer line L1 to the first chamber S1 of the first intermediate-pressure hydrogen storage alloy heat exchanger R3 ((3) in FIG. 2). , (4)).

【0042】つぎに、この第2の状態では、第2の中間
圧力水素吸蔵合金熱交換器R4の第2室S2内が冷却さ
れ、それと同時に第1室S1も冷却され、第2室S2内
の圧力の低下により、第2の高圧力水素吸蔵合金熱交換
器R6からの水素が、第4の水素搬送管路L4から第2
の中間圧力水素吸蔵合金熱交換器R4の第2室S2に導
かれ、これにより第2の高圧力水素吸蔵合金熱交換器R
6内の水素吸蔵合金M4が分解し、分解吸熱が行われる
(図2の(6),(7)に対応する)。
Next, in the second state, the inside of the second chamber S2 of the second intermediate-pressure hydrogen storage alloy heat exchanger R4 is cooled, and at the same time, the first chamber S1 is also cooled. , The hydrogen from the second high-pressure hydrogen storage alloy heat exchanger R6 is transferred from the fourth hydrogen transfer line L4 to the second
To the second chamber S2 of the intermediate pressure hydrogen storage alloy heat exchanger R4, whereby the second high pressure hydrogen storage alloy heat exchanger R
Hydrogen storage alloy M4 in 6 is decomposed, and decomposition heat absorption is performed (corresponding to (6) and (7) in FIG. 2).

【0043】また、この第2の状態では、第1の中間圧
力水素吸蔵合金熱交換器R3の第1室S1内に水素が供
給され、水素吸蔵合金M2による吸蔵発熱が行われ、吸
蔵発熱により発生した熱量が、伝熱部材Bを介して第2
室S2に伝熱され、この熱量により第2室S2内の水素
吸蔵合金M3の分解吸熱が行われる(図2の(4),
(5)に対応する)。
In the second state, hydrogen is supplied into the first chamber S1 of the first intermediate-pressure hydrogen storage alloy heat exchanger R3, and heat is absorbed and stored by the hydrogen storage alloy M2. The amount of generated heat is transmitted through the heat transfer member B to the second
The heat is transferred to the chamber S2, and the amount of this heat causes the decomposition and heat absorption of the hydrogen storage alloy M3 in the second chamber S2 ((4) in FIG. 2,
(Corresponding to (5)).

【0044】しかして、上述した水素吸蔵合金ヒートポ
ンプでは、図2に示したような水素平衡圧力が異なる4
種類の水素吸蔵合金M1,M2,M3,M4を用い、同
一温度で水素平衡圧力が最も小さい水素吸蔵合金M1が
収容される低圧力水素吸蔵合金熱交換器R1,R2内の
水素吸蔵合金M1の吸蔵発熱により、高温場において高
温熱源を取り出し、一方、同一温度で水素平衡圧力が最
も大きい水素吸蔵合金M4が収容される高圧力水素吸蔵
合金熱交換器R5,R6内の水素吸蔵合金M4の分解吸
熱により低温場において低温熱源を取り出すようにした
ので、高温場において高温熱源を、低温場において低温
熱源を同時に得ることができる。
However, in the above-described hydrogen storage alloy heat pump, the hydrogen equilibrium pressure as shown in FIG.
Of the hydrogen storage alloys M1 in the low pressure hydrogen storage alloy heat exchangers R1 and R2 containing the hydrogen storage alloys M1 having the lowest hydrogen equilibrium pressure at the same temperature using the hydrogen storage alloys M1, M2, M3, and M4 of different kinds. Due to the occlusion heat, the high-temperature heat source is taken out in a high-temperature field, while the hydrogen storage alloy M4 in the high-pressure hydrogen storage alloy heat exchangers R5 and R6 that accommodates the hydrogen storage alloy M4 having the highest hydrogen equilibrium pressure at the same temperature is decomposed. Since the low-temperature heat source is taken out in the low-temperature field by heat absorption, it is possible to simultaneously obtain the high-temperature heat source in the high-temperature field and the low-temperature heat source in the low-temperature field.

【0045】そして、この水素吸蔵合金ヒートポンプ
を、例えば、図8に示した環境試験室等に適用すること
により、コンプレッサなしで低温熱源から低温を容易に
得ることが可能になり、また、蒸気あるいは電気ヒータ
を用いずに高温熱源から再生熱源を得ることが可能にな
るため、COP(成績係数)を従来より大幅に向上する
ことが可能になる。
By applying this hydrogen storage alloy heat pump to, for example, an environmental test room shown in FIG. 8, it becomes possible to easily obtain a low temperature from a low-temperature heat source without using a compressor. Since it is possible to obtain a regenerative heat source from a high-temperature heat source without using an electric heater, it is possible to greatly improve the COP (coefficient of performance) as compared with the related art.

【0046】また、フロンガスを使用する必要がなくな
るため、環境破壊を引き起こす虞れを解消することがで
きる。さらに、上述した水素吸蔵合金ヒートポンプで
は、第1および第2の中間圧力水素吸蔵合金熱交換器R
3,R4内に、伝熱部材Bにより第1室S1と第2室S
2を形成し、第1室に水素吸蔵合金M2を、第2室に水
素吸蔵合金M3を収容したので、第1室S1と第2室S
2において熱量の授受を直接行うことができ、水素吸蔵
合金ヒートポンプの配管系統を簡略化することが可能に
なる。
Further, since there is no need to use Freon gas, the possibility of causing environmental destruction can be eliminated. Further, in the hydrogen storage alloy heat pump described above, the first and second intermediate pressure hydrogen storage alloy heat exchangers R
3, R4, the first chamber S1 and the second chamber S
2 was formed, and the first chamber contained the hydrogen storage alloy M2 and the second chamber contained the hydrogen storage alloy M3, so that the first chamber S1 and the second chamber S
2, heat can be directly exchanged and the piping system of the hydrogen storage alloy heat pump can be simplified.

【0047】また、冷却管路L8の下流側端をボイラ5
0に接続し、加熱管路L7の下流側端を冷却塔51に接
続したので、冷却管路L8および加熱管路L7を流れる
流体の熱量を効率的に利用することが可能になる。
The downstream end of the cooling line L8 is connected to the boiler 5
0, and the downstream end of the heating pipe L7 is connected to the cooling tower 51, so that the amount of heat of the fluid flowing through the cooling pipe L8 and the heating pipe L7 can be used efficiently.

【0048】なお、以上述べた実施例では、コンプレッ
サを使用しない例について説明したが、本発明はかかる
実施例に限定されるものではなく、例えば、図5の点線
に示すように、コンプレッサを併用して高圧力水素吸蔵
合金熱交換器R5,R6内の圧力を低下することによ
り、より低温の低温熱源を得ることができる。
In the above-described embodiment, an example in which a compressor is not used has been described. However, the present invention is not limited to this embodiment. For example, as shown by a dotted line in FIG. By lowering the pressure in the high-pressure hydrogen storage alloy heat exchangers R5 and R6, a lower-temperature low-temperature heat source can be obtained.

【0049】また、以上述べた実施例では、加熱にボイ
ラを使用し、冷却に冷却塔を使用した例について説明し
たが、本発明はかかる実施例に限定されるものではな
く、例えば、加熱に廃熱あるいはコージェネ等の回収熱
を使用しても良く、冷却に河川の水等を使用しても良
い。
Further, in the above-described embodiment, an example was described in which a boiler was used for heating and a cooling tower was used for cooling. However, the present invention is not limited to this embodiment. Waste heat or recovered heat such as cogeneration may be used, and river water may be used for cooling.

【0050】[0050]

【発明の効果】以上述べたように、本発明の水素吸蔵合
金ヒートポンプでは、水素平衡圧力が異なる4種類の水
素吸蔵合金を用い、同一温度で水素平衡圧力が最も小さ
い水素吸蔵合金が収容される低圧力水素吸蔵合金熱交換
器内の水素吸蔵合金の吸蔵発熱により、高温熱源を取り
出し、一方、同一温度で水素平衡圧力が最も大きい水素
吸蔵合金が収容される高圧力水素吸蔵合金熱交換器内の
水素吸蔵合金の分解吸熱により低温熱源を取り出すよう
にしたので、高温場において高温熱源を、低温場におい
て低温熱源を同時に得ることができるという利点があ
る。
As described above, in the hydrogen storage alloy heat pump of the present invention, four types of hydrogen storage alloys having different hydrogen equilibrium pressures are used, and the hydrogen storage alloy having the lowest hydrogen equilibrium pressure at the same temperature is accommodated. The high-temperature heat source is taken out by the heat generated by the hydrogen storage alloy in the low-pressure hydrogen storage alloy heat exchanger, while the high-pressure hydrogen storage alloy heat exchanger in which the hydrogen storage alloy with the largest hydrogen equilibrium pressure is housed at the same temperature is stored. Since the low-temperature heat source is taken out by decomposition and absorption of the hydrogen storage alloy, there is an advantage that a high-temperature heat source can be obtained simultaneously in a high-temperature field and a low-temperature heat source can be obtained in a low-temperature field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素吸蔵合金ヒートポンプの一実施例
を示す配管系統図である。
FIG. 1 is a piping diagram showing one embodiment of a hydrogen storage alloy heat pump of the present invention.

【図2】本発明の水素吸蔵合金ヒートポンプの原理を示
す説明図である。
FIG. 2 is an explanatory view showing the principle of the hydrogen storage alloy heat pump of the present invention.

【図3】図1の水素吸蔵合金ヒートポンプにおける第1
の運転状態を示す配管系統図である。
FIG. 3 shows a first example of the hydrogen storage alloy heat pump shown in FIG.
It is a piping system diagram which shows the operation state of.

【図4】図1の水素吸蔵合金ヒートポンプにおける第2
の運転状態を示す配管系統図である。
FIG. 4 shows a second example of the hydrogen storage alloy heat pump of FIG.
It is a piping system diagram which shows the operation state of.

【図5】本発明の水素吸蔵合金ヒートポンプにコンプレ
ッサを導入した例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example in which a compressor is introduced into the hydrogen storage alloy heat pump of the present invention.

【図6】従来の昇温型ヒートポンプの原理を示す説明図
である。
FIG. 6 is an explanatory diagram showing the principle of a conventional temperature-raising heat pump.

【図7】従来の増熱冷凍型ヒートポンプの原理を示す説
明図である。
FIG. 7 is an explanatory view showing the principle of a conventional heat-increasing refrigeration heat pump.

【図8】従来の環境試験室の空調装置を示す配管系統図
である。
FIG. 8 is a piping diagram showing a conventional air conditioner for an environmental test room.

【符号の説明】[Explanation of symbols]

R1 第1の低圧力水素吸蔵合金熱交換器 R2 第2の低圧力水素吸蔵合金熱交換器 R3 第1の中間圧力水素吸蔵合金熱交換器 R4 第2の中間圧力水素吸蔵合金熱交換器 R5 第1の高圧力水素吸蔵合金熱交換器 R6 第2の高圧力水素吸蔵合金熱交換器 L1 第1の水素搬送管路 L2 第2の水素搬送管路 L3 第3の水素搬送管路 L4 第4の水素搬送管路 L5 高温熱源取出管路 L6 低温熱源取出管路 L7 加熱管路 L8 冷却管路 V1〜V12 電磁開閉弁 C 制御装置 M1,M2,M3,M4 水素吸蔵合金 R1 First low pressure hydrogen storage alloy heat exchanger R2 Second low pressure hydrogen storage alloy heat exchanger R3 First intermediate pressure hydrogen storage alloy heat exchanger R4 Second intermediate pressure hydrogen storage alloy heat exchanger R5 No. 1 high pressure hydrogen storage alloy heat exchanger R6 Second high pressure hydrogen storage alloy heat exchanger L1 First hydrogen transport pipeline L2 Second hydrogen transport pipeline L3 Third hydrogen transport pipeline L4 Fourth Hydrogen transfer line L5 High-temperature heat source extraction line L6 Low-temperature heat source extraction line L7 Heating line L8 Cooling line V1 to V12 Solenoid on-off valve C Controller M1, M2, M3, M4 Hydrogen storage alloy

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素平衡圧力が異なる4種類の水素吸蔵
合金のうち同一温度で最も水素平衡圧力の小さい水素吸
蔵合金が収容される第1および第2の低圧力水素吸蔵合
金熱交換器と、 前記4種類の水素吸蔵合金のうち同一温度で2番目およ
び3番目に水素平衡圧力が小さい水素吸蔵合金が伝熱部
材を介して第1室および第2室に収容される第1および
第2の中間圧力水素吸蔵合金熱交換器と、 前記4種類の水素吸蔵合金のうち同一温度で最も水素平
衡圧力の大きい水素吸蔵合金が収容される第1および第
2の高圧力水素吸蔵合金熱交換器と、 前記第1の中間圧力水素吸蔵合金熱交換器の前記第1室
と前記第1の低圧力水素吸蔵合金熱交換器とを接続する
第1の水素搬送管路と、 前記第1の中間圧力水素吸蔵合金熱交換器の前記第2室
と前記第1の高圧力水素吸蔵合金熱交換器とを接続する
第2の水素搬送管路と、 前記第2の中間圧力水素吸蔵合金熱交換器の前記第1室
と前記第2の低圧力水素吸蔵合金熱交換器とを接続する
第3の水素搬送管路と、 前記第2の中間圧力水素吸蔵合金熱交換器の前記第2室
と前記第2の高圧力水素吸蔵合金熱交換器とを接続する
第4の水素搬送管路と、 前記第1および第2の低圧力水素吸蔵合金熱交換器との
熱交換により高温熱源を取り出す高温熱源取出管路と、 前記第1および第2の高圧力水素吸蔵合金熱交換器との
熱交換により低温熱源を取り出す低温熱源取出管路と、 前記第1の低圧力水素吸蔵合金熱交換器および第1の高
圧力水素吸蔵合金熱交換器からの高温熱源および低温熱
源の取り出し時に、前記第2の低圧力水素吸蔵合金熱交
換器および第1の中間圧力水素吸蔵合金熱交換器の第1
室の加熱を行うとともに、前記第2の低圧力水素吸蔵合
金熱交換器および第2の高圧力水素吸蔵合金熱交換器か
らの高温熱源および低温熱源の取り出し時に、前記第1
の低圧力水素吸蔵合金熱交換器および第2の中間圧力水
素吸蔵合金熱交換器の前記第1室の加熱を行う加熱手段
と、 前記第1の低圧力水素吸蔵合金熱交換器および第1の高
圧力水素吸蔵合金熱交換器からの高温熱源および低温熱
源の取り出し時に、前記第1の中間圧力水素吸蔵合金熱
交換器の前記第2室および第2の高圧力水素吸蔵合金熱
交換器の冷却を行うとともに、前記第2の低圧力水素吸
蔵合金熱交換器および第2の高圧力水素吸蔵合金熱交換
器からの高温熱源および低温熱源の取り出し時に、前記
第2の中間圧力水素吸蔵合金熱交換器の前記第2室およ
び第1の高圧力水素吸蔵合金熱交換器の冷却を行う冷却
手段と、を有することを特徴とする水素吸蔵合金ヒート
ポンプ。
1. A first and a second low-pressure hydrogen storage alloy heat exchanger accommodating a hydrogen storage alloy having the lowest hydrogen equilibrium pressure at the same temperature among four types of hydrogen storage alloys having different hydrogen equilibrium pressures, First and second hydrogen storage alloys having the second and third lowest hydrogen equilibrium pressures at the same temperature among the four types of hydrogen storage alloys are housed in the first chamber and the second chamber via the heat transfer member. An intermediate-pressure hydrogen storage alloy heat exchanger; first and second high-pressure hydrogen storage alloy heat exchangers accommodating a hydrogen storage alloy having the largest hydrogen equilibrium pressure at the same temperature among the four types of hydrogen storage alloys; A first hydrogen transfer line connecting the first chamber of the first intermediate-pressure hydrogen storage alloy heat exchanger and the first low-pressure hydrogen storage alloy heat exchanger; and the first intermediate pressure The second chamber of the hydrogen storage alloy heat exchanger and the second chamber A second hydrogen transfer line connecting the first high-pressure hydrogen storage alloy heat exchanger, the first chamber of the second intermediate-pressure hydrogen storage alloy heat exchanger, and the second low-pressure hydrogen storage alloy. A third hydrogen transfer pipe connecting the heat exchanger, connecting the second chamber of the second intermediate pressure hydrogen storage alloy heat exchanger and the second high pressure hydrogen storage alloy heat exchanger. A fourth hydrogen transfer line, a high-temperature heat source extraction line for extracting a high-temperature heat source by heat exchange with the first and second low-pressure hydrogen storage alloy heat exchangers, and the first and second high-pressure hydrogen A low-temperature heat source extraction pipe for extracting a low-temperature heat source by heat exchange with the storage alloy heat exchanger; a high-temperature heat source from the first low-pressure hydrogen storage alloy heat exchanger and the first high-pressure hydrogen storage alloy heat exchanger; When removing the low-temperature heat source, the second low-pressure hydrogen storage alloy heat exchanger Spare the first intermediate pressure hydrogen absorbing alloy heat exchanger first
The chamber is heated, and when the high-temperature heat source and the low-temperature heat source are taken out of the second low-pressure hydrogen storage alloy heat exchanger and the second high-pressure hydrogen storage alloy heat exchanger,
Heating means for heating the first chamber of the low pressure hydrogen storage alloy heat exchanger and the second intermediate pressure hydrogen storage alloy heat exchanger; and the first low pressure hydrogen storage alloy heat exchanger and the first Cooling of the second chamber and the second high-pressure hydrogen storage alloy heat exchanger of the first intermediate-pressure hydrogen storage alloy heat exchanger when removing the high-temperature heat source and the low-temperature heat source from the high-pressure hydrogen storage alloy heat exchanger And removing the high-temperature heat source and the low-temperature heat source from the second low-pressure hydrogen storage alloy heat exchanger and the second high-pressure hydrogen storage alloy heat exchanger. A cooling means for cooling the second chamber and the first high-pressure hydrogen storage alloy heat exchanger of the vessel.
JP03140194A 1994-03-01 1994-03-01 Hydrogen storage alloy heat pump Expired - Fee Related JP3246632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03140194A JP3246632B2 (en) 1994-03-01 1994-03-01 Hydrogen storage alloy heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03140194A JP3246632B2 (en) 1994-03-01 1994-03-01 Hydrogen storage alloy heat pump

Publications (2)

Publication Number Publication Date
JPH07243717A JPH07243717A (en) 1995-09-19
JP3246632B2 true JP3246632B2 (en) 2002-01-15

Family

ID=12330244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03140194A Expired - Fee Related JP3246632B2 (en) 1994-03-01 1994-03-01 Hydrogen storage alloy heat pump

Country Status (1)

Country Link
JP (1) JP3246632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227745A (en) * 2014-05-30 2015-12-17 株式会社豊田中央研究所 Hydrogen occlusion type heat pump and hydrogen occlusion type heat pump system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098406C (en) * 1996-06-21 2003-01-08 国际融合有限公司 Power generating device employing hydrogen absorbing alloy and low heat
WO1997048887A1 (en) * 1996-06-21 1997-12-24 World Fusion Limited Power generating device employing hydrogen absorbing alloy and low heat
JP2004205197A (en) * 2002-06-12 2004-07-22 Ip Trading Japan Co Ltd Hydrogen storage alloy, hydrogen storage alloy unit, and heat pump and hydrogen compressor using hydrogen storage alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227745A (en) * 2014-05-30 2015-12-17 株式会社豊田中央研究所 Hydrogen occlusion type heat pump and hydrogen occlusion type heat pump system

Also Published As

Publication number Publication date
JPH07243717A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
US4085590A (en) Hydride compressor
JPH0794815B2 (en) Temperature difference generator
JPH01296091A (en) Heat accumulating device and operation thereof
JP3246632B2 (en) Hydrogen storage alloy heat pump
JP2001349638A (en) Cogeneration system using waste heat gas of micro gas turbine
CN111412555B (en) Membrane type heat penetration power generation and liquid dehumidification integrated system
JPS63159624A (en) Power generating method utilizing hydrogen storage alloy and device
JPH11223411A (en) Adsorption heat pump
JP2001349634A (en) Low temperature waste gas driving and freezing system
JP3246631B2 (en) Hydrogen storage alloy heat pump
RU2131987C1 (en) Hear-transfer apparatus using stirling-cycle principle
Vasil’ev et al. Multisalt-carbon chemical cooler for space applications
JPH11117713A (en) Chemical heat-accumulating type intake air cooling device
JP2005172380A (en) Adsorption-type heat pump
JP4202057B2 (en) Combined system using waste heat of nuclear reactor plant
JPH05288485A (en) Waste heat temperature increasing and recovering device
JPH05180527A (en) Absorption refrigerating machine
RU2241523C2 (en) Low-temperature helium purification method
JPH0268463A (en) Chemical heat pump
SU944621A1 (en) Apparatus for purifying hydrogen
JP3518963B2 (en) Operating method of heat storage system using hydrogen storage alloy
JP2643235B2 (en) Metal hydride heating and cooling equipment
JPS6011072A (en) Heat pump utilizing adsorbent and method of operating said pump
JP2023027729A (en) Circulating water-type carbon dioxide separation/refinement storage system
JPH07243306A (en) Heat engine operated by one heat source

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees