JP2023027729A - Circulating water-type carbon dioxide separation/refinement storage system - Google Patents
Circulating water-type carbon dioxide separation/refinement storage system Download PDFInfo
- Publication number
- JP2023027729A JP2023027729A JP2021151578A JP2021151578A JP2023027729A JP 2023027729 A JP2023027729 A JP 2023027729A JP 2021151578 A JP2021151578 A JP 2021151578A JP 2021151578 A JP2021151578 A JP 2021151578A JP 2023027729 A JP2023027729 A JP 2023027729A
- Authority
- JP
- Japan
- Prior art keywords
- water
- pressure
- tank
- air
- circulation line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 59
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 33
- 238000000926 separation method Methods 0.000 title claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 56
- 238000011069 regeneration method Methods 0.000 claims abstract description 18
- 230000008929 regeneration Effects 0.000 claims abstract description 17
- 239000007789 gas Substances 0.000 claims description 36
- 230000000694 effects Effects 0.000 claims description 12
- 239000010865 sewage Substances 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000029553 photosynthesis Effects 0.000 claims description 3
- 238000010672 photosynthesis Methods 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract description 48
- 230000008878 coupling Effects 0.000 abstract description 6
- 238000010168 coupling process Methods 0.000 abstract description 6
- 238000005859 coupling reaction Methods 0.000 abstract description 6
- 238000010248 power generation Methods 0.000 abstract description 6
- 229920006395 saturated elastomer Polymers 0.000 abstract description 2
- 238000006555 catalytic reaction Methods 0.000 abstract 1
- 230000005611 electricity Effects 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 238000004056 waste incineration Methods 0.000 description 2
- 241001474374 Blennius Species 0.000 description 1
- -1 CCUSS Chemical compound 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Landscapes
- Treating Waste Gases (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
本発明は、火力発電所、製鉄所、製油所、セメント工場、ごみ焼却施設から排出される排出ガスや大気中に含まれる二酸化炭素を回収するシステムである。 The present invention is a system for recovering exhaust gases emitted from thermal power plants, ironworks, oil refineries, cement plants, and waste incineration facilities and carbon dioxide contained in the atmosphere.
CCUS(Carbon dioxide Capture Utilization Storage)は火力発電所、製鉄所、製油所、セメント工場、ごみ焼却施設から発生する排出ガスのなから二酸化炭素を回収し、地底や海底に固定あるいは化学的物質を合成して保存するシステムであり、地球温暖化対策の切り札とされているが、コストが問題になっている。
一方、排出ガスはそのエネルギーを十分に利用されないままにエネルギーの50%以上を持ったままガスとして排出される。CCUS (Carbon Dioxide Capture Utilization Storage) collects carbon dioxide from exhaust gases generated from thermal power plants, steel mills, oil refineries, cement plants, and waste incineration facilities, and either fixes it to the bottom of the earth or sea, or synthesizes chemical substances. It is a system that saves data as a trump card for global warming countermeasures, but the cost is a problem.
Exhaust gas, on the other hand, is discharged as gas with 50% or more of its energy remaining underutilized.
アミンに二酸化炭素を吸着させているが、二酸化炭素を再生するのに多大なエネルギーを必要としている。現在、RITEでは消費エネルギーを2GJ/t二酸化炭素に低減させることを目標に新吸収液の開発を進めているが、この方法では発電は困難である。大気から二酸化炭素を回収する技術は開発中である。また海水中の二酸化炭素を分離する技術は皆無である。
Carbon dioxide is adsorbed on the amine, but a large amount of energy is required to regenerate the carbon dioxide. At present, RITE is developing a new absorbent with the goal of reducing energy consumption to 2 GJ/t carbon dioxide, but it is difficult to generate electricity with this method. Technologies for capturing carbon dioxide from the atmosphere are under development. Moreover, there is no technology for separating carbon dioxide in seawater.
既存の特許はアミンに二酸化炭素を吸着させ,再生する製法は多数提出されている。
当方からも令和3年7月10日に深海の圧力を利用してCO2を液体として長期保管できる『発電できる二酸化炭素分離精製貯蔵システム』を令和3年7月26日にドライアイスでCO2を固体で保存する『出ガス、大気、海水から二酸化炭素を回収するシステム』をそれぞれ申請している。Many existing patents have been submitted for regenerating amines by adsorbing carbon dioxide.
On July 10, 2021, we will also use the pressure of the deep sea to store CO2 as a liquid for a long period of time. We are applying for a "system for recovering carbon dioxide from exhaust gas, air, and seawater" that preserves in solid form.
二酸化炭素は窒素、酸素に比べて30℃以内の低温であれば、水によく溶ける。この性質を利用して二酸化炭素を分離、再生する。排出ガスは200℃以上あり。そのままでは水が蒸発してしまうので。本システムは二重の循環ラインをもつ。第1循環ラインは高圧で、排出ガスをピトー管効果で吸収し加圧加熱する。その排ガスを熱交換器で低温する。冷却された排出ガスを次の低圧の循環ラインに注入し断熱膨張させ、急冷にし10℃前後にする。第2循環ラインは地上に分離タンクを、30m高さの構台の上に再生タンクを設置しその間を循環している。この揚程差を利用し、分離タンクでは水に溶けにくい窒素、酸素を分離し、再生タンクでは二酸化炭素を再生する。再生した二酸化炭素は水素と混合し、触媒を使ってメタノールにする。
第1循環ラインは圧縮機、エアコンに応用できる。従来に比べて格段に省電力が図れる。
エアコンでは大気中の水と二酸化炭素が同時に回収でき、二酸化炭素が溶け込んだ水を下水に流し、下水処理場で植物プランクトンが光合成で二酸化炭素を固定する。Carbon dioxide is more soluble in water than nitrogen and oxygen at temperatures below 30°C. This property is used to separate and regenerate carbon dioxide. Exhaust gas is over 200°C. Because the water will evaporate. The system has double circulation lines. The first circulation line has a high pressure, absorbs the exhaust gas by the pitot tube effect, pressurizes and heats it. The exhaust gas is cooled in a heat exchanger. The cooled exhaust gas is injected into the next low-pressure circulation line, adiabatically expanded, and quenched to around 10°C. The second circulation line circulates between a separation tank on the ground and a regeneration tank on a 30m-high gantry. Using this lift difference, the separation tank separates nitrogen and oxygen, which are difficult to dissolve in water, and the regeneration tank regenerates carbon dioxide. The regenerated carbon dioxide is mixed with hydrogen and converted to methanol using a catalyst.
The first circulation line can be applied to compressors and air conditioners. Power consumption can be significantly reduced compared to the conventional method.
Air conditioners can collect water and carbon dioxide from the atmosphere at the same time, and the water containing dissolved carbon dioxide is discharged into sewage, where phytoplankton fix carbon dioxide through photosynthesis at sewage treatment plants.
高温の排出ガスは水に溶けない。冷却する必要がある。 Hot exhaust gases are insoluble in water. need to cool.
大気中からも合理的に二酸化炭素を回収すること。 To rationally recover carbon dioxide from the atmosphere.
排出ガスの熱エネルギーを回収して発電し純度の高い二酸化炭素を得て、石油製品の原料とすること。 Recovering the thermal energy of the exhaust gas to generate electricity to obtain high-purity carbon dioxide and use it as a raw material for petroleum products.
本システムは、大まかに『排出ガス熱交換・発電』『CO2分離・再生』『メタノール生成』の3段階に分かれる。
『排出ガス熱交換・発電』では高温の排出ガスを第1循環ラインで加圧加熱し熱交換を行い、冷却された排出ガスを第2循環ラインに注入する、後段で分離・加圧された窒素、酸素を熱交換機で加熱し、タービンを回し発電する。
『CO2分離・再生』では高さ30mの構台の上に再生タンク、地上に分離タンクが設置されその間を第2循環ラインが循環している。第1循環ラインから結合ラインを介して排出ガスが第2循環ラインに送られる。第1循環ラインは第2循環ラインより高圧に設定しているので排出ガスが注入されると断熱膨張を起こし急冷される。CO2が水に溶け込みやすい10℃となるように結合ラインのバルブの弁開度を調整する。分離タンクでは注入された排出ガスのうち水に溶けにくいN2,O2が分離される。CO2は水に溶けやすいので循環水に吸収される。循環水が再生タンクに上がると水圧が揚程差分0.3Mpa下がるのでその時、水中を飽和したCO2が噴出し 再生する。
『メタノール生成』では再生されたCO2にH2を混合し触媒にてメタノールを生成しメタノールを常温常圧にて保存する。
この第1循環ラインは発展すれば圧縮機やエアコンの役割も果たす。ピトー管効果により高圧の循環ラインに引き込むができ、空気は循環ライン内で圧縮される。この圧縮空気を循環ラインから放出すると高圧空気が得れる
この圧縮機のラインに膨張タンクを加えると冷凍機、冷房機になる。加圧タンク周りを冷却し、冷却された空気を膨張タンクに送り、断熱膨張させると空気が零度近くになる。
膨張タンク内で空気中の水蒸気は凝結する。凝結水には空気中の二酸化炭素が吸収される。
凝結水の二酸化炭素濃度が飽和状態に近くなると凝結水をドレンし、下水に放出し、下水処理場で植物プランクトンに光合成によって二酸化炭素を固定させる。
このエアコンは加圧タンク周りの高温になった空気を室内に送風し暖房も行うことができる。This system is roughly divided into three stages: "exhaust gas heat exchange/power generation", "CO2 separation/regeneration", and "methanol generation".
In "exhaust gas heat exchange and power generation", high-temperature exhaust gas is pressurized and heated in the first circulation line to perform heat exchange, and the cooled exhaust gas is injected into the second circulation line. Nitrogen and oxygen are heated with a heat exchanger to turn a turbine and generate electricity.
In "CO2 separation and regeneration", a regeneration tank is installed on a gantry with a height of 30m, and a separation tank is installed on the ground, and a second circulation line circulates between them. Exhaust gas is sent from the first circulation line to the second circulation line via the coupling line. Since the first circulation line is set to a higher pressure than the second circulation line, when the exhaust gas is injected, it undergoes adiabatic expansion and is rapidly cooled. The valve opening degree of the coupling line valve is adjusted so that the temperature becomes 10°C, at which CO2 easily dissolves in water. In the separation tank, N2 and O2, which are hardly soluble in water, are separated from the injected exhaust gas. CO2 is readily soluble in water and is absorbed by the circulating water. When the circulating water rises to the regeneration tank, the water pressure drops by 0.3Mpa, so the CO2 saturated in the water blows out and is regenerated.
In "methanol generation", H2 is mixed with regenerated CO2 to generate methanol using a catalyst, and the methanol is stored at normal temperature and pressure.
If this first circulation line is developed, it will also serve as a compressor and an air conditioner. The pitot tube effect allows the air to be drawn into the high pressure circulation line, where the air is compressed. When this compressed air is released from the circulation line, high-pressure air is obtained. Adding an expansion tank to this compressor line makes it a refrigerator and an air conditioner. After cooling around the pressurized tank and sending the cooled air to the expansion tank for adiabatic expansion, the air becomes close to zero.
Water vapor in the air condenses in the expansion tank. Condensed water absorbs carbon dioxide from the air.
When the concentration of carbon dioxide in the condensed water approaches saturation, the condensed water is drained and released into the sewage, where the phytoplankton fix the carbon dioxide through photosynthesis in the sewage treatment plant.
This air conditioner can also heat the room by blowing the hot air around the pressurized tank into the room.
排出ガスや大気中から二酸化炭素を分離再生できる。 It can separate and regenerate carbon dioxide from exhaust gas and the atmosphere.
水を媒体とすること。 Use water as a medium.
再生した二酸化炭素をメタノールなどに貯蔵する。 Store the regenerated carbon dioxide in methanol or the like.
排出ガスの熱エネルギーを回収し、発電すること。 To recover the heat energy of the exhaust gas and generate electricity.
メタノール、CCUSS、CO2固定Methanol, CCUSS, CO2 fixation
1. 排出ガス熱交換・発電 28.触媒
2. CO2分離・再生 29.凝縮器
3. メタノール生成 30.気液分離機
4. 構台 31.オイルヒーター
5. 加圧タンク 32.オイル冷却器
6. 排出ガス 33.CO2,H2
7. 混相流 34.粗メタノールタンク
8. 第1循環ライン 35.ベント
9. 第1循環ポンプ 36.メタノール
10.熱交換器吸熱側 37.膨張タンク
11.熱交換機加熱側 38.循環ライン
12.熱交換器内ポンプ 39.循環ポンプ
13.タービン 40.室内
14.N2,O2 41.室内空気
15.CO2 42.凝縮水
16.N2,O2大気放出 43.空気
17.結合ライン 44.水
18.第2循環ライン 45.断熱膨張
19.第2循環ポンプ 46.架台
20.除湿器 47.ピトー管効果
21.分離タンク 48.放熱
22.再生タンク 49.ドレン
23.H2
24.プレヒーター
25.圧縮機
26.反応炉
27.循環ガス1. Exhaust gas heat exchange/
7.
24.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021151578A JP2023027729A (en) | 2021-08-17 | 2021-08-17 | Circulating water-type carbon dioxide separation/refinement storage system |
PCT/JP2022/029412 WO2023008584A1 (en) | 2021-07-26 | 2022-07-26 | Carbon dioxide recovery device and air conditioner each utilizing pitot tube effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021151578A JP2023027729A (en) | 2021-08-17 | 2021-08-17 | Circulating water-type carbon dioxide separation/refinement storage system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023027729A true JP2023027729A (en) | 2023-03-02 |
Family
ID=85330384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021151578A Pending JP2023027729A (en) | 2021-07-26 | 2021-08-17 | Circulating water-type carbon dioxide separation/refinement storage system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023027729A (en) |
-
2021
- 2021-08-17 JP JP2021151578A patent/JP2023027729A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4343738B2 (en) | Binary cycle power generation method and apparatus | |
CA2800191C (en) | Co2 capture system by chemical absorption | |
CN114768488B (en) | Coal-fired unit flue gas carbon dioxide entrapment system | |
US20110203311A1 (en) | Removal of carbon dioxide from air | |
WO2023008584A1 (en) | Carbon dioxide recovery device and air conditioner each utilizing pitot tube effect | |
JP6820639B1 (en) | Carbon dioxide recovery system | |
JP2010266154A (en) | Carbon dioxide liquefying apparatus | |
WO2021151392A1 (en) | Carbon dioxide phase change cyclic refrigeration system and refrigeration method thereof | |
CN111473540B (en) | Ship waste heat driven CO2Supercritical power generation coupling transcritical refrigeration cycle system | |
CN203051143U (en) | Cooling system capable of improving capacity of water ring vacuum pump | |
JP2012000538A (en) | Method and apparatus for recovering carbon dioxide | |
JP2012000539A (en) | Method and apparatus for recovering carbon dioxide | |
CN111102592A (en) | Direct-expansion heat pump type anti-corrosion flue gas waste heat recovery system | |
WO2012072362A1 (en) | Combined cycle power plant with co2 capture | |
JP5737918B2 (en) | Biological treatment-type heat pump system for wastewater treatment equipment, biological treatment-type wastewater treatment equipment provided therewith, and control method for biological treatment-type wastewater treatment equipment heat pump system | |
Liu et al. | A self-condensation supercritical carbon dioxide Rankine cycle system realized by absorption refrigeration | |
JP2023027729A (en) | Circulating water-type carbon dioxide separation/refinement storage system | |
CN106958987B (en) | A kind of air pre-dehumidified for air separation and chilldown system | |
WO2022184186A2 (en) | Condensation system and method for electric power plant | |
CN1562773A (en) | Portable heat pump system in use for seawater desalination | |
JP2003269114A (en) | Power and cold heat supply combined system and its operating method | |
CN205718534U (en) | A kind of green composite cool island equipment | |
KR101103768B1 (en) | Electric Generating System Using Heat Pump Unit | |
CN221780760U (en) | Flue gas water collection and waste heat utilization coupling system | |
JP2004036573A (en) | Electric power/cold heat feeding combined system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240815 |