JP2023027729A - Circulating water-type carbon dioxide separation/refinement storage system - Google Patents

Circulating water-type carbon dioxide separation/refinement storage system Download PDF

Info

Publication number
JP2023027729A
JP2023027729A JP2021151578A JP2021151578A JP2023027729A JP 2023027729 A JP2023027729 A JP 2023027729A JP 2021151578 A JP2021151578 A JP 2021151578A JP 2021151578 A JP2021151578 A JP 2021151578A JP 2023027729 A JP2023027729 A JP 2023027729A
Authority
JP
Japan
Prior art keywords
water
pressure
tank
air
circulation line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021151578A
Other languages
Japanese (ja)
Inventor
晴雄 森重
Haruo Morishige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyotani Haruna
Komaki Harue
Morishige Haruki
Morishige Harumi
Morishige Shigemi
Umezu Haruka
Original Assignee
Chiyotani Haruna
Komaki Harue
Morishige Haruki
Morishige Harumi
Morishige Shigemi
Umezu Haruka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyotani Haruna, Komaki Harue, Morishige Haruki, Morishige Harumi, Morishige Shigemi, Umezu Haruka filed Critical Chiyotani Haruna
Priority to JP2021151578A priority Critical patent/JP2023027729A/en
Priority to PCT/JP2022/029412 priority patent/WO2023008584A1/en
Publication of JP2023027729A publication Critical patent/JP2023027729A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

To provide a system that recovers an exhaust gas from a thermal power plant and carbon dioxide in the atmosphere.SOLUTION: In a stage of "exhaust gas heat exchange-power generation", a high-temperature exhaust gas is pressurized/ heated and heat-exchanged in a first circulation line, and the cooled exhaust gas is injected to a second circulation line. In a stage of "CO2 separation-regeneration", a regeneration tank is installed on a gantry of 30 m and a separation tank is installed on the ground so that the second circulation line circulates between both tanks. The exhaust gas is fed to the second circulation line to be adiabatically expanded and then cooled rapidly. A valve aperture of a valve of a coupling line is adjusted so that a temperature of CO2 is equal to 10°C at which the CO2 can easily dissolve into water, and therefore the CO2 is absorbed into circulation water. When the circulation water flows up into the regeneration tank so that a water pressure drops by a lift-range difference 0.3Mpa, the CO2 saturated in water is blown out and regenerated. In a stage of "methanol generation", H2 is mixed with the regenerated CO2, methanol is generated by catalysis and the methanol is preserved at an ordinary temperature and at an ordinary pressure.SELECTED DRAWING: Figure 2

Description

本発明は、火力発電所、製鉄所、製油所、セメント工場、ごみ焼却施設から排出される排出ガスや大気中に含まれる二酸化炭素を回収するシステムである。 The present invention is a system for recovering exhaust gases emitted from thermal power plants, ironworks, oil refineries, cement plants, and waste incineration facilities and carbon dioxide contained in the atmosphere.

CCUS(Carbon dioxide Capture Utilization Storage)は火力発電所、製鉄所、製油所、セメント工場、ごみ焼却施設から発生する排出ガスのなから二酸化炭素を回収し、地底や海底に固定あるいは化学的物質を合成して保存するシステムであり、地球温暖化対策の切り札とされているが、コストが問題になっている。
一方、排出ガスはそのエネルギーを十分に利用されないままにエネルギーの50%以上を持ったままガスとして排出される。
CCUS (Carbon Dioxide Capture Utilization Storage) collects carbon dioxide from exhaust gases generated from thermal power plants, steel mills, oil refineries, cement plants, and waste incineration facilities, and either fixes it to the bottom of the earth or sea, or synthesizes chemical substances. It is a system that saves data as a trump card for global warming countermeasures, but the cost is a problem.
Exhaust gas, on the other hand, is discharged as gas with 50% or more of its energy remaining underutilized.

アミンに二酸化炭素を吸着させているが、二酸化炭素を再生するのに多大なエネルギーを必要としている。現在、RITEでは消費エネルギーを2GJ/t二酸化炭素に低減させることを目標に新吸収液の開発を進めているが、この方法では発電は困難である。大気から二酸化炭素を回収する技術は開発中である。また海水中の二酸化炭素を分離する技術は皆無である。
Carbon dioxide is adsorbed on the amine, but a large amount of energy is required to regenerate the carbon dioxide. At present, RITE is developing a new absorbent with the goal of reducing energy consumption to 2 GJ/t carbon dioxide, but it is difficult to generate electricity with this method. Technologies for capturing carbon dioxide from the atmosphere are under development. Moreover, there is no technology for separating carbon dioxide in seawater.

既存の特許はアミンに二酸化炭素を吸着させ,再生する製法は多数提出されている。
当方からも令和3年7月10日に深海の圧力を利用してCO2を液体として長期保管できる『発電できる二酸化炭素分離精製貯蔵システム』を令和3年7月26日にドライアイスでCO2を固体で保存する『出ガス、大気、海水から二酸化炭素を回収するシステム』をそれぞれ申請している。
Many existing patents have been submitted for regenerating amines by adsorbing carbon dioxide.
On July 10, 2021, we will also use the pressure of the deep sea to store CO2 as a liquid for a long period of time. We are applying for a "system for recovering carbon dioxide from exhaust gas, air, and seawater" that preserves in solid form.

二酸化炭素は窒素、酸素に比べて30℃以内の低温であれば、水によく溶ける。この性質を利用して二酸化炭素を分離、再生する。排出ガスは200℃以上あり。そのままでは水が蒸発してしまうので。本システムは二重の循環ラインをもつ。第1循環ラインは高圧で、排出ガスをピトー管効果で吸収し加圧加熱する。その排ガスを熱交換器で低温する。冷却された排出ガスを次の低圧の循環ラインに注入し断熱膨張させ、急冷にし10℃前後にする。第2循環ラインは地上に分離タンクを、30m高さの構台の上に再生タンクを設置しその間を循環している。この揚程差を利用し、分離タンクでは水に溶けにくい窒素、酸素を分離し、再生タンクでは二酸化炭素を再生する。再生した二酸化炭素は水素と混合し、触媒を使ってメタノールにする。
第1循環ラインは圧縮機、エアコンに応用できる。従来に比べて格段に省電力が図れる。
エアコンでは大気中の水と二酸化炭素が同時に回収でき、二酸化炭素が溶け込んだ水を下水に流し、下水処理場で植物プランクトンが光合成で二酸化炭素を固定する。
Carbon dioxide is more soluble in water than nitrogen and oxygen at temperatures below 30°C. This property is used to separate and regenerate carbon dioxide. Exhaust gas is over 200°C. Because the water will evaporate. The system has double circulation lines. The first circulation line has a high pressure, absorbs the exhaust gas by the pitot tube effect, pressurizes and heats it. The exhaust gas is cooled in a heat exchanger. The cooled exhaust gas is injected into the next low-pressure circulation line, adiabatically expanded, and quenched to around 10°C. The second circulation line circulates between a separation tank on the ground and a regeneration tank on a 30m-high gantry. Using this lift difference, the separation tank separates nitrogen and oxygen, which are difficult to dissolve in water, and the regeneration tank regenerates carbon dioxide. The regenerated carbon dioxide is mixed with hydrogen and converted to methanol using a catalyst.
The first circulation line can be applied to compressors and air conditioners. Power consumption can be significantly reduced compared to the conventional method.
Air conditioners can collect water and carbon dioxide from the atmosphere at the same time, and the water containing dissolved carbon dioxide is discharged into sewage, where phytoplankton fix carbon dioxide through photosynthesis at sewage treatment plants.

高温の排出ガスは水に溶けない。冷却する必要がある。 Hot exhaust gases are insoluble in water. need to cool.

大気中からも合理的に二酸化炭素を回収すること。 To rationally recover carbon dioxide from the atmosphere.

排出ガスの熱エネルギーを回収して発電し純度の高い二酸化炭素を得て、石油製品の原料とすること。 Recovering the thermal energy of the exhaust gas to generate electricity to obtain high-purity carbon dioxide and use it as a raw material for petroleum products.

本システムは、大まかに『排出ガス熱交換・発電』『CO2分離・再生』『メタノール生成』の3段階に分かれる。
『排出ガス熱交換・発電』では高温の排出ガスを第1循環ラインで加圧加熱し熱交換を行い、冷却された排出ガスを第2循環ラインに注入する、後段で分離・加圧された窒素、酸素を熱交換機で加熱し、タービンを回し発電する。
『CO2分離・再生』では高さ30mの構台の上に再生タンク、地上に分離タンクが設置されその間を第2循環ラインが循環している。第1循環ラインから結合ラインを介して排出ガスが第2循環ラインに送られる。第1循環ラインは第2循環ラインより高圧に設定しているので排出ガスが注入されると断熱膨張を起こし急冷される。CO2が水に溶け込みやすい10℃となるように結合ラインのバルブの弁開度を調整する。分離タンクでは注入された排出ガスのうち水に溶けにくいN2,O2が分離される。CO2は水に溶けやすいので循環水に吸収される。循環水が再生タンクに上がると水圧が揚程差分0.3Mpa下がるのでその時、水中を飽和したCO2が噴出し 再生する。
『メタノール生成』では再生されたCO2にH2を混合し触媒にてメタノールを生成しメタノールを常温常圧にて保存する。
この第1循環ラインは発展すれば圧縮機やエアコンの役割も果たす。ピトー管効果により高圧の循環ラインに引き込むができ、空気は循環ライン内で圧縮される。この圧縮空気を循環ラインから放出すると高圧空気が得れる
この圧縮機のラインに膨張タンクを加えると冷凍機、冷房機になる。加圧タンク周りを冷却し、冷却された空気を膨張タンクに送り、断熱膨張させると空気が零度近くになる。
膨張タンク内で空気中の水蒸気は凝結する。凝結水には空気中の二酸化炭素が吸収される。
凝結水の二酸化炭素濃度が飽和状態に近くなると凝結水をドレンし、下水に放出し、下水処理場で植物プランクトンに光合成によって二酸化炭素を固定させる。
このエアコンは加圧タンク周りの高温になった空気を室内に送風し暖房も行うことができる。
This system is roughly divided into three stages: "exhaust gas heat exchange/power generation", "CO2 separation/regeneration", and "methanol generation".
In "exhaust gas heat exchange and power generation", high-temperature exhaust gas is pressurized and heated in the first circulation line to perform heat exchange, and the cooled exhaust gas is injected into the second circulation line. Nitrogen and oxygen are heated with a heat exchanger to turn a turbine and generate electricity.
In "CO2 separation and regeneration", a regeneration tank is installed on a gantry with a height of 30m, and a separation tank is installed on the ground, and a second circulation line circulates between them. Exhaust gas is sent from the first circulation line to the second circulation line via the coupling line. Since the first circulation line is set to a higher pressure than the second circulation line, when the exhaust gas is injected, it undergoes adiabatic expansion and is rapidly cooled. The valve opening degree of the coupling line valve is adjusted so that the temperature becomes 10°C, at which CO2 easily dissolves in water. In the separation tank, N2 and O2, which are hardly soluble in water, are separated from the injected exhaust gas. CO2 is readily soluble in water and is absorbed by the circulating water. When the circulating water rises to the regeneration tank, the water pressure drops by 0.3Mpa, so the CO2 saturated in the water blows out and is regenerated.
In "methanol generation", H2 is mixed with regenerated CO2 to generate methanol using a catalyst, and the methanol is stored at normal temperature and pressure.
If this first circulation line is developed, it will also serve as a compressor and an air conditioner. The pitot tube effect allows the air to be drawn into the high pressure circulation line, where the air is compressed. When this compressed air is released from the circulation line, high-pressure air is obtained. Adding an expansion tank to this compressor line makes it a refrigerator and an air conditioner. After cooling around the pressurized tank and sending the cooled air to the expansion tank for adiabatic expansion, the air becomes close to zero.
Water vapor in the air condenses in the expansion tank. Condensed water absorbs carbon dioxide from the air.
When the concentration of carbon dioxide in the condensed water approaches saturation, the condensed water is drained and released into the sewage, where the phytoplankton fix the carbon dioxide through photosynthesis in the sewage treatment plant.
This air conditioner can also heat the room by blowing the hot air around the pressurized tank into the room.

排出ガスや大気中から二酸化炭素を分離再生できる。 It can separate and regenerate carbon dioxide from exhaust gas and the atmosphere.

水を媒体とすること。 Use water as a medium.

再生した二酸化炭素をメタノールなどに貯蔵する。 Store the regenerated carbon dioxide in methanol or the like.

排出ガスの熱エネルギーを回収し、発電すること。 To recover the heat energy of the exhaust gas and generate electricity.

重循環水型CCUSのシステムを図-1に示す。大まかに『排出ガス熱交換・発電』1『CO2分離・再生』2『メタノール生成』3の3段階に分かれる。『排出ガス熱交換・発電』1では高温の排出ガス6を第1循環ライン8で加圧加熱し熱交換器吸熱側10で熱交換を行い、冷却された排出ガスを結合ライン17を介して第2循環ライン18に注入する、後段で分離・加圧されたN2,O2 14を熱交換機加熱側11で加熱し、タービン13を回し発電する。『CO2分離・再生』2では30mの構台4の上に再生タンク22、地上に分離タンク21が設置されその間を第2循環ライン18が循環している。第1循環ライン8は第2循環ライン18より高圧に設定しているので排出ガスが注入されると断熱膨張を起こし急冷される。CO2が水に溶け込みやすい10℃となるように結合ラインのバルブの弁開度を調整する。分離タンク21では注入された排出ガスのうち水に溶けにくいN2,O2 14が分離される。CO2は水に溶けやすいので循環水に吸収される。循環水が再生タンク22に上がると水圧が揚程差分0.3Mpa下がるのでその時、水中を飽和したCO2 15が噴出し再生する。第1循環ラインとも第2循環ラインは排出ガスを注入した付近は混相流7となっている。『メタノール生成』3では再生されたCO2 15は除湿器20を通してH2 23を混合し触媒 28にてメタノールを生成しメタノール36を常温常圧にて保存する。反応しないCO2,H2 33は循環ガス27として圧縮機25に戻す。 Figure 1 shows the system of the double circulating water CCUS. It is roughly divided into three stages: "exhaust gas heat exchange and power generation" 1, "CO2 separation and regeneration" 2 "methanol generation" 3. In "exhaust gas heat exchange and power generation" 1, high-temperature exhaust gas 6 is pressurized and heated in the first circulation line 8, heat is exchanged in the heat exchanger heat absorption side 10, and the cooled exhaust gas is sent through the coupling line 17. The N2, O2 14 separated and pressurized in the latter stage, which is injected into the second circulation line 18, is heated on the heating side 11 of the heat exchanger to rotate the turbine 13 and generate electricity. In "CO2 Separation/Regeneration" 2, a regeneration tank 22 is installed on a gantry 4 of 30 m, and a separation tank 21 is installed on the ground, and a second circulation line 18 circulates between them. Since the first circulation line 8 is set to a higher pressure than the second circulation line 18, when the exhaust gas is injected, it undergoes adiabatic expansion and is rapidly cooled. The valve opening degree of the coupling line valve is adjusted so that the temperature becomes 10°C, at which CO2 easily dissolves in water. In the separation tank 21, N2 and O2 14, which are hardly soluble in water, are separated from the injected exhaust gas. CO2 is readily soluble in water and is absorbed by the circulating water. When the circulating water rises to the regeneration tank 22, the water pressure drops by a difference of 0.3 Mpa. Both the first circulation line and the second circulation line form a multiphase flow 7 in the vicinity of the injection of the exhaust gas. In "methanol production" 3, the regenerated CO2 15 is mixed with H2 23 through the dehumidifier 20 to produce methanol in the catalyst 28, and the methanol 36 is stored at normal temperature and normal pressure. Unreacted CO2, H2 33 is returned to compressor 25 as recycle gas 27. 水ポンプを使ったエアコンを図-2に示す。加圧タンク5、循環ポンプ39を含め循環ライン38を構成する。室内空気41(0.1Mpa、30℃)をピトー管効果47により循環ライン(0.2Mpa)に注入する。空気43が加圧タンク5溜まっていき、加圧タンク5内の空気43は圧力と温度が高まる。空気温度を97℃になるまでこの循環ライン38は閉じたままである。97℃を超えると加圧タンク5周りを空冷し放熱させ、空気43の温度を90℃にする。さらに加圧タンク5の上のバルブを開け空気43を膨張タンク37に送る。膨張タンク37が大気解放されているので、断熱膨張45となり、空気は急冷し2℃になる。膨張タンク37に中の水蒸気が凝縮水42を作る。この凝縮水42を循環ライン38に戻す。試算によると循環ポンプ39が400Wに対して冷熱は6KWを持つ、COP値は10を超える。この要因は気体を対象とするコンプレッサーは10%程度の効率しかないが水力ポンプは100%近く、10倍程度差があるからである。 凝縮水42に大気中のCO2も溶け込む。その増えた凝縮水をドレン49から下水に流せば、まず下水処理場で植物プランクトンがCO2を取り込み、さらに海に放出され、海藻などの植物がCO2を回収する可能性がある。このエアコンは家庭用、自動車用、及びスーパーに設置される冷凍機、冷凍倉庫、ビルなどの事業用にと広範囲に適用できる。エアコン、冷凍機の多くを水力ポンプに切り替えれば消費電力を少なくしかつ全CO2発生量の数割は回収できる可能性がある。 Figure 2 shows an air conditioner using a water pump. A circulation line 38 is configured including the pressurized tank 5 and the circulation pump 39 . Room air 41 (0.1 Mpa, 30° C.) is injected into the circulation line (0.2 Mpa) by the pitot tube effect 47 . The air 43 accumulates in the pressurized tank 5, and the pressure and temperature of the air 43 in the pressurized tank 5 increase. This circulation line 38 remains closed until the air temperature reaches 97°C. When the temperature exceeds 97.degree. Further, the valve above the pressurized tank 5 is opened to send the air 43 to the expansion tank 37 . Since the expansion tank 37 is open to the atmosphere, adiabatic expansion 45 occurs and the air is rapidly cooled to 2°C. Water vapor in expansion tank 37 creates condensate 42 . This condensed water 42 is returned to the circulation line 38 . According to a trial calculation, the circulation pump 39 has 400 W, and the cold heat has 6 KW, and the COP value exceeds 10. The reason for this is that the efficiency of a compressor for gas is only about 10%, but the efficiency of a hydraulic pump is nearly 100%, which is a difference of about 10 times. CO 2 in the air also dissolves in the condensed water 42 . If the increased condensed water is discharged from the drain 49 to sewage, phytoplankton first takes in CO2 at the sewage treatment plant, and then it is released into the sea, where plants such as seaweed may collect CO2. This air conditioner can be widely applied to home use, automobile use, and business use such as refrigerators installed in supermarkets, cold storage warehouses, and buildings. If most air conditioners and refrigerators are replaced with hydraulic pumps, it is possible to reduce power consumption and recover several tenths of the total amount of CO2 generated.

メタノール、CCUSS、CO2固定Methanol, CCUSS, CO2 fixation

1. 排出ガス熱交換・発電 28.触媒
2. CO2分離・再生 29.凝縮器
3. メタノール生成 30.気液分離機
4. 構台 31.オイルヒーター
5. 加圧タンク 32.オイル冷却器
6. 排出ガス 33.CO2,H2
7. 混相流 34.粗メタノールタンク
8. 第1循環ライン 35.ベント
9. 第1循環ポンプ 36.メタノール
10.熱交換器吸熱側 37.膨張タンク
11.熱交換機加熱側 38.循環ライン
12.熱交換器内ポンプ 39.循環ポンプ
13.タービン 40.室内
14.N2,O2 41.室内空気
15.CO2 42.凝縮水
16.N2,O2大気放出 43.空気
17.結合ライン 44.水
18.第2循環ライン 45.断熱膨張
19.第2循環ポンプ 46.架台
20.除湿器 47.ピトー管効果
21.分離タンク 48.放熱
22.再生タンク 49.ドレン
23.H2
24.プレヒーター
25.圧縮機
26.反応炉
27.循環ガス
1. Exhaust gas heat exchange/power generation 28. catalyst2. CO2 separation/regeneration 29. condenser3. Methanol production 30 . Gas-liquid separator4. gantry 31 . oil heater5. pressurized tank 32 . oil cooler6. exhaust gas 33 . CO2, H2
7. multiphase flow 34 . crude methanol tank8. First circulation line 35 . vent 9 . First circulation pump 36 . methanol10. heat exchanger endothermic side 37 . expansion tank 11 . Heat exchanger heating side 38 . circulation line 12 . Pump in heat exchanger 39 . circulation pump 13 . turbine 40 . Indoors 14. N2, O2 41. indoor air15. CO2 42. condensed water16. N2, O2 atmospheric release 43. air17. Coupling line 44 . water 18. Second circulation line 45 . adiabatic expansion19. Second circulation pump 46 . mount 20 . Dehumidifier 47 . Pitot tube effect21. Separation tank 48 . Heat dissipation 22. regeneration tank 49 . drain 23 . H2
24. preheater 25 . compressor 26 . Reactor 27 . circulating gas

Claims (10)

高温低圧の排出ガスをポンプで循環させた高圧配管にピトー管効果で注入し加圧加熱し熱交換機にて熱交換を行い、冷却した排出ガスを次の循環配管に注入すること。 High-temperature and low-pressure exhaust gas is injected into a high-pressure pipe circulated by a pump using the pitot tube effect, pressurized and heated, heat exchanged by a heat exchanger, and the cooled exhaust gas is injected into the next circulation pipe. 冷却された排出ガスをより低圧の循環管に注入し、水中に気泡として膨張させ、断熱膨張効果により冷却し、排出ガス気泡中の二酸化炭素が低温で水に溶解すること。 Cooled exhaust gas is injected into a lower pressure circulation pipe, expanded as bubbles in water, cooled by the adiabatic expansion effect, and carbon dioxide in the exhaust gas bubbles dissolves in water at low temperature. 構台の上に再生タンク、地上に分離タンクが設置し、その間を循環ラインを設け循環水を循環させ、その循環水に冷却した排出ガスを注入し、分離タンクでは注入された排出ガスのうち水に溶けにくい窒素,酸素が分離され、二酸化炭素は水に溶けやすく循環水に吸収され、循環水が再生タンクに上がると水圧が揚程差分下がり、二酸化炭素が噴出し再生すること。 A regeneration tank is installed on the gantry and a separation tank is installed on the ground. A circulation line is installed between them to circulate the circulating water. Nitrogen and oxygen that are difficult to dissolve in water are separated, carbon dioxide is easily soluble in water and is absorbed by the circulating water, and when the circulating water rises to the regeneration tank, the water pressure drops by the difference in lift, and carbon dioxide spouts out for regeneration. 加圧タンクを含む高圧の循環ラインの水にピトー管効果で低圧の空気を注入し、加圧タンク内で空気を徐々に圧力を高め、目標とする圧力を超えると加圧タンクから空気を放出させる圧縮機。 Low-pressure air is injected into water in a high-pressure circulation line containing a pressurized tank using the pitot tube effect, the air pressure is gradually increased in the pressurized tank, and when the target pressure is exceeded, the air is released from the pressurized tank. Compressor. 加圧タンクと膨張タンクを含む高圧の循環ラインの水にピトー管効果で低圧の空気を注入し、加圧タンク内で空気を徐々に圧力温度を高め、加圧タンク外から冷却し、冷却された空気を膨張タンクで減圧し急膨張させ温度が下がった空気を被冷却対象物に放出させるエアコンまたは冷凍機。 Low-pressure air is injected into the water in the high-pressure circulation line, which includes the pressurized tank and the expansion tank, by the pitot tube effect. An air conditioner or freezer that decompresses the cooled air in an expansion tank, rapidly expands it, and discharges the cooled air to the object to be cooled. 加圧タンクと膨張タンクを含む高圧の循環ラインの水にピトー管効果で低圧の空気を注入し、加圧タンク内で空気を徐々に圧力温度を高め、加圧タンク外から冷却し、冷却された空気を膨張タンク内で減圧し急膨張させた結果、膨張タンク内に溜まった凝縮水を高圧の循環ラインにピトー管効果で戻す。 Low-pressure air is injected into the water in the high-pressure circulation line, which includes the pressurized tank and the expansion tank, by the pitot tube effect. As a result of depressurizing and rapidly expanding the air in the expansion tank, the condensed water accumulated in the expansion tank is returned to the high-pressure circulation line by the pitot tube effect. 加圧タンクと膨張タンクを含む高圧の循環ラインの水にピトー管効果で低圧の空気を注入し、加圧タンク内で空気を徐々に圧力温度を高め、加圧タンク外から冷却し、冷却された空気を膨張タンク内で減圧し急膨張させた結果、膨張タンク内に溜まった凝縮水に循環内にあるに二酸化炭素を吸収させ、その凝縮水を加圧タンクに再度、循環させるエアコンまたは冷凍機。 Low-pressure air is injected into the water in the high-pressure circulation line, which includes the pressurized tank and the expansion tank, by the pitot tube effect. As a result of depressurizing and rapidly expanding the air in the expansion tank, the condensed water accumulated in the expansion tank absorbs carbon dioxide in the circulation, and the condensed water is recirculated to the pressurized tank. machine. 加圧タンクと膨張タンクを含む高圧の循環ラインの水にピトー管効果で低圧の空気を注入し、加圧タンク内で空気を徐々に圧力温度を高め、加圧タンク外から冷却し、冷却された空気を膨張タンク内で減圧し急膨張させた結果、膨張タンク内に溜まった凝縮水に循環内にあるに二酸化炭素を吸収させ、その凝縮水の一部をドレンし下水に流すエアコンまたは冷凍機。 Low-pressure air is injected into the water in the high-pressure circulation line, which includes the pressurized tank and the expansion tank, by the pitot tube effect. As a result of depressurizing and rapidly expanding the air in the expansion tank, the condensed water accumulated in the expansion tank absorbs carbon dioxide in the circulation, and some of the condensed water is drained and sent to the sewage. machine. 加圧タンクと膨張タンクを含む高圧の循環ラインの水にピトー管効果で低圧の空気を注入し、加圧タンク内の空気を高圧加熱し、加圧タンク周囲の暖かい空気を室内に送風する暖房設備。 A heating system in which low-pressure air is injected into water in a high-pressure circulation line that includes a pressurized tank and an expansion tank using the pitot tube effect, the air in the pressurized tank is heated at high pressure, and the warm air around the pressurized tank is blown into the room. Facility. 下水に流れた二酸化炭素を含む水を下水処理場で照明の下で植物プランクトンが光合成を行い、下水中の二酸化炭素を植物プランクトン内で固定させること。 Phytoplankton performs photosynthesis of water containing carbon dioxide that has flowed into sewage under illumination at a sewage treatment plant, and the carbon dioxide in the sewage is fixed within the phytoplankton.
JP2021151578A 2021-07-26 2021-08-17 Circulating water-type carbon dioxide separation/refinement storage system Pending JP2023027729A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021151578A JP2023027729A (en) 2021-08-17 2021-08-17 Circulating water-type carbon dioxide separation/refinement storage system
PCT/JP2022/029412 WO2023008584A1 (en) 2021-07-26 2022-07-26 Carbon dioxide recovery device and air conditioner each utilizing pitot tube effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021151578A JP2023027729A (en) 2021-08-17 2021-08-17 Circulating water-type carbon dioxide separation/refinement storage system

Publications (1)

Publication Number Publication Date
JP2023027729A true JP2023027729A (en) 2023-03-02

Family

ID=85330384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021151578A Pending JP2023027729A (en) 2021-07-26 2021-08-17 Circulating water-type carbon dioxide separation/refinement storage system

Country Status (1)

Country Link
JP (1) JP2023027729A (en)

Similar Documents

Publication Publication Date Title
JP4343738B2 (en) Binary cycle power generation method and apparatus
CA2800191C (en) Co2 capture system by chemical absorption
CN114768488B (en) Coal-fired unit flue gas carbon dioxide entrapment system
US20110203311A1 (en) Removal of carbon dioxide from air
WO2023008584A1 (en) Carbon dioxide recovery device and air conditioner each utilizing pitot tube effect
JP6820639B1 (en) Carbon dioxide recovery system
JP2010266154A (en) Carbon dioxide liquefying apparatus
WO2021151392A1 (en) Carbon dioxide phase change cyclic refrigeration system and refrigeration method thereof
CN111473540B (en) Ship waste heat driven CO2Supercritical power generation coupling transcritical refrigeration cycle system
CN203051143U (en) Cooling system capable of improving capacity of water ring vacuum pump
JP2012000538A (en) Method and apparatus for recovering carbon dioxide
JP2012000539A (en) Method and apparatus for recovering carbon dioxide
CN111102592A (en) Direct-expansion heat pump type anti-corrosion flue gas waste heat recovery system
WO2012072362A1 (en) Combined cycle power plant with co2 capture
JP5737918B2 (en) Biological treatment-type heat pump system for wastewater treatment equipment, biological treatment-type wastewater treatment equipment provided therewith, and control method for biological treatment-type wastewater treatment equipment heat pump system
Liu et al. A self-condensation supercritical carbon dioxide Rankine cycle system realized by absorption refrigeration
JP2023027729A (en) Circulating water-type carbon dioxide separation/refinement storage system
CN106958987B (en) A kind of air pre-dehumidified for air separation and chilldown system
WO2022184186A2 (en) Condensation system and method for electric power plant
CN1562773A (en) Portable heat pump system in use for seawater desalination
JP2003269114A (en) Power and cold heat supply combined system and its operating method
CN205718534U (en) A kind of green composite cool island equipment
KR101103768B1 (en) Electric Generating System Using Heat Pump Unit
CN221780760U (en) Flue gas water collection and waste heat utilization coupling system
JP2004036573A (en) Electric power/cold heat feeding combined system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240815