JP2005172380A - Adsorption-type heat pump - Google Patents

Adsorption-type heat pump Download PDF

Info

Publication number
JP2005172380A
JP2005172380A JP2003415377A JP2003415377A JP2005172380A JP 2005172380 A JP2005172380 A JP 2005172380A JP 2003415377 A JP2003415377 A JP 2003415377A JP 2003415377 A JP2003415377 A JP 2003415377A JP 2005172380 A JP2005172380 A JP 2005172380A
Authority
JP
Japan
Prior art keywords
adsorption
heat
condenser
evaporator
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003415377A
Other languages
Japanese (ja)
Inventor
Toshiya Miyake
俊也 三宅
Yasuo Azuma
康夫 東
Kazuo Takahashi
和雄 高橋
Akira Komori
晃 小森
Atsushi Kakimoto
敦 柿本
Kazuto Okada
和人 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003415377A priority Critical patent/JP2005172380A/en
Publication of JP2005172380A publication Critical patent/JP2005172380A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorption type heat pump capable of being independently operated without separately needing a heating source such as exhaust heat, and having superior energy efficiency. <P>SOLUTION: In this adsorption-type heat pump comprising two adsorption towers, a condenser, an evaporator, and a flow passage for circulating a refrigerant between the condenser and the evaporator, two adsorption towers are alternately used as an adsorber and a regenerator, the desorbed vapor from the adsorption towers is condensed by the condenser, and the condensed water is evaporated by the evaporator to exchange the heat with the fluid passing through a circulating pipe mounted in the evaporator. A vapor compressor 8 is mounted between the adsorption towers 1, 2 and heat exchanging lines 3, 4 functioned as the condensers by mounting desorbed vapor flow passage pipes 3a, 4a on the adsorption towers 1, 2, and the sensible heat of produced superheated steam and the condensed latent heat are used as the heating source for desorption. Whereby the heat pump can be independently operated without utilizing the exhaust heat and the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、吸着材の再生に排熱を必要としない吸着式ヒートポンプに関する。   The present invention relates to an adsorption heat pump that does not require exhaust heat for regeneration of an adsorbent.

吸着式ヒートポンプは、シリカゲルや活性炭などの固体吸着材への、水やアルコールなどの作動媒体(冷媒)の吸着および脱着現象に付随して起こる相変化を利用して、熱の汲み上げを行なう装置である。図5は、この吸着式ヒートポンプを吸着式冷凍機として使用する例を示したもので、シリカゲルなどの固体吸着材Aを充填した2つの吸着塔21、22と、凝縮器23と、蒸発器24とを備え、前記吸着塔21、22は、冷媒蒸気、即ち、水を冷媒に用いた場合の水蒸気を吸着する吸着器と、吸着した水分(水蒸気)を脱着する再生器とに一定運転時間毎に交互に切り替えて使用される。いま、図5に示したように、吸着塔21が吸着器として使用され、吸着塔22が再生器として使用されている場合、再生器側の吸着塔22の熱交換器25内を流れる温水が固体吸着材Aを加熱して前に吸着されていた水分を脱着し、この脱着水蒸気の圧力でダンパー26が開となり、脱着水蒸気が吸着塔22に連通状態となった凝縮器23に移動する。そして、冷却水が通過する熱交換用パイプ23aにより冷却されて凝縮し、凝縮水配管27を介して蒸発器24に移動する。この凝縮水は、真空状態に減圧された蒸発器24中の冷水が通過する熱交換用パイプ24aに降りかかると、蒸発し、このときの気化熱で流通管24a内の冷水は抜熱されて急速に温度が低下する。一方、水の蒸気圧でダンパー26aが開き、水蒸気は、冷却塔などから供給される冷却水が流れる吸着器21側の吸着熱を除去するための熱交換器25aで固体吸着材Aに吸着される。以下、このサイクルが繰り返される。このようにして、蒸発器24内を通過する熱交換用パイプ24aから、その内部で急速に温度降下した冷水を外部へ供給することができる。   An adsorption heat pump is a device that pumps heat by using the phase change that accompanies the adsorption and desorption phenomenon of working medium (refrigerant) such as water or alcohol to a solid adsorbent such as silica gel or activated carbon. is there. FIG. 5 shows an example in which this adsorption heat pump is used as an adsorption refrigerator. Two adsorption towers 21 and 22 filled with a solid adsorbent A such as silica gel, a condenser 23 and an evaporator 24 are shown. The adsorption towers 21 and 22 are provided with an adsorber that adsorbs water vapor when water is used as a refrigerant and a regenerator that desorbs adsorbed water (water vapor) at regular operating times. Used alternately. As shown in FIG. 5, when the adsorption tower 21 is used as an adsorber and the adsorption tower 22 is used as a regenerator, the hot water flowing in the heat exchanger 25 of the adsorption tower 22 on the regenerator side is The solid adsorbent A is heated to desorb moisture previously adsorbed, the damper 26 is opened by the pressure of the desorbed water vapor, and the desorbed water vapor moves to the condenser 23 in communication with the adsorption tower 22. Then, the water is cooled and condensed by the heat exchange pipe 23 a through which the cooling water passes, and moves to the evaporator 24 via the condensed water pipe 27. The condensed water evaporates when it reaches the heat exchange pipe 24a through which the cold water in the evaporator 24 whose pressure has been reduced to a vacuum passes, and the cold water in the flow pipe 24a is rapidly removed by the heat of vaporization at this time. The temperature drops. On the other hand, the damper 26a is opened by the vapor pressure of the water, and the water vapor is adsorbed to the solid adsorbent A by the heat exchanger 25a for removing the adsorption heat on the adsorber 21 side where the cooling water supplied from the cooling tower or the like flows. The Thereafter, this cycle is repeated. In this way, cold water whose temperature has dropped rapidly can be supplied to the outside from the heat exchange pipe 24a passing through the evaporator 24.

前述のように、吸着式ヒートポンプでは、吸着材の再生に温熱源が必要である。この温熱源からの熱量を再生器側の吸着塔に供給する方法として、従来から、ガスタービンコージェネレーション、またはガスエンジン等から発生する排熱をジャケット水、または温水ボイラで回収し、その温水を再生熱源として用いる方法などが開示されている(例えば、特許文献1参照)。   As described above, the adsorption heat pump requires a heat source to regenerate the adsorbent. As a method of supplying the heat quantity from the heat source to the adsorption tower on the regenerator side, conventionally, exhaust heat generated from a gas turbine cogeneration or a gas engine or the like is recovered with jacket water or a hot water boiler, and the hot water is recovered. A method used as a regeneration heat source is disclosed (for example, see Patent Document 1).

特開2002−266656号公報([0013]〜[0024])JP 2002-266656 A ([0013] to [0024])

しかし、前記吸着式ヒートポンプでは、100℃以下の温熱源のみでの駆動が可能であり、また、冷媒として水を使用しても、従来の圧縮式ヒートポンプのようにコンプレッサーの大型化、高圧縮比化などの設備上のデメリット伴わずに済むなどの特徴を有するものの、前述のように、固体吸着材の再生工程で使用する、排熱などの温熱源を別途確保する必要がある。温熱源として排熱を利用する場合には温水ボイラ等の設備を別途配設する必要があり、設備上煩雑となる。また、現状では、吸着式ヒートポンプはエネルギー効率が低いという問題もある。   However, the adsorption heat pump can be driven only by a heat source of 100 ° C. or less, and even if water is used as a refrigerant, the compressor is increased in size and has a high compression ratio as in a conventional compression heat pump. However, as described above, it is necessary to secure a separate heat source such as exhaust heat used in the solid adsorbent regeneration process. When exhaust heat is used as a heat source, it is necessary to separately install equipment such as a hot water boiler, which is complicated on the equipment. In addition, at present, the adsorption heat pump has a problem of low energy efficiency.

そこで、この発明の課題は、排熱などの温熱源を別途必要とせずに自立運転ができ、エネルギー効率に優れた吸着式ヒートポンプを提供することである。   Accordingly, an object of the present invention is to provide an adsorption heat pump that is capable of independent operation without requiring a separate heat source such as exhaust heat and is excellent in energy efficiency.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

即ち、2つの吸着塔と、凝縮器と、蒸発器と、これらの機器間を冷媒が循環する流路とを備え、前記一方の吸着塔が冷熱源により冷却されて蒸発器からの冷媒の蒸気を吸着し、他方の吸着塔が加熱源により加熱されて、前に吸着されていた冷媒の蒸気を脱着して吸着塔内の吸着材を再生し、この2つの吸着塔が交互に吸着器および再生器として用いられ、再生中の吸着塔からの冷媒の脱着蒸気を凝縮器で凝縮し、この凝縮水を蒸発器に供給して蒸発させ、この蒸発器内に設けた流通管を通過する流体と熱交換させるようにした吸着式ヒートポンプにおいて、前記吸着塔の出側の脱着蒸気が通過する流路に蒸気圧縮機を配設し、この蒸気圧縮機により脱着蒸気を圧縮して過熱蒸気を生成させ、前記吸着塔に前記過熱蒸気の流路をそれぞれ設けて凝縮器を形成し、この過熱蒸気の凝縮により発生した熱を前記加熱源として用いるようにしたのである。   That is, two adsorption towers, a condenser, an evaporator, and a flow path through which the refrigerant circulates between these devices, and the one adsorption tower is cooled by a cold heat source and the refrigerant vapor from the evaporator is obtained. And the other adsorption tower is heated by a heating source to desorb the previously adsorbed refrigerant vapor to regenerate the adsorbent in the adsorption tower. A fluid that is used as a regenerator and that condenses the desorbed vapor of the refrigerant from the adsorption tower being regenerated in a condenser, supplies the condensed water to the evaporator, evaporates it, and passes through a flow pipe provided in the evaporator In an adsorption heat pump that exchanges heat with a vapor compressor, a vapor compressor is disposed in a flow path through which the desorption vapor on the exit side of the adsorption tower passes, and the desorption vapor is compressed by this vapor compressor to generate superheated vapor. The superheated steam flow path in the adsorption tower Forming a condenser is the heat generated by condensation of the superheated steam was used as the above heat source.

このように、脱着蒸気を圧縮することにより、温度が飛躍的に上昇した過熱蒸気とすることができ、この過熱蒸気を吸着塔内に設けた前記流路内に通過させ、顕熱および昇圧した圧力に相当する飽和温度において凝縮潜熱を放出させることにより加熱源、即ち温熱源が得られ、吸着材を加熱することができる。それにより、排熱を利用しなくても、吸着材に吸着された冷媒の蒸気を脱着し、吸着塔を再生することができる。   In this way, by compressing the desorption steam, it is possible to obtain superheated steam whose temperature has dramatically increased. This superheated steam is passed through the flow path provided in the adsorption tower, and the sensible heat is increased. By releasing the latent heat of condensation at the saturation temperature corresponding to the pressure, a heating source, that is, a heat source is obtained, and the adsorbent can be heated. Thereby, the vapor of the refrigerant adsorbed by the adsorbent can be desorbed and the adsorption tower can be regenerated without using exhaust heat.

また、前記過熱蒸気は高温であり、放出する顕熱および凝縮潜熱により脱着能力に優れるため蓄熱密度の増大化が可能で、冷熱または昇温能力を上昇させることができる。それにより、エネルギー効率も上昇する。   Moreover, since the superheated steam is high in temperature and has excellent desorption ability due to the sensible heat and latent heat of condensation, the heat storage density can be increased, and the cooling or heating ability can be increased. Thereby, energy efficiency is also increased.

前記凝縮器と前記蒸発器との間に、絞り弁と膨張後に発生した蒸気を凝縮水から分離するフラッシュタンクとを設けることが望ましい。   It is desirable to provide a throttle valve and a flash tank for separating the steam generated after expansion from the condensed water between the condenser and the evaporator.

このようにすれば、絞り弁により凝縮水の温度および圧力を低下させることができ、絞り弁の出側での膨張後に発生した蒸気が蒸発器に流入しないため、蒸発器での熱交換効率の低下を防止することができる。   In this way, the temperature and pressure of the condensed water can be reduced by the throttle valve, and the steam generated after expansion on the outlet side of the throttle valve does not flow into the evaporator. A decrease can be prevented.

前記凝縮器と前記蒸発器との間に、前記凝縮器からの凝縮水を冷却する熱交換器を設けることが望ましい。   It is desirable to provide a heat exchanger for cooling the condensed water from the condenser between the condenser and the evaporator.

吸着器が再生初期過程にある場合、蒸気圧縮機(メカニカルブースタ)により圧縮された過熱蒸気は、凝縮器出口ではほぼ凝縮水となるが、再生が進むにつれて次第に凝縮後の水蒸気の乾き度が大きくなり、蒸発器での冷熱取り出し量が低下するという問題が生じることになる。上記のように、凝縮器と蒸発器との間に、冷却水を通水できる熱交換器を設けることにより、凝縮後の水蒸気の乾き度の上昇を抑制でき、上記問題を回避することができる。   When the adsorber is in the initial stage of regeneration, the superheated steam compressed by the steam compressor (mechanical booster) becomes almost condensed water at the outlet of the condenser, but as the regeneration proceeds, the dryness of the water vapor after condensation gradually increases. As a result, there arises a problem that the amount of cold heat taken out by the evaporator decreases. As described above, by providing a heat exchanger that allows cooling water to flow between the condenser and the evaporator, an increase in the dryness of water vapor after condensation can be suppressed, and the above problem can be avoided. .

前記凝縮器と前記フラッシュタンクとの間に、前記凝縮器からの凝縮水を冷却する熱交換器を設けることもできる。   A heat exchanger for cooling the condensed water from the condenser may be provided between the condenser and the flash tank.

上記熱交換器を設けることにより、前述のように、凝縮後の水蒸気の乾き度の上昇を抑制でき、上記問題を回避することができる。この熱交換器として、絞り弁の作用と熱交換器の作用を併せ持ったキャピラリーチューブを設置することもできる。   By providing the heat exchanger, as described above, an increase in dryness of water vapor after condensation can be suppressed, and the above problem can be avoided. As this heat exchanger, a capillary tube having both a throttle valve action and a heat exchanger action may be installed.

前記冷媒として水を用いることができる。   Water can be used as the refrigerant.

従来の圧縮式冷凍機では、冷媒として水を使用するためには、作動圧力が低いことによる大流量化や高圧縮比化などによるコンプレッサーの大型化を伴うが、前記吸着式ヒートポンプではそのような装置の大型化を伴わずに、水を冷媒として用いることができ、冷媒の廃棄に特別の処理を要せず、環境に対する負荷が発生しない。   In a conventional compression refrigerator, in order to use water as a refrigerant, a large flow rate due to a low operating pressure and an increase in the size of a compressor due to a high compression ratio are involved. Water can be used as a refrigerant without increasing the size of the apparatus, no special treatment is required for disposal of the refrigerant, and no environmental load is generated.

以上のように、この発明によれば、排熱を利用しなくても冷媒の循環流路に蒸気圧縮機を設けるだけで脱着蒸気を過熱蒸気とし、その凝縮により温熱源が得られ、この温熱源により冷媒蒸気を脱着して吸着塔を再生することができる。それにより、排熱を利用するための温水ボイラ等を別途配設する必要がなく、設備上の煩雑さを解消できる。また、自立運転ができるため、設置環境に関係なく吸着式ヒートポンプを駆動することができる。   As described above, according to the present invention, even if exhaust heat is not used, the desorption steam is converted into superheated steam only by providing a steam compressor in the refrigerant circulation channel, and a heat source is obtained by condensation thereof. The adsorption tower can be regenerated by desorbing the refrigerant vapor from the source. Thereby, it is not necessary to separately arrange a hot water boiler or the like for utilizing the exhaust heat, and the complexity of the facility can be eliminated. Further, since the self-sustaining operation can be performed, the adsorption heat pump can be driven regardless of the installation environment.

さらに、前記脱着蒸気の圧縮により得られる過熱蒸気は高温であるため、昇圧した圧力に相当する飽和温度で凝縮潜熱を放出でき、また、脱着能力に優れるため、吸着スイング幅を大きくして冷熱または昇温能力を上昇させることができ、エネルギー効率も上昇する。   Furthermore, since the superheated steam obtained by compression of the desorption steam is high temperature, it can release condensation latent heat at a saturation temperature corresponding to the increased pressure, and since it has excellent desorption capability, The temperature raising capability can be increased, and the energy efficiency is also increased.

以下に、この発明の実施形態を添付の図1から図4に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying FIGS.

図1は、実施形態の吸着式ヒートポンプの構成を示したもので、この吸着式ヒートポンプは、シリカゲルなどの固体の吸着材Aが充填された2つの吸着塔1、2と、この吸着塔1、2に冷媒の脱着蒸気の流路、即ち流通管3a、4aをそれぞれ設けて形成された、冷媒蒸気を凝縮する凝縮器として機能する熱交換ライン3、4と、熱交換用パイプ5aを設けた、冷水貯水槽を兼ねる蒸発器5と、これらの機器間を冷媒が循環する流路PL1〜PL6とを備え、この流路PL1〜PL6には、冷媒の流れを切り替えるバルブV1〜V8が設けられている。吸着塔1、2には、熱交換ライン3、4の、一例として対向する側に、冷却塔などから供給される冷却水の流通管からなる熱交換ライン6、7が設けられ、この熱交換ライン6、7に供給される冷却水が、吸着塔1、2のそれぞれの冷熱源となる。   FIG. 1 shows the configuration of an adsorption heat pump according to the embodiment. This adsorption heat pump includes two adsorption towers 1 and 2 filled with a solid adsorbent A such as silica gel, and the adsorption tower 1, 2 is provided with heat exchange lines 3 and 4 that function as a condenser for condensing refrigerant vapor, and a heat exchange pipe 5a that is formed by providing refrigerant desorption vapor channels, that is, flow pipes 3a and 4a, respectively. The evaporator 5 also serving as a cold water storage tank and flow paths PL1 to PL6 through which the refrigerant circulates between these devices are provided, and valves V1 to V8 for switching the flow of the refrigerant are provided in the flow paths PL1 to PL6. ing. The adsorption towers 1 and 2 are provided with heat exchange lines 6 and 7 including circulation pipes of cooling water supplied from a cooling tower or the like on opposite sides of the heat exchange lines 3 and 4 as an example. The cooling water supplied to the lines 6 and 7 becomes a cooling heat source for each of the adsorption towers 1 and 2.

前記吸着塔1、2と熱交換ライン3、4との間には、冷媒の脱着蒸気を圧縮して過熱蒸気を生成させる蒸気圧縮機8(メカニカルブースター)が設けられている。この過熱蒸気が、バルブV4とV8、およびバルブV3とV7をそれぞれ切り替えることにより、熱交換ライン3または4に供給されたときに、吸着塔1または2の加熱源、即ち温熱源となる。また、熱交換ライン3、4と蒸発器5との間には、バルブV2とV6とをそれぞれ介して、脱着蒸気と凝縮水とを分離するフラッシュタンク9が設けられ、その入側には絞り弁10が、側方上部には蒸気を逃がすバルブV9がそれぞれ設けられている。   A steam compressor 8 (mechanical booster) is provided between the adsorption towers 1 and 2 and the heat exchange lines 3 and 4 to compress the desorbed steam of the refrigerant to generate superheated steam. When this superheated steam is supplied to the heat exchange line 3 or 4 by switching the valves V4 and V8 and the valves V3 and V7, respectively, it becomes a heating source of the adsorption tower 1 or 2, that is, a heat source. A flash tank 9 for separating desorbed steam and condensed water is provided between the heat exchange lines 3 and 4 and the evaporator 5 through valves V2 and V6, respectively. The valve 10 is provided with a valve V9 for releasing steam at the upper side.

前記吸着塔1および2は、前記バルブの切り替えにより、一方の吸着塔が冷媒蒸気を吸着する吸着器として用いられるときに、他方の吸着塔が前に吸着されていた冷媒蒸気を脱着する再生器として用いられる。いま、吸着塔1が吸着器として、吸着塔2が再生器として用いられる場合の、即ち、吸着塔1が吸着工程にあり、吸着塔2が再生工程にある場合の前記吸着式ヒートポンプの動作について説明する。なお、図1で、バルブV1、V6〜V8は開状態で、塗りつぶしたバルブV2〜V5は閉状態を示す。   The adsorption towers 1 and 2 are regenerators that desorb the refrigerant vapor previously adsorbed by the other adsorption tower when one of the adsorption towers is used as an adsorber that adsorbs the refrigerant vapor by switching the valves. Used as The operation of the adsorption heat pump when the adsorption tower 1 is used as an adsorber and the adsorption tower 2 is used as a regenerator, that is, when the adsorption tower 1 is in the adsorption process and the adsorption tower 2 is in the regeneration process. explain. In FIG. 1, the valves V1, V6 to V8 are in an open state, and the filled valves V2 to V5 are in a closed state.

前記蒸発器5内に配設された、冷水が通過する熱交換用パイプ5aに、冷媒の水が接触すると、吸着式ヒートポンプの内部は真空状態に減圧されているため、この水は蒸発する。この蒸発した水蒸気は、開放されたバルブV1を介して吸着塔1に達し、固体の吸着材A(例えば、シリカゲル、吸着密度0.05kg/kg、吸着塔1基あたりの充填量26kg)に吸着される。このときに発生する吸着熱は、冷熱源である、熱交換器6内を通過する冷却水(例えば、入側温度29℃、出側温度33℃)によって除去され、吸着材の温度上昇が抑制される。蒸発器5内での水の気化熱により、熱交換用パイプ5a内の冷水は急速に抜熱され、その温度がさらに低下する。   When the refrigerant water comes into contact with the heat exchange pipe 5a disposed in the evaporator 5 and through which cold water passes, the inside of the adsorption heat pump is depressurized in a vacuum state, so that the water evaporates. The evaporated water vapor reaches the adsorption tower 1 through the opened valve V1, and is adsorbed on the solid adsorbent A (for example, silica gel, adsorption density 0.05 kg / kg, filling amount 26 kg per adsorption tower). Is done. The heat of adsorption generated at this time is removed by cooling water (for example, an inlet side temperature of 29 ° C. and an outlet side temperature of 33 ° C.) that passes through the heat exchanger 6, which is a cold heat source, and the temperature rise of the adsorbent is suppressed. Is done. Due to the heat of vaporization of water in the evaporator 5, the cold water in the heat exchange pipe 5 a is rapidly removed and its temperature further decreases.

一方、前記吸着塔2では再生工程にあり、前に吸着されていた水蒸気が固体吸着材Aから脱着し、この脱着水蒸気(例えば、温度40℃、圧力1.0kPa)が、流路PL4、バルブV8、流路PL1を介して蒸気圧縮機8に達し、圧縮されて高温の過熱蒸気(例えば、圧縮比10.0、温度300℃、圧力10.0kPa)となる。この過熱蒸気は、流路PL2、バルブV7を経て、熱交換ライン4内で凝縮し、この凝縮潜熱および過熱状態から飽和状態に温度降下する際の顕熱が加熱源となって、吸着材Aの脱着が促進される。この凝縮水(例えば、温度45℃、圧力10.0kPa)は、バルブV6および流路PL5を経て、絞り弁V10での絞りにより、温度および圧力を低下し(例えば、7℃、1.0KPa)、少量の乾き飽和蒸気(例えば、乾き度0.0064)と凝縮水とからなる混合相となる。そして、フラッシュタンク9内で、水蒸気と凝縮水に分離され、水蒸気はバルブV9を経て系外に放出され、凝縮水は流路PL6を経て蒸発器5に戻され、温度5〜8℃、圧力0.8〜1kPaの水が蒸発器5に貯槽される。   On the other hand, the adsorption tower 2 is in the regeneration step, and the water vapor previously adsorbed is desorbed from the solid adsorbent A, and this desorbed water vapor (for example, temperature 40 ° C., pressure 1.0 kPa) is used as the flow path PL4, valve V8 reaches the steam compressor 8 via the flow path PL1 and is compressed to become high-temperature superheated steam (for example, compression ratio 10.0, temperature 300 ° C., pressure 10.0 kPa). This superheated steam is condensed in the heat exchange line 4 through the flow path PL2 and the valve V7, and the sensible heat when the temperature is lowered from the condensation latent heat and the superheated state to the saturated state becomes a heating source, and the adsorbent A Desorption is promoted. This condensed water (for example, temperature 45 ° C., pressure 10.0 kPa) is reduced in temperature and pressure (for example, 7 ° C., 1.0 KPa) through the valve V 6 and the flow path PL 5 and throttled by the throttle valve V 10. It becomes a mixed phase consisting of a small amount of dry saturated steam (for example, dryness of 0.0064) and condensed water. Then, in the flash tank 9, it is separated into water vapor and condensed water, the water vapor is discharged out of the system through the valve V9, the condensed water is returned to the evaporator 5 through the flow path PL6, and the temperature is 5-8 ° C., pressure 0.8 to 1 kPa of water is stored in the evaporator 5.

図2は、吸着塔1、2の運転状態を切り替えて、吸着塔1が再生工程に、吸着塔2が吸着工程にある場合を示したものである。なお、図2で、バルブV2〜V5は開状態、塗りつぶしたバルブV1、V6〜V8は閉状態を示す。   FIG. 2 shows a case where the operation state of the adsorption towers 1 and 2 is switched and the adsorption tower 1 is in the regeneration process and the adsorption tower 2 is in the adsorption process. In FIG. 2, valves V2 to V5 are in an open state, and filled valves V1 and V6 to V8 are in a closed state.

蒸発器5でフラッシュタンク9から流入した凝縮水が、冷水が通過する熱交換用パイプ5aに接触して蒸発した冷媒水蒸気は、開放されたバルブV5を介して吸着塔2に達し、固体吸着材Aに吸着される。このときに発生する吸着熱は、冷熱源である、熱交換器7内を通過する冷却水によって除去され、吸着材の温度上昇が抑制される。前記冷媒の蒸発の際の気化熱により、熱交換用パイプ5a内の冷水は急速に抜熱され、その温度がさらに低下する。   Refrigerant water vapor evaporated by the condensed water flowing from the flash tank 9 in the evaporator 5 in contact with the heat exchange pipe 5a through which the cold water passes reaches the adsorption tower 2 through the opened valve V5, and becomes a solid adsorbent. Adsorbed to A. The heat of adsorption generated at this time is removed by cooling water that passes through the heat exchanger 7, which is a cold heat source, and the temperature rise of the adsorbent is suppressed. Due to the heat of vaporization when the refrigerant evaporates, the cold water in the heat exchange pipe 5a is rapidly removed, and the temperature further decreases.

一方、吸着塔1では、固体吸着材Aからの脱着水蒸気が、流路PL3、バルブV4、流路PL1を介して蒸気圧縮機8に達し、圧縮されて高温の過熱蒸気となる。この過熱蒸気は、流路PL2、バルブV3を経て、熱交換ライン3内で凝縮し、この凝縮潜熱および過熱状態から飽和状態に温度降下する際の顕熱が加熱源となって、脱着が促進される。この凝縮水は、バルブV2および流路PL5を経て、絞り弁V10での絞りにより、温度および圧力が低下し、少量の乾き飽和蒸気と凝縮水とからなる混合相となる。そして、フラッシュタンク9内で、水蒸気と凝縮水に分離され、水蒸気はバルブV9を経て系外に放出され、凝縮水は流路PL3を経て蒸発器5に戻される。   On the other hand, in the adsorption tower 1, the desorbed water vapor from the solid adsorbent A reaches the vapor compressor 8 via the flow path PL3, the valve V4, and the flow path PL1, and is compressed to become high-temperature superheated steam. This superheated steam condenses in the heat exchange line 3 through the flow path PL2 and the valve V3, and this condensation latent heat and sensible heat when the temperature drops from the overheated state to the saturated state serve as a heating source to promote desorption. Is done. The condensed water passes through the valve V2 and the flow path PL5, and is reduced in temperature and pressure by the restriction by the throttle valve V10, and becomes a mixed phase composed of a small amount of dry saturated steam and condensed water. Then, it is separated into water vapor and condensed water in the flash tank 9, and the water vapor is discharged out of the system through the valve V9, and the condensed water is returned to the evaporator 5 through the flow path PL3.

このように、前記吸着式ヒートポンプでは、脱着水蒸気など、冷媒の脱着蒸気が通過する流路に蒸気圧縮機8を配設し、この脱着蒸気を圧縮して過熱蒸気とし、この過熱蒸気を熱交換ライン3または4を通過させて凝縮してその凝縮潜熱と過熱蒸気が有する顕熱を回収するようにしたので、吸着材Aの脱着用に加熱源(温熱源)を別個に必要としない。それにより、排熱などの温熱源を利用しなくても吸着式ヒートポンプの運転が可能であり、温水ボイラ等を別途配設する必要がなく、設備上の煩雑さを解消できる。また、設置環境に関係なく、吸着式ヒートポンプを自立運転することができる。さらに、前記蒸気圧縮機8により、高温の過熱蒸気が得られ、この過熱蒸気は高温であり、顕熱と凝縮潜熱とを有し、脱着能力に優れるため蓄熱密度の増大化が可能で、冷熱または昇温能力を上昇させることがでる。それにより、エネルギー効率も上昇する。   As described above, in the adsorption heat pump, the vapor compressor 8 is disposed in the flow path through which the desorption steam of the refrigerant such as desorption steam passes, and the desorption steam is compressed into superheated steam, and the superheated steam is heat-exchanged. Since the condensed latent heat and the sensible heat of the superheated steam are recovered by passing through the line 3 or 4, a separate heating source (heat source) is not required for desorption of the adsorbent A. Accordingly, it is possible to operate the adsorption heat pump without using a heat source such as exhaust heat, and it is not necessary to separately provide a hot water boiler or the like, and the complexity of the equipment can be eliminated. In addition, the adsorption heat pump can be operated independently regardless of the installation environment. Further, the steam compressor 8 provides high-temperature superheated steam, which is high-temperature, has high sensible heat and latent heat of condensation, and has excellent desorption capability, so that the heat storage density can be increased. Alternatively, the temperature raising ability can be increased. Thereby, energy efficiency is also increased.

図3および図4は、他の実施形態を示したもので、熱交換ライン4(吸着塔2が再生工程にある場合)または熱交換ライン3(吸着塔1が再生工程にある場合)とフラッシュタンク9との間に凝縮水を冷却する熱交換器11が設けられている。この熱交換器11には、前記冷熱源である冷却水(例えば、入側温度29℃、出側温度33℃)が通過して、凝縮器4または3からの凝縮水が冷却され、絞り弁10を介してフラッシュタンク9で水蒸気が分離される。このように熱交換器11を設けると、図3に示したように、吸着塔2が再生工程にある場合、この再生初期過程で、蒸気圧縮機8により圧縮された過熱蒸気は、凝縮器4の出口ではほぼ凝縮水となるが、再生が進むにつれて次第に凝縮後の水蒸気の乾き度が大きくなり、蒸発器5での冷熱取り出し量が低下するという問題が生じることになる。このため、上述のように、凝縮器4と蒸発器5との間に、冷却水を通水できる熱交換器11を設けることにより、凝縮後の水蒸気の乾き度の上昇を抑制でき、上記問題を回避することができる。図4に示した吸着塔1が再生工程にある場合も同様である。なお、前記熱交換器11として、絞り弁の作用と熱交換器の作用を併せ持ったキャピラリーチューブを設置することもできる。   3 and 4 show another embodiment, in which a heat exchange line 4 (when the adsorption tower 2 is in the regeneration process) or a heat exchange line 3 (when the adsorption tower 1 is in the regeneration process) and a flash are shown. A heat exchanger 11 for cooling the condensed water is provided between the tank 9 and the tank 9. Cooling water (for example, an inlet side temperature of 29 ° C. and an outlet side temperature of 33 ° C.) that passes through the heat exchanger 11 passes through the condenser 11 to cool the condensed water from the condenser 4 or 3. The water vapor is separated in the flash tank 9 through 10. When the heat exchanger 11 is provided in this way, as shown in FIG. 3, when the adsorption tower 2 is in the regeneration process, the superheated steam compressed by the steam compressor 8 in the regeneration initial process is converted into the condenser 4. However, as the regeneration proceeds, the degree of dryness of the water vapor after condensation gradually increases, resulting in a problem that the amount of cold heat taken out by the evaporator 5 decreases. For this reason, as described above, by providing the heat exchanger 11 capable of passing cooling water between the condenser 4 and the evaporator 5, it is possible to suppress an increase in the dryness of the water vapor after condensation, and the above problem Can be avoided. The same applies when the adsorption tower 1 shown in FIG. 4 is in the regeneration step. As the heat exchanger 11, a capillary tube having both a throttle valve action and a heat exchanger action may be installed.

なお、吸着開始時の再生側吸着塔の予熱源として、蒸気圧縮機8の吸引口と蒸発器5とをバイパスし、蒸発器5の水蒸気を圧縮することによって得られる高温の過熱蒸気を利用することができる。それにより、吸着塔1、2の運転切替え時に冷熱供給が途切れず、冷熱を連続して供給することが可能となる。   As a preheating source for the regeneration side adsorption tower at the start of adsorption, the high-temperature superheated steam obtained by compressing the water vapor in the evaporator 5 is used by bypassing the suction port of the vapor compressor 8 and the evaporator 5. be able to. As a result, the supply of cold heat is not interrupted when the operation of the adsorption towers 1 and 2 is switched, and cold heat can be continuously supplied.

この発明の吸着式ヒートポンプは、排熱を必要とせず、自立運転ができるため、装置が煩雑化せず、また、大型設置環境の影響を受けずにすみ、産業分野のプロセス冷却工程への安定した冷水供給源などとして利用することができる。   The adsorption heat pump according to the present invention does not require exhaust heat and can be operated independently, so that the apparatus is not complicated and is not affected by a large installation environment, and is stable to the process cooling process in the industrial field. It can be used as a cold water supply source.

この発明の実施形態の吸着式ヒートポンプの構成を示す説明図。Explanatory drawing which shows the structure of the adsorption heat pump of embodiment of this invention. 図1に示す実施形態において冷媒の流路が異なる場合の吸着式ヒートポンプの構成を示す説明図。Explanatory drawing which shows the structure of the adsorption type heat pump when the flow path of a refrigerant | coolant differs in embodiment shown in FIG. 他の実施形態の吸着式ヒートポンプの構成を示す説明図。Explanatory drawing which shows the structure of the adsorption heat pump of other embodiment. 図3に示す実施形態において冷媒の流路が異なる場合の吸着式ヒートポンプの構成を示す説明図。Explanatory drawing which shows the structure of the adsorption heat pump when the flow path of a refrigerant | coolant differs in embodiment shown in FIG. 従来技術の吸着式ヒートポンプの説明図。Explanatory drawing of the adsorption type heat pump of a prior art.

符号の説明Explanation of symbols

1、2:吸着塔 3、4:熱交換ライン 3a、4a:流通管
5:蒸発器 5a:熱交換用パイプ 6、7:熱交換器
8:蒸気圧縮機 9:フラッシュタンク 10:絞り弁
11:熱交換器 PL1〜PL6:流路 V1〜V9:バルブ
DESCRIPTION OF SYMBOLS 1, 2: Adsorption tower 3, 4: Heat exchange line 3a, 4a: Distribution pipe 5: Evaporator 5a: Heat exchange pipe 6, 7: Heat exchanger 8: Steam compressor 9: Flash tank 10: Throttle valve 11 : Heat exchanger PL1-PL6: Flow path V1-V9: Valve

Claims (5)

2つの吸着塔と、凝縮器と、蒸発器と、これらの機器間を冷媒が循環する流路とを備え、前記一方の吸着塔が冷熱源により冷却されて蒸発器からの冷媒の蒸気を吸着し、他方の吸着塔が加熱源により加熱されて、前に吸着されていた冷媒の蒸気を脱着して吸着塔内の吸着材を再生し、この2つの吸着塔が交互に吸着器および再生器として用いられ、再生中の吸着塔からの冷媒の脱着蒸気を凝縮器で凝縮し、この凝縮水を蒸発器に供給して蒸発させ、この蒸発器内に設けた流通管を通過する流体と熱交換させるようにした吸着式ヒートポンプにおいて、前記脱着蒸気が通過する流路の、前記吸着塔と凝縮器との間に蒸気圧縮機を配設し、前記凝縮器を、前記吸着塔の内部に前記脱着蒸気の流路をそれぞれ設けて形成し、この脱着蒸気の凝縮潜熱を前記温熱源として用いることを特徴とする吸着式ヒートポンプ。 Two adsorption towers, a condenser, an evaporator, and a flow path through which the refrigerant circulates between these devices. The one adsorption tower is cooled by a cold heat source and adsorbs the refrigerant vapor from the evaporator. The other adsorption tower is heated by a heating source to desorb the vapor of the refrigerant previously adsorbed to regenerate the adsorbent in the adsorption tower, and the two adsorption towers are alternately adsorber and regenerator. The refrigerant desorbed vapor from the adsorption tower being regenerated is condensed in a condenser, and this condensed water is supplied to the evaporator to evaporate, and the fluid and heat passing through the flow pipe provided in the evaporator are used. In the adsorption heat pump adapted to be exchanged, a vapor compressor is disposed between the adsorption tower and the condenser in the flow path through which the desorption vapor passes, and the condenser is disposed inside the adsorption tower. Condensation latent heat of this desorption vapor is formed by providing each desorption vapor channel. Adsorption heat pump, which comprises using as the heat source. 前記凝縮器と前記蒸発器との間に、絞り弁と膨張後に発生した蒸気を凝縮水から分離するフラッシュタンクとを設けたことを特徴とする請求項1に記載の吸着式ヒートポンプ。 The adsorption heat pump according to claim 1, wherein a throttle valve and a flash tank for separating steam generated after expansion from condensed water are provided between the condenser and the evaporator. 前記凝縮器と前記蒸発器との間に、前記凝縮器からの凝縮水を冷却する熱交換器を設けたことを特徴とする請求項1に記載の吸着式ヒートポンプ。 The adsorption heat pump according to claim 1, wherein a heat exchanger for cooling the condensed water from the condenser is provided between the condenser and the evaporator. 前記凝縮器と前記フラッシュタンクとの間に、前記凝縮器からの凝縮水を冷却する熱交換器を設けたことを特徴とする請求項2に記載の吸着式ヒートポンプ。 The adsorption heat pump according to claim 2, wherein a heat exchanger for cooling the condensed water from the condenser is provided between the condenser and the flash tank. 前記冷媒が水であることを特徴とする請求項1から請求項4のいずれかに記載の吸着式ヒートポンプ。
The adsorption heat pump according to any one of claims 1 to 4, wherein the refrigerant is water.
JP2003415377A 2003-12-12 2003-12-12 Adsorption-type heat pump Pending JP2005172380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003415377A JP2005172380A (en) 2003-12-12 2003-12-12 Adsorption-type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003415377A JP2005172380A (en) 2003-12-12 2003-12-12 Adsorption-type heat pump

Publications (1)

Publication Number Publication Date
JP2005172380A true JP2005172380A (en) 2005-06-30

Family

ID=34734891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003415377A Pending JP2005172380A (en) 2003-12-12 2003-12-12 Adsorption-type heat pump

Country Status (1)

Country Link
JP (1) JP2005172380A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026020A1 (en) * 2007-08-09 2009-02-18 Millenium Energy Industries Inc. Two-stage low temperature air-cooled adsorption cooling unit
KR20160025092A (en) * 2014-08-26 2016-03-08 한양대학교 에리카산학협력단 System and method for manufacturing ultrapure water and chilled water
JP2017505420A (en) * 2014-02-06 2017-02-16 ユニバーシティー オブ ニューキャッスル アポン タインUniversity Of Newcastle Upon Tyne Energy storage device
JP2017180955A (en) * 2016-03-30 2017-10-05 株式会社豊田中央研究所 Heat pump system and cold generation method
CN110180325A (en) * 2019-07-10 2019-08-30 成都益志科技有限责任公司 Pump type heat solid amine absorption CO2System

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026020A1 (en) * 2007-08-09 2009-02-18 Millenium Energy Industries Inc. Two-stage low temperature air-cooled adsorption cooling unit
US8479529B2 (en) 2007-08-09 2013-07-09 Millennium Energy Industries, Incorporated Two-stage low temperature air cooled adsorption cooling unit
JP2017505420A (en) * 2014-02-06 2017-02-16 ユニバーシティー オブ ニューキャッスル アポン タインUniversity Of Newcastle Upon Tyne Energy storage device
KR20160025092A (en) * 2014-08-26 2016-03-08 한양대학교 에리카산학협력단 System and method for manufacturing ultrapure water and chilled water
KR101981343B1 (en) * 2014-08-26 2019-05-23 한양대학교 에리카산학협력단 System and method for manufacturing ultrapure water and chilled water
JP2017180955A (en) * 2016-03-30 2017-10-05 株式会社豊田中央研究所 Heat pump system and cold generation method
WO2017169511A1 (en) * 2016-03-30 2017-10-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat pump system and cooling generation method
US10648710B2 (en) 2016-03-30 2020-05-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat pump system and cooling generation method
CN110180325A (en) * 2019-07-10 2019-08-30 成都益志科技有限责任公司 Pump type heat solid amine absorption CO2System

Similar Documents

Publication Publication Date Title
JP5599565B2 (en) System and method for managing the water content of a fluid
JP4333627B2 (en) Adsorption heat pump device
US4594856A (en) Method and device for pumping heat
US8479529B2 (en) Two-stage low temperature air cooled adsorption cooling unit
KR20120114012A (en) Hybrid air conditioning system
JPWO2006051617A1 (en) Heat pump using CO2 as a refrigerant and operating method thereof
JP6722860B2 (en) Adsorption refrigerator, method for controlling adsorption refrigerator and cooling system
KR100827570B1 (en) Heatpump for waste heat recycle of adsorption type refrigerator
WO1997040327A1 (en) Compression absorption heat pump
JP5187827B2 (en) Adsorption heat pump system using low-temperature waste heat
US20100300124A1 (en) Refrigerating machine comprising different sorption materials
JP4184197B2 (en) Hybrid absorption heat pump system
JP2017009173A (en) Adsorption type refrigerator and its operational method
JP2005172380A (en) Adsorption-type heat pump
JP2004293905A (en) Adsorption type refrigerating machine and its operating method
JPH07301469A (en) Adsorption type refrigerator
JP2002250573A (en) Air conditioner
JPH06272989A (en) Refrigerator
JP2005069536A (en) Waste heat recovery type adsorption type freezer
JPH0814691A (en) Adsorption type freezing device
JP4184196B2 (en) Hybrid absorption heat pump system
JPH11281190A (en) Double adsorption refrigerating machine
JP2005214551A (en) Absorption type heat accumulator
JP2022158396A (en) Control method for adsorption type heat pump, computer program, and adsorption type heat pump
JP2004125259A (en) Air conditioner