JP2005214551A - Absorption type heat accumulator - Google Patents

Absorption type heat accumulator Download PDF

Info

Publication number
JP2005214551A
JP2005214551A JP2004024113A JP2004024113A JP2005214551A JP 2005214551 A JP2005214551 A JP 2005214551A JP 2004024113 A JP2004024113 A JP 2004024113A JP 2004024113 A JP2004024113 A JP 2004024113A JP 2005214551 A JP2005214551 A JP 2005214551A
Authority
JP
Japan
Prior art keywords
stages
stage
heat exchange
evaporators
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004024113A
Other languages
Japanese (ja)
Inventor
Atsushi Kakimoto
敦 柿本
Akira Komori
晃 小森
Kazuo Takahashi
和雄 高橋
Yasuo Azuma
康夫 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004024113A priority Critical patent/JP2005214551A/en
Publication of JP2005214551A publication Critical patent/JP2005214551A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption type heat accumulator capable of improving absorption performance. <P>SOLUTION: This absorption type heat accumulator is provided with evaporators 4, 5 of a plurality of stages for evaporating refrigerant liquid A, heat exchange flow passages 6 provided in the evaporators 4, 5 at each stage to receive supply of heating fluid and heat the refrigerant liquid A, absorbers 7, 8 of a plurality of stages provided by corresponding to the evaporators 4, 5 at each stage to absorb evaporating refrigerant gasified in the evaporators 4, 5 at each stage by cooling, and heat exchange flow passages 9 provided in the absorbers 7, 8 at the plurality of stages to receive supply of cooling fluid and cool an absorption material B. The heat exchange flow passages 9 in the absorbers 7, 8 at the plurality of stages and a hot heat source 3 are mutually connected in series or in parallel to form a circulation path X of cooling fluid. A circulation path Y of heating fluid for connecting the heat exchange flow passages 6 in the evaporators 4, 5 at the plurality of stages with a cold heat source 2 in series is formed separately from the circulation path X. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、吸着式蓄熱装置に関するものである。   The present invention relates to an adsorption heat storage device.

吸着材を熱源で乾燥させ、そのことで化学的に蓄熱する技術については、特開2001−255058号公報(特許文献1)やドイツの文献などに提案されている。これらで提案されている蓄熱材の利用形態は、次の2種類である。(1)冷熱を得る方法としては、空気を直接吸着材層を通過させ、得られた乾燥空気に加湿することで調湿冷気を得る方法(デシカント空調)、(2)温熱を得る方法としては加湿空気を直接吸着材層を通過させ、吸着材の水分吸着時に発生する吸着熱による通過する空気そのものが高温となる現象を利用し、その高温空気と熱交換する事で温水を得る方法である。   Japanese Patent Application Laid-Open No. 2001-255058 (Patent Document 1), German literature, and the like propose a technique for drying an adsorbent with a heat source and chemically storing heat. The utilization form of the heat storage material proposed by these is the following two types. (1) As a method for obtaining cold heat, a method for obtaining air conditioning air by passing air directly through the adsorbent layer and humidifying the obtained dry air (desiccant air conditioning), and (2) a method for obtaining heat heat This is a method of obtaining warm water by passing the humidified air directly through the adsorbent layer and utilizing the phenomenon that the passing air itself becomes high temperature due to the heat of adsorption generated during moisture adsorption of the adsorbent, and exchanging heat with the high-temperature air. .

一方、本技術は、真空引きされた蒸発器と吸着器を接続し、蒸発器内の水分が吸着器内の吸着材に吸着される際の蒸発潜熱を利用して冷熱を得、また、吸着材の水分吸着時に発生する吸着熱により吸着材そのものが高温となる現象から温熱を得て、空調を行う、吸着式冷凍装置の運転原理を利用しているものである。   On the other hand, this technology connects a vacuum-evacuated evaporator and an adsorber, uses the latent heat of vaporization when the water in the evaporator is adsorbed by the adsorbent in the adsorber, and obtains cold heat. It uses the operating principle of an adsorption refrigeration system that obtains heat from the phenomenon that the adsorbent itself becomes high temperature due to heat of adsorption generated during moisture adsorption of the material, and performs air conditioning.

また、吸着式冷凍機の吸着器、蒸発器を複数器置いて吸着率を向上させる提案については、特開平9−303900号公報(特許文献2)等に示されている。この特許文献2に提案されている多段化は、主に吸着式冷凍装置で使用されており、吸着材を使用した吸着式蓄熱システムでは使用例が無い。   A proposal for improving the adsorption rate by placing a plurality of adsorbers and evaporators of an adsorption refrigeration machine is disclosed in JP-A-9-303900 (Patent Document 2). The multi-stage proposed in Patent Document 2 is mainly used in an adsorption refrigeration apparatus, and there is no use example in an adsorption heat storage system using an adsorbent.

従来、蓄熱システムにおいては、蓄熱装置を需要家に設置することから、大きさがコンパクトで且つエネルギー出力が大きいこと、つまり単位体積あたりのエネルギー出力(以下、利用可能熱量密度[kJ/m3])が大きいことが望まれている。しかし、吸着式冷凍装置の原理を利用した蓄熱する技術では吸着性能が小さいため、氷蓄熱などの潜熱を利用した蓄熱する技術より利用可能熱量密度が小さく、そのため、蓄熱装置の大きさに比べ、エネルギー出力が小さい、といった問題がある。
特開2001−255058号公報 特開平9−303900号公報
Conventionally, in a heat storage system, since a heat storage device is installed in a consumer, the size is compact and the energy output is large, that is, the energy output per unit volume (hereinafter, usable heat density [kJ / m 3 ] ) Is desired to be large. However, the heat storage technology that uses the principle of the adsorption refrigeration system has a lower adsorption performance, so the available heat density is lower than the technology that uses latent heat such as ice heat storage, and therefore, compared to the size of the heat storage device, There is a problem that energy output is small.
JP 2001-255058 A JP-A-9-303900

本発明は、上記の問題点を解消するためになしたものであって、その目的は、吸着性能を向上せしめた吸着式蓄熱装置を提供するものである。   The present invention has been made to solve the above problems, and an object of the present invention is to provide an adsorption heat storage device with improved adsorption performance.

上記の目的を達成するために、本発明(請求項1)に係る吸着式蓄熱装置は、冷媒液を蒸発させる複数段の蒸発器と、これら各段の蒸発器に設けられ、加熱流体の供給を受けて前記冷媒液を加熱する熱交換流路と、前記各段の蒸発器に対応して設けられ、冷却されることにより前記各段の蒸発器にて気化した蒸発冷媒を吸着する複数段の吸着器と、これら複数段の吸着器に設けられ、冷却流体の供給を受けて前記吸着材を冷却する熱交換流路とを備え、前記複数段の吸着器の熱交換流路と温熱源とを直列又は並列に接続して冷却流体の循環路Xを形成する一方、前記複数段の蒸発器の熱交換流路と冷熱源とを直列に接続する加熱流体の循環路Yを前記循環路Xとは別に形成してなるものである。   In order to achieve the above object, an adsorption heat storage device according to the present invention (Claim 1) is provided in a plurality of stages of evaporators for evaporating a refrigerant liquid, and in each of the stages of evaporators, and supplies heating fluid. And a plurality of stages for adsorbing the evaporative refrigerant vaporized in each stage of the evaporator by being cooled and provided corresponding to the evaporator of each stage and being cooled. And a heat exchange channel that is provided in the plurality of stages of adsorbers and receives the supply of a cooling fluid to cool the adsorbent, and the heat exchange channels and the heat sources of the plurality of stages of adsorbers Are connected in series or in parallel to form the cooling fluid circulation path X, while the heating fluid circulation path Y that connects the heat exchange flow paths and the cooling heat sources of the plurality of stages of evaporators in series is defined as the circulation path. It is formed separately from X.

本発明に係る吸着式蓄熱装置によれば、蒸発器と吸着器を一対一の関係を持って複数段設け、前段の蒸発器の熱交換流路で冷やされた冷却流体を後段の蒸発器の熱交換流路に順次供給する構成としているので、各段の蒸発器で気化した蒸発冷媒を各段の吸着器の吸着材で吸着する際の相対水蒸気圧が各吸着器で異なり、吸着器の後段から前段になるにしたがって吸着性能が増え、全段の総吸着性能を向上させることができる。これにより、単段の場合と比較して、単段での吸着材量と同じかそれより少量の吸着材で多量の蒸発冷媒を吸着することができ、大型化を避けながら、冷凍能力を高くすることができる。   According to the adsorption heat storage device of the present invention, the evaporator and the adsorber are provided in a plurality of stages with a one-to-one relationship, and the cooling fluid cooled in the heat exchange flow path of the former evaporator is supplied to the latter evaporator. Since it is configured to supply sequentially to the heat exchange flow path, the relative water vapor pressure at the time of adsorbing the evaporative refrigerant vaporized by the evaporator of each stage with the adsorbent of the adsorber of each stage differs depending on the adsorber. The adsorption performance increases from the rear stage to the front stage, and the total adsorption performance of all stages can be improved. This makes it possible to adsorb a large amount of evaporative refrigerant with an adsorbent that is equal to or less than the amount of adsorbent in a single stage, as compared with the case of a single stage. can do.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る吸着式蓄熱装置の概要図であって、aは全体図、bは吸着式蓄熱装置本体の概要図である。図において、1は吸着式蓄熱装置本体、2は冷熱源、3は温熱源を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of an adsorption heat storage device according to the present invention, in which a is an overall view and b is a schematic diagram of an adsorption heat storage device main body. In the figure, 1 is an adsorption heat storage device body, 2 is a cold heat source, and 3 is a heat source.

吸着式蓄熱装置本体1は、本例では2段の場合を例示するもので、1段目の蒸発器4と2段目の蒸発器5は熱交換流路6が直列に設けられ、また一方、これら蒸発器4、5に対応する1段目の吸着器7と2段目の吸着器8も熱交換流路9が直列に設けられている。また、蒸発器4と吸着器7及び蒸発器5と吸着器8の間は、各蒸発器4、5内の冷媒液Aの蒸発冷媒が往来可能な流路10、11になっている。なお、各蒸発器4、5内への冷媒液Aは、図示省略する外部の凝縮器より循環路を介して供給される。   The adsorption heat storage device main body 1 exemplifies the case of two stages in this example. The first stage evaporator 4 and the second stage evaporator 5 are provided with a heat exchange flow path 6 in series. The first-stage adsorber 7 and the second-stage adsorber 8 corresponding to the evaporators 4 and 5 are also provided with a heat exchange channel 9 in series. Between the evaporator 4 and the adsorber 7, and between the evaporator 5 and the adsorber 8, there are flow paths 10 and 11 through which the evaporated refrigerant of the refrigerant liquid A in the evaporators 4 and 5 can come and go. Note that the refrigerant liquid A into the evaporators 4 and 5 is supplied from an external condenser (not shown) via a circulation path.

冷熱源2は、吸着式蓄熱装置本体1の外部に設置された例えば空調機などであって、蒸発器4の熱交換流路6の入口部12と蒸発器5の熱交換流路6の出口部13との間に冷却媒体流路14を介在して接続され、これら熱交換流路6、冷却媒体流路14により循環路Yを構成する。   The cold heat source 2 is, for example, an air conditioner installed outside the adsorption heat storage device main body 1, and includes an inlet 12 of the heat exchange channel 6 of the evaporator 4 and an outlet of the heat exchange channel 6 of the evaporator 5. A cooling medium flow path 14 is connected to the section 13, and the heat exchange flow path 6 and the cooling medium flow path 14 constitute a circulation path Y.

温熱源3は、吸着式蓄熱装置本体1の外部に設置された例えばクーリングタワーなどであって、吸着器7の熱交換流路9の入口部15と吸着器8の熱交換流路9の出口部16との間に加熱媒体流路17を介在して接続され、これら熱交換流路9、加熱媒体流路17により循環路Xを構成する。   The heat source 3 is, for example, a cooling tower installed outside the main body 1 of the adsorption heat storage device, and includes an inlet portion 15 of the heat exchange channel 9 of the adsorber 7 and an outlet portion of the heat exchange channel 9 of the adsorber 8. The heating medium flow path 17 is interposed between the heat exchange flow path 9 and the heating medium flow path 17 to form a circulation path X.

上記構成の吸着式蓄熱装置では、冷熱源2、1段目の蒸発器4及び2段目の蒸発器5は熱交換流路6及び冷却媒体流路14によって、また温熱源3、1段目の吸着器7及び2段目の吸着器8は熱交換流路9及び加熱媒体流路17によってそれぞれ直列に接続されているので、冷熱源2から出た冷却流体(例えば冷水)は、1段目の蒸発器4の熱交換流路6、次いで2段目の蒸発器5の熱交換流路6と順に供給されて冷媒液Aを蒸発させる。一方、温熱源3から出た温熱流体(例えば温水)は、1段目の吸着器7の熱交換流路9、次いで2段目の吸着器8の熱交換流路9と順に供給されて吸着材Bを冷却することになる。そして、蒸発器4で蒸発した蒸発冷媒は吸着器7の吸着材Bに吸着され、蒸発器5で蒸発した蒸発冷媒は吸着器8の吸着材Bに吸着されるので、この吸着を行う際に、冷熱源2から冷却流体を1段目の蒸発器4の熱交換流路6から2段目の蒸発器5の熱交換流路6へと流すと、1段目から2段目に向かって熱交換流路6内の冷却流体の温度が低下し、各蒸発器4、5間、各吸着器7、8間はそれぞれに気密が保たれているため、1段目と2段目の各器内において異なった水蒸気圧が生じ、吸着器7、8内での吸着性能に差が生じる。これにより、単段の場合と比較して、単段での吸着材量と同じかそれより少量の吸着材で多量の冷媒蒸気を吸着することができ、大型化を避けながら、冷凍能力を高くすることができる。   In the adsorption heat storage device having the above configuration, the cold heat source 2, the first stage evaporator 4 and the second stage evaporator 5 are constituted by the heat exchange flow path 6 and the cooling medium flow path 14, and the heat source 3 and the first stage. Since the adsorber 7 and the second-stage adsorber 8 are connected in series by the heat exchange channel 9 and the heating medium channel 17, respectively, the cooling fluid (for example, cold water) emitted from the cold heat source 2 is one-stage. The refrigerant liquid A is evaporated by being sequentially supplied to the heat exchange channel 6 of the evaporator 4 of the eye and then to the heat exchange channel 6 of the evaporator 5 of the second stage. On the other hand, the hot fluid (for example, hot water) emitted from the heat source 3 is supplied and adsorbed in turn to the heat exchange channel 9 of the first stage adsorber 7 and then to the heat exchange channel 9 of the second stage adsorber 8. The material B is cooled. The evaporated refrigerant evaporated in the evaporator 4 is adsorbed by the adsorbent B of the adsorber 7, and the evaporated refrigerant evaporated in the evaporator 5 is adsorbed by the adsorbent B of the adsorber 8. When the cooling fluid from the cold heat source 2 flows from the heat exchange flow path 6 of the first stage evaporator 4 to the heat exchange flow path 6 of the second stage evaporator 5, the first stage to the second stage. The temperature of the cooling fluid in the heat exchange flow path 6 is lowered, and the airtightness is maintained between the evaporators 4 and 5 and between the adsorbers 7 and 8, respectively. Different water vapor pressures are generated in the apparatus, and the adsorption performance in the adsorbers 7 and 8 is different. As a result, compared to a single stage, a large amount of refrigerant vapor can be adsorbed with an adsorbent that is the same as or smaller than the adsorbent quantity in a single stage, and the refrigeration capacity is increased while avoiding an increase in size. can do.

例えば、1段目の蒸発器4の熱交換流路6の入口温度が12℃、出口温度が9℃とすると、1段目は9℃の飽和水蒸気圧で支配されることとなり、2段目の蒸発器5の熱交換流路6の入口温度が9℃、出口温度が7℃とすると、2段目は7℃の飽和水蒸気圧で支配されることとなる。即ち、上記のような多段構成とすると、蒸発器4、5は、7℃と9℃のそれぞれ異なる飽和水蒸気圧で支配されることとなり、1段目の方が2段目よりも吸着量が多くなる。一方、入口温度12℃、出口温度7℃の単段のみの構成とすると、蒸発器は、7℃の飽和水蒸気圧で支配されることとなる。このため、単段よりも、上記のような多段構成とする方が冷凍能力を高くすることができる。   For example, if the inlet temperature of the heat exchange channel 6 of the first stage evaporator 4 is 12 ° C. and the outlet temperature is 9 ° C., the first stage is governed by a saturated water vapor pressure of 9 ° C. If the inlet temperature of the heat exchange channel 6 of the evaporator 5 is 9 ° C. and the outlet temperature is 7 ° C., the second stage is governed by a saturated water vapor pressure of 7 ° C. That is, with the multistage configuration as described above, the evaporators 4 and 5 are governed by different saturated water vapor pressures of 7 ° C. and 9 ° C., respectively, and the first stage has a higher adsorption amount than the second stage. Become more. On the other hand, if only a single-stage configuration with an inlet temperature of 12 ° C. and an outlet temperature of 7 ° C. is used, the evaporator is controlled by a saturated water vapor pressure of 7 ° C. For this reason, it is possible to increase the refrigerating capacity in the multi-stage configuration as described above rather than the single stage.

このように、前記複数段の蒸発器と直列に接続されている前記加熱流体で、蒸発器内の前記冷媒液を加熱・蒸発させることにより、前記複数段の蒸発器及び吸着器の内部圧力が冷媒液の異なる飽和水蒸気圧で支配される。さらに、各段の内部圧力が異なる吸着器で蒸発冷媒が吸着されることにより、各段の吸着器に充填されている吸着材の性能が向上し、蓄熱能力が向上する吸着蓄熱装置を得ることができる。   Thus, by heating and evaporating the refrigerant liquid in the evaporator with the heating fluid connected in series with the plurality of stages of evaporators, the internal pressures of the plurality of stages of evaporators and adsorbers are reduced. It is governed by the different saturated water vapor pressures of the refrigerant liquid. Furthermore, the adsorption refrigerant is adsorbed by the adsorbers having different internal pressures at the respective stages, so that the performance of the adsorbent filled in the adsorbers at the respective stages is improved, and an adsorption heat storage device in which the heat storage capacity is improved is obtained. Can do.

因みに、上記構成の2段の吸着式蓄熱装置(本発明例)と単段の吸着式蓄熱装置(比較例)において、吸着材としてシリカゲルを用いた場合の実験を行い、吸着材の吸着性能を調査した。調査結果は、図2に示す通りで、横軸に蒸発器からの冷水(冷却流体)の出口温度、縦軸に各出口温度における吸着性能を示す。なお、蒸発器への冷水入口温度は12℃で一定としている。   By the way, in the two-stage adsorption heat storage device (example of the present invention) and the single-stage adsorption heat storage device (comparative example) of the above configuration, an experiment was performed when silica gel was used as the adsorbent. investigated. The investigation results are as shown in FIG. 2, and the horizontal axis indicates the outlet temperature of the cold water (cooling fluid) from the evaporator, and the vertical axis indicates the adsorption performance at each outlet temperature. The temperature of the cold water inlet to the evaporator is constant at 12 ° C.

図2から明らかなように、本発明例の吸着性能は、単段式の比較例と比較して冷水の出口温度が7℃の場合135%、8℃の場合60%、9℃の場合15%と何れも向上しており、多段の効果が確認された。   As is apparent from FIG. 2, the adsorption performance of the example of the present invention is 135% when the outlet temperature of the cold water is 7 ° C., 60% when the temperature is 8 ° C., 15% when the temperature is 9 ° C., and 15%. % Was improved, and a multistage effect was confirmed.

なお、上記の実施形態では、1段目の吸着器7と2段目の吸着器8のそれぞれの熱交換流路9を直列に接続した例を説明したが、図3に示すように、並列に接続してもよい。   In the above embodiment, the example in which the heat exchange channels 9 of the first-stage adsorber 7 and the second-stage adsorber 8 are connected in series has been described. However, as shown in FIG. You may connect to.

本発明に係る吸着式蓄熱装置の概要図であって、aは全体図、bは吸着式蓄熱装置本体の概要図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the adsorption-type heat storage apparatus which concerns on this invention, Comprising: a is a general view and b is a schematic diagram of an adsorption-type heat storage apparatus main body. 蒸発器からの冷水(冷却流体)の出口温度と各出口温度における吸着性能との関係を示すグラフ図である。It is a graph which shows the relationship between the exit temperature of the cold water (cooling fluid) from an evaporator, and the adsorption | suction performance in each exit temperature. 本発明に係る吸着式蓄熱装置の別の実施形態を示す概要図である。It is a schematic diagram which shows another embodiment of the adsorption type heat storage apparatus which concerns on this invention.

符号の説明Explanation of symbols

1:吸着式蓄熱装置本体 2:冷熱源 3:温熱源
4:1段目の蒸発器 5:2段目の蒸発器 6:熱交換流路
7:1段目の吸着器 8:2段目の吸着器 9:熱交換流路
10,11:蒸発冷媒の流路 12:入口部
13:出口部 14:冷却媒体流路 15:入口部
16:出口部 17:加熱媒体流路 A:冷媒液
B:吸着材 X,Y:循環路

1: Adsorption heat storage device main body 2: Cooling heat source 3: Heat source 4: First stage evaporator 5: Second stage evaporator 6: Heat exchange flow path 7: First stage adsorber 8: Second stage 9: Heat exchange flow path 10, 11: Evaporative refrigerant flow path 12: Inlet part 13: Outlet part 14: Cooling medium flow path 15: Inlet part 16: Outlet part 17: Heating medium flow path A: Refrigerant liquid B: Adsorbent X, Y: Circulation path

Claims (2)

冷媒液を蒸発させる複数段の蒸発器と、これら各段の蒸発器に設けられ、加熱流体の供給を受けて前記冷媒液を加熱する熱交換流路と、前記各段の蒸発器に対応して設けられ、冷却されることにより前記各段の蒸発器にて気化した蒸発冷媒を吸着する複数段の吸着器と、これら複数段の吸着器に設けられ、冷却流体の供給を受けて前記吸着材を冷却する熱交換流路とを備え、前記複数段の吸着器の熱交換流路と温熱源とを直列又は並列に接続して冷却流体の循環路Xを形成する一方、前記複数段の蒸発器の熱交換流路と冷熱源とを直列に接続する加熱流体の循環路Yを前記循環路Xとは別に形成してなることを特徴とする吸着式蓄熱装置。   Corresponding to a plurality of stages of evaporators for evaporating the refrigerant liquid, a heat exchange channel provided in each of the stage evaporators for heating the refrigerant liquid upon receipt of a heating fluid, and the evaporators of the respective stages. And a plurality of stages of adsorbers that adsorb the evaporated refrigerant vaporized in each stage of the evaporator by being cooled, and the plurality of stages of adsorbers are provided with the cooling fluid and receive the adsorption A heat exchange flow path for cooling the material, and connecting the heat exchange flow path and the heat source of the plurality of stages of adsorbers in series or in parallel to form a cooling fluid circulation path X. An adsorption heat storage device, wherein a circulation path Y of a heating fluid that connects a heat exchange flow path and a cold heat source of an evaporator in series is formed separately from the circulation path X. 前記複数段の蒸発器及び吸着器において、各内部圧力は、前記冷媒液の異なる飽和水蒸気圧にそれぞれ設定されている請求項1に記載の吸着式蓄熱装置。

2. The adsorption heat storage device according to claim 1, wherein in each of the plurality of stages of evaporators and adsorbers, each internal pressure is set to a different saturated water vapor pressure of the refrigerant liquid.

JP2004024113A 2004-01-30 2004-01-30 Absorption type heat accumulator Pending JP2005214551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024113A JP2005214551A (en) 2004-01-30 2004-01-30 Absorption type heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024113A JP2005214551A (en) 2004-01-30 2004-01-30 Absorption type heat accumulator

Publications (1)

Publication Number Publication Date
JP2005214551A true JP2005214551A (en) 2005-08-11

Family

ID=34906898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024113A Pending JP2005214551A (en) 2004-01-30 2004-01-30 Absorption type heat accumulator

Country Status (1)

Country Link
JP (1) JP2005214551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116193A (en) * 2006-10-10 2008-05-22 National Institute Of Advanced Industrial & Technology Desiccant air-conditioning method coupled to adsorption type refrigerating machine and device
JP2013238353A (en) * 2012-05-15 2013-11-28 Ai-Ai Energy Associates Inc Heat exchanging unit, refrigerator, and method for controlling refrigerator
CN107543332A (en) * 2017-10-09 2018-01-05 广州市香港科大霍英东研究院 A kind of close-coupled absorbing refrigeration system
CN109764734A (en) * 2019-02-14 2019-05-17 西安交通大学 A kind of complementary regenerative apparatus of multistage and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116193A (en) * 2006-10-10 2008-05-22 National Institute Of Advanced Industrial & Technology Desiccant air-conditioning method coupled to adsorption type refrigerating machine and device
JP2013238353A (en) * 2012-05-15 2013-11-28 Ai-Ai Energy Associates Inc Heat exchanging unit, refrigerator, and method for controlling refrigerator
CN107543332A (en) * 2017-10-09 2018-01-05 广州市香港科大霍英东研究院 A kind of close-coupled absorbing refrigeration system
CN109764734A (en) * 2019-02-14 2019-05-17 西安交通大学 A kind of complementary regenerative apparatus of multistage and method
CN109764734B (en) * 2019-02-14 2024-04-16 西安交通大学 Multistage complementary heat storage device and method

Similar Documents

Publication Publication Date Title
Liu et al. Experimental study on a continuous adsorption water chiller with novel design
EP3247948B1 (en) Split type adsorption air conditioning unit
JP2010131583A (en) Dehumidifying apparatus of low power consumption
JP2010107059A (en) Refrigerating and air-conditioning apparatus
JP3341516B2 (en) Adsorption refrigerator
JP2005164165A (en) Air conditioning system
JP5379137B2 (en) Two-stage low-temperature air-cooled adsorption cooling equipment and method for operating the cooling equipment
WO2011142352A1 (en) Air conditioning device for vehicle
JP5575029B2 (en) Desiccant ventilation fan
JP2008207046A (en) Hybrid dehumidifying apparatus
JP5187827B2 (en) Adsorption heat pump system using low-temperature waste heat
JP3861902B2 (en) Humidity control device
JP2005283041A (en) Humidity controller
JP2005214551A (en) Absorption type heat accumulator
JP2005315463A (en) Humidity controller
JP2002250573A (en) Air conditioner
JP2005291535A (en) Humidifier
JPH07301469A (en) Adsorption type refrigerator
CN210425328U (en) Dehumidification system and air conditioning system
JP6070187B2 (en) Humidity control module and humidity control device having the same
JP2005214552A (en) Adsorption type heat accumulator and heat accumulation method by using it
JPH11281190A (en) Double adsorption refrigerating machine
JPH0814691A (en) Adsorption type freezing device
JP4069691B2 (en) Air conditioner for vehicles
JP2004321885A (en) Humidity control element