JP5187827B2 - Adsorption heat pump system using low-temperature waste heat - Google Patents

Adsorption heat pump system using low-temperature waste heat Download PDF

Info

Publication number
JP5187827B2
JP5187827B2 JP2008014382A JP2008014382A JP5187827B2 JP 5187827 B2 JP5187827 B2 JP 5187827B2 JP 2008014382 A JP2008014382 A JP 2008014382A JP 2008014382 A JP2008014382 A JP 2008014382A JP 5187827 B2 JP5187827 B2 JP 5187827B2
Authority
JP
Japan
Prior art keywords
temperature
adsorption
adsorbent
low
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008014382A
Other languages
Japanese (ja)
Other versions
JP2009174783A (en
Inventor
正哉 鈴木
澄子 川端
佳世子 渡辺
恵一 犬飼
雅喜 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008014382A priority Critical patent/JP5187827B2/en
Publication of JP2009174783A publication Critical patent/JP2009174783A/en
Application granted granted Critical
Publication of JP5187827B2 publication Critical patent/JP5187827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Description

本発明は、吸着式ヒートポンプシステムにおいて、低温廃熱を利用し元の低温熱源よりも高温の熱を回収することが可能なシステム、及び該システムに適した吸着性能を有する吸着剤を用いたヒートポンプシステムに関するものである。   The present invention relates to a system capable of recovering heat higher than the original low-temperature heat source using low-temperature waste heat in an adsorption heat pump system, and a heat pump using an adsorbent having adsorption performance suitable for the system It is about the system.

一般的に、吸着式ヒートポンプシステムは、低温熱源あるいは廃熱を利用して冷媒を得、主に空調用に使用することが検討されている。二酸化炭素削減の問題も含め、低温廃熱利用によるエネルギー効率の向上が求められている現代では様々な廃熱の利用が進められているが、60℃以下の廃熱はほとんど利用されておらず、この60℃以下の低温廃熱を利用する技術として多孔質材料−水系吸着式ヒートポンプシステムが有望視されている。   In general, an adsorption heat pump system has been studied to obtain a refrigerant by using a low-temperature heat source or waste heat and mainly use it for air conditioning. The use of low-temperature waste heat, including the problem of carbon dioxide reduction, is demanding improvements in energy efficiency. Today, various waste heat is being used, but waste heat below 60 ° C is rarely used. A porous material-water adsorption heat pump system is considered promising as a technology that uses this low-temperature waste heat of 60 ° C. or lower.

吸着式ヒートポンプシステムは、吸着剤が蒸気を吸着することによって蒸発器内の水の潜熱が奪われ冷却される吸着過程と、水蒸気を吸着した吸着剤を加熱して脱水させる脱着過程によって作動する。
図3は吸着式ヒートポンプの一例を示す概念図であって、吸着物質と、吸着物質を吸脱着する吸着剤と、吸着剤が充填され且つ吸着物質の吸脱着により発生した熱を熱媒に伝達する吸着器31、32と、吸着物質の蒸発により得られた冷熱を外部へ取り出す蒸発器34と、吸着物質の凝縮により得られた温熱を外部へ放出する凝縮器35とから主に構成されている(特許文献1、2参照)。
The adsorption heat pump system operates by an adsorption process in which the adsorbent adsorbs vapor to remove the latent heat of water in the evaporator and cool it, and a desorption process in which the adsorbent adsorbing the water vapor is dehydrated by heating.
FIG. 3 is a conceptual diagram showing an example of an adsorption heat pump, which transfers an adsorbed material, an adsorbent that adsorbs and desorbs the adsorbed material, and heat generated by the adsorption and desorption of the adsorbed material to the heat medium. The adsorbers 31 and 32, the evaporator 34 for taking out the cold heat obtained by the evaporation of the adsorbing substance, and the condenser 35 for releasing the heat obtained by the condensation of the adsorbing substance to the outside. (See Patent Documents 1 and 2).

該ヒートポンプにおいて、吸着器31、32は、その内部に熱交換器を収納しており、吸着剤は、その熱交換器の表面に接着し、さらに充填塔内に充填されている。この吸着器31、32では、そこに供給される熱源により吸着/脱着が選択的に起こり、熱に基づく発熱反応や吸熱反応を起こしている。吸着器31と吸着器32は、吸着物質配管33により相互に接続され、その配管内では、吸着物質の蒸気または蒸気と液体との混合物として存在している。蒸発器34と凝縮器35は、この吸着物質配管を介して、吸着塔31、32に接続されている。凝縮器35は熱交換器を備えており、吸着塔31、32において吸着材から脱離した気体状の吸着物質は、凝縮器35に導入されて凝縮される。その熱交換器には、外気等で冷却された熱媒体(例えば、ラジエターで冷却された冷却水)などが供給される。凝縮器35で凝縮された吸着物質(例えば、再生された凝縮水)は、戻し配管36により蒸発器34に送られる。蒸発器34は、凝縮された吸着物質を蒸発させるための装置である。蒸発器34の内部は略真空に保たれた状態で冷媒(例えば、水)が封入され、さらに熱交換器を備えている。その熱交換器により、例えば室内機37にて室内に吹き出すエアコン空気と熱交換した熱媒体と、上記の冷媒とが熱交換される。   In the heat pump, the adsorbers 31 and 32 house a heat exchanger therein, and the adsorbent is adhered to the surface of the heat exchanger and further packed in a packed tower. In the adsorbers 31 and 32, adsorption / desorption is selectively caused by a heat source supplied thereto, and an exothermic reaction or an endothermic reaction based on heat is caused. The adsorber 31 and the adsorber 32 are connected to each other by an adsorbent material pipe 33, and exist in the pipe as an adsorbent vapor or a mixture of vapor and liquid. The evaporator 34 and the condenser 35 are connected to the adsorption towers 31 and 32 through this adsorbent material pipe. The condenser 35 includes a heat exchanger, and the gaseous adsorbed material desorbed from the adsorbent in the adsorption towers 31 and 32 is introduced into the condenser 35 and condensed. The heat exchanger is supplied with a heat medium cooled by outside air or the like (for example, cooling water cooled by a radiator). The adsorbed substance condensed by the condenser 35 (for example, regenerated condensed water) is sent to the evaporator 34 through the return pipe 36. The evaporator 34 is a device for evaporating the condensed adsorbed material. The evaporator 34 is filled with a refrigerant (for example, water) while being kept in a substantially vacuum, and further includes a heat exchanger. With the heat exchanger, for example, heat is exchanged between the heat medium exchanged with the air-conditioning air blown indoors in the indoor unit 37 and the refrigerant.

このような従来のヒートポンプにおいては、低温廃熱を効率的に利用できるか否かは、吸着剤の性質によって決まるため、低温で脱水が可能となる吸着式ヒートポンプシステム用の吸着剤が開発されている(特許文献1〜4)。
特開2004−093117号公報 特開2005−205331号公報 特開2003−294336号公報 特開2007−181796号公報
In such a conventional heat pump, whether or not low-temperature waste heat can be used efficiently depends on the nature of the adsorbent, and therefore an adsorbent for an adsorption heat pump system that can be dehydrated at low temperatures has been developed. (Patent Documents 1 to 4).
JP 2004-093117 A JP 2005-205331 A JP 2003-294336 A JP 2007-181796 A

これまでは冷媒を得ることを目的としていたため、低温で脱水する、あるいは低温熱源で脱水が可能となる相対蒸気圧領域にて脱水する吸着式ヒートポンプの吸着剤あるいはシステムの効率化が検討されてきた。それゆえ吸着剤が水蒸気を吸着した際に得られる温熱はそれほどの有効利用を期待されておらず、低温廃熱を利用してさらに高温熱源を得ることを目的した開発はほとんど行なわれていない。しかしながら低温廃熱を利用して、さらに高温熱源を得ることが可能となればさらに吸着式ヒートポンプの有用性は広がるとともに、その実現が望まれている。 For the past which aims to obtain a refrigerant, it has been studied dehydration at low temperatures, or the efficiency of the adsorbent or the system of the adsorption heat pump for dehydration at a low temperature heat source can dehydration becomes relative vapor pressure region It was. Therefore, the heat obtained when the adsorbent adsorbs water vapor is not expected to be so effective, and there has been little development aimed at obtaining a high-temperature heat source using low-temperature waste heat. However, if it becomes possible to obtain a high-temperature heat source by using low-temperature waste heat, the usefulness of the adsorption heat pump is further expanded and its realization is desired.

そのような中で、80℃以下特に60℃以下の低温熱源を用いてそれよりも高温の熱源を効率的に回収するシステムと、加えてその高温熱源を回収することができかつ同程度の温度を有する低温熱源を用いて脱水させることができる吸着剤を開発することが必要となる。   Under such circumstances, a system that efficiently recovers a heat source having a temperature higher than that by using a low-temperature heat source of 80 ° C. or less, particularly 60 ° C. or less, and additionally, the high-temperature heat source can be recovered and at a similar temperature. It is necessary to develop an adsorbent that can be dehydrated using a low-temperature heat source having

本発明は、以上のような事情に鑑みてなされたものであって、80℃以下の低温熱源を用いてそれよりも高温の熱源を効率的に回収する吸着式ヒートポンプシステムを提供することを目的とするものである。   This invention is made | formed in view of the above situations, Comprising: It aims at providing the adsorption | suction type heat pump system which recovers | recovers a heat source higher than that efficiently using a low-temperature heat source of 80 degrees C or less. It is what.

本発明者らは、上記目的を達成すべく検討を重ねた結果、吸着剤の吸着過程及び脱着過程において用いる温水の入口温度を、低温廃熱から得られる温度と同じで常に一定とするとともに、蒸発器の温度を、吸着器の温度よりも低くかつできるだけ吸着器の温度に近づけるように調整を行うことにより、低温廃水を利用してそれよりも高温の熱源が回収可能な吸着式ヒートポンプシステムが得られること、及び該システムに用いるのに好適な吸着剤として、高相対蒸気圧側でも吸着量が多く、かつ吸着時の温度が高温条件においても低温条件と同じ相対蒸気圧にて水蒸気吸着量が増加し、さらに脱水が直接的な温度によらず主に相対蒸気圧が低くなることによるという特性を有している吸着剤を用いることにより、高相対蒸気圧側でも吸着が行なえかつその吸着量を増加させられることを見いだし、本発明を完成するに至った。 As a result of repeated studies to achieve the above object, the present inventors made the inlet temperature of hot water used in the adsorption process and desorption process of the adsorbent the same as the temperature obtained from the low-temperature waste heat and always constant, By adjusting the evaporator temperature so that it is lower than that of the adsorber and as close as possible to the temperature of the adsorber, an adsorption heat pump system that can recover heat sources higher than that using low temperature wastewater It is obtained, and as suitable adsorbents for use in the system, the amount of adsorbed water vapor at the same relative vapor pressure and low temperature condition even in the adsorption amount with high relative vapor pressure side is large, and the temperature during the adsorption is high temperature There was increased, mainly by using an adsorbent relative vapor pressure it has a characteristic that due to the lower row adsorption even at high relative vapor pressure side regardless of the dehydration is a direct temperature Ekatsu found that is caused to increase its adsorption amount, and have completed the present invention.

すなわち、上記課題を解決するための本発明は、以下のとおりである。
(1)吸着物質と、吸着物質を吸脱着する吸着剤を備えた吸着器と、蒸発器と、凝縮器とを備えた吸着式ヒートポンプシステムにおいて、吸着剤の吸着過程及び脱着過程において用いる温水の入口温度を、低温廃熱から得られる温度と同じで常に一定とするとともに、蒸発器の温度を、吸着器の温度よりも低くかつできるだけ吸着器の温度に近づけるように、蒸発器用温水調整機により調整を行うことを特徴とする吸着式ヒートポンプシステム。
(2)低温廃熱より得られる温水と、脱着過程の吸着器を通り抜けて入口温度より低くなった温水とを混合することにより、低温廃熱より得られる温水よりも若干低い温度に調整された温水を得、これを用いて前記蒸発器の温度を調整することを特徴とする(1)に記載の吸着式ヒートポンプシステム。
(3)前記蒸発器と前記吸着器とを恒温槽内に収納し、低温廃熱より得られる温水を用いてその廃熱温度とほぼ同じ温度とすることを特徴とする(1)又は(2)に記載の吸着式ヒートポンプシステム。
(4)前記吸着剤として、相対蒸気圧が0.2〜0.9の範囲における水蒸気吸着量が20wt%以上で、かつ、温度が高くなるにつれて、同じ相対蒸気圧における吸脱着の変化量が増加する特性を有する吸着剤を用いることを特徴とする(1)〜(3)のいずれかに記載の吸着式ヒートポンプシステム。
That is, the present invention for solving the above-described problems is as follows.
(1) In an adsorption heat pump system comprising an adsorbent, an adsorber comprising an adsorbent for adsorbing and desorbing the adsorbent, an evaporator, and a condenser, hot water used in the adsorption process and desorption process of the adsorbent The inlet water temperature is always the same as the temperature obtained from the low-temperature waste heat, and the evaporator temperature is adjusted to be lower than the adsorber temperature and as close to the adsorber temperature as possible. Adsorption heat pump system characterized by adjustment.
(2) By mixing hot water obtained from low-temperature waste heat and hot water that passed through the adsorber in the desorption process and became lower than the inlet temperature, the temperature was adjusted to be slightly lower than that obtained from low-temperature waste heat. The adsorption heat pump system according to (1), wherein hot water is obtained and the temperature of the evaporator is adjusted using the hot water.
(3) The evaporator and the adsorber are housed in a thermostatic bath, and the temperature is made substantially the same as the waste heat temperature using hot water obtained from low-temperature waste heat (1) or (2 ) Adsorption type heat pump system.
(4) As the adsorbent, the amount of adsorption / desorption at the same relative vapor pressure increases as the water vapor adsorption amount in the range of 0.2 to 0.9 relative vapor pressure is 20 wt% or more and the temperature increases. The adsorption heat pump system according to any one of (1) to (3), wherein an adsorbent having increasing properties is used.

本発明の吸着式ヒートポンプシステムによれば、80℃以下の低温熱源を用いて、それよりも高温の熱源を回収することができるとともに、同程度の温度を有する低温熱源を用いて吸着物質の脱着をするので、吸着器に供給する温水を常に一定にできるという利点を有するものである。   According to the adsorption heat pump system of the present invention, a low-temperature heat source of 80 ° C. or lower can be used to recover a heat source having a temperature higher than that, and the adsorption material can be desorbed using a low-temperature heat source having a comparable temperature. Therefore, there is an advantage that the hot water supplied to the adsorber can always be kept constant.

次に、本発明について更に詳細に説明する。
図1は、低温熱源を用いてそれよりも高温の熱源を回収することが可能な、本発明のヒートポンプシステムを示す概念図であって、図中、1は恒温槽、2A、2Bは凝縮器、3A、3Bは吸着器(吸着剤充填槽)、4A、4Bは吸着剤ベッド、5A、5Bは蒸発器(貯水槽)、6は蒸発器用温水調整器、7A、7Bは凝縮器用の水(常温)、8A、8Bは廃熱から得られる温水、9A、9Bは吸着時の高温温水出口、10A、10Bは脱着時の温水出口、11A、11Bは廃熱から得られる温水、12A〜12Nはコック、をそれぞれ示している。
図に示すとおり、本発明の吸着式ヒートポンプシステムは、吸着器、蒸発器、及び凝縮器から主に構成されており、これらは一つずつでもシステムとしては作動するが、図1に示すように2セット或いはそれ以上並列にして吸着過程及び脱着過程(再生過程)を交互に行なうことにより連続運転を可能としている。
Next, the present invention will be described in more detail.
FIG. 1 is a conceptual diagram showing a heat pump system of the present invention that can recover a heat source having a temperature higher than that using a low-temperature heat source. In the figure, 1 is a thermostat, 2A, 2B are condensers 3A and 3B are adsorbers (adsorbent filling tanks), 4A and 4B are adsorbent beds, 5A and 5B are evaporators (water tanks), 6 is a warm water regulator for evaporators, and 7A and 7B are water for condensers ( Normal temperature), 8A and 8B are hot water obtained from waste heat, 9A and 9B are hot water outlets during adsorption, 10A and 10B are hot water outlets during desorption, 11A and 11B are hot water obtained from waste heat, and 12A to 12N are Each shows a cock.
As shown in the figure, the adsorption heat pump system of the present invention is mainly composed of an adsorber, an evaporator, and a condenser, which operate as a system one by one, but as shown in FIG. Continuous operation is possible by alternately performing the adsorption process and the desorption process (regeneration process) in parallel in two sets or more.

後段でもさらに詳細に説明するが、本発明のシステムにおいて、従来の吸着式ヒートポンプシステムと大きく異なるところは、吸着剤の吸着及び脱着過程において用いる温水の入口温度が、廃熱から得られる温度と同じで常に一定であること、また脱着時に吸着器を通り抜けて入口温度より低くなった温水に、廃熱から得られる温水を混合することにより、廃熱から得られる温水よりも若干低くした温水を蒸発器内へと導入すること、さらには吸着器及び蒸発器を恒温槽等内に収め、低温熱源を用いてその廃熱温度とほぼ同じ温度としていることである。そして、前記蒸発器用温水調整器(6)は、低温廃熱より得られる温水(11)を用い、これに脱着時に吸着器を通り抜けて入口温度より低くなった温水を混合することにより、低温廃熱より得られる温水よりも若干低い温度に調整された温水を蒸発器に供給するために用いられるものである。   As will be described in more detail later, in the system of the present invention, the major difference from the conventional adsorption heat pump system is that the inlet temperature of the hot water used in the adsorption and desorption process of the adsorbent is the same as the temperature obtained from the waste heat. In addition, warm water obtained from waste heat is mixed with warm water that has passed through the adsorber at the time of desorption and becomes lower than the inlet temperature, thereby evaporating warm water slightly lower than that obtained from waste heat. Introducing into the vessel, furthermore, the adsorber and the evaporator are housed in a thermostatic bath or the like, and the temperature of the waste heat is set to the same temperature using a low-temperature heat source. And the said warm water regulator (6) for evaporators uses the warm water (11) obtained from low temperature waste heat, and mixes this with the warm water which passed through the adsorber at the time of desorption and became lower than inlet temperature, and low temperature waste It is used to supply warm water adjusted to a temperature slightly lower than warm water obtained from heat to the evaporator.

次に、本発明の吸着式ヒートポンプシステムにおける吸着過程および脱着過程について説明する。なお、便宜上、吸着過程を図1における左側で説明し、脱着過程を図1における右側で説明する。またすべてのコックは閉じられている状態から説明する。   Next, an adsorption process and a desorption process in the adsorption heat pump system of the present invention will be described. For convenience, the adsorption process will be described on the left side in FIG. 1, and the desorption process will be described on the right side in FIG. All cocks will be explained from the closed state.

(吸着過程)
運転開始時の吸着剤ベッド(4A)は乾燥状態にある。コック(12E)を開き低温廃熱より得られる温水(8A)を吸着器内へ流し、蒸発器(5A)内にはコック(12M)を開くことにより蒸発器用温水調整機(6)で調整された低温廃熱より得られる温水より若干低温の温水を導入する。次にコック(12I)を開くことにより、水蒸気は蒸発器(5A)から吸着器(3A)へと導入され、吸着剤ベッド(4A)にて吸着される。このとき、水蒸気の吸着による発熱により、導入された温水(8A)は温められ、入口の温度よりも高温となる。この低温廃熱より得られる温水よりも高温となった温水は、高温温水出口(9A)から送り出される。
(Adsorption process)
The adsorbent bed (4A) at the start of operation is in a dry state. The cock (12E) is opened and hot water (8A) obtained from low-temperature waste heat is allowed to flow into the adsorber. The evaporator (5A) is adjusted by the evaporator warm water regulator (6) by opening the cock (12M). Introduce hot water that is slightly colder than hot water obtained from low-temperature waste heat. Next, by opening the cock (12I), water vapor is introduced from the evaporator (5A) to the adsorber (3A) and adsorbed by the adsorbent bed (4A). At this time, the introduced warm water (8A) is warmed by the heat generated by the adsorption of water vapor, and becomes higher than the temperature of the inlet. The hot water that has become hotter than the hot water obtained from the low-temperature waste heat is sent out from the high-temperature hot water outlet (9A).

この吸着過程においては、吸着剤に吸着される水蒸気の吸着量が多いことが望まれる。そのためには吸着剤が吸着する際の限界となる相対蒸気圧をできる限り高くすることが望ましく、また高相対蒸気圧側でも水蒸気を吸着する吸着剤が必要となる。
一般に吸着式ヒートポンプにおいて、吸着時の限界となる相対蒸気圧は、吸着器(3A)及び蒸発器(5A)の温度によって決まるものであり、
限界となる相対蒸気圧=蒸発器の温度における飽和水蒸気圧/吸着器の温度における飽和水蒸気圧
となる。
すなわち、仮に低温廃熱によって得られる温水の温度が60℃であるとし、蒸発器内の温度を59℃、吸着器内の温度が65℃であるとすると、59℃の飽和水蒸気圧/65℃の飽和水蒸気圧=0.761より、吸着限界となる相対蒸気圧は0.76となる。また蒸発器内の温度が62℃であるとすると、62℃の飽和水蒸気圧/65℃の飽和水蒸気圧=0.871より、吸着限界となる相対蒸気圧0.87となる。
それゆえ蒸発器の温度<吸着器の温度であることが条件であり、さらに蒸発器の温度と吸着器の温度との差がなるべく小さいことが望ましい。
In this adsorption process, it is desired that the amount of water vapor adsorbed by the adsorbent is large. Desirably as high as possible a relative vapor pressure as a limit when the adsorbent is adsorbed in order that, also is required adsorbent to adsorb water vapor at high relative vapor pressure side.
In general, in the adsorption heat pump, the relative vapor pressure that becomes the limit at the time of adsorption is determined by the temperature of the adsorber (3A) and the evaporator (5A),
Relative vapor pressure at the limit = saturated water vapor pressure at the evaporator temperature / saturated water vapor pressure at the adsorber temperature.
That is, assuming that the temperature of hot water obtained by low-temperature waste heat is 60 ° C., the temperature in the evaporator is 59 ° C., and the temperature in the adsorber is 65 ° C., the saturated water vapor pressure of 59 ° C./65° C. From the saturated water vapor pressure of 0.761, the relative vapor pressure that becomes the adsorption limit is 0.76 . If the temperature in the evaporator is 62 ° C., the saturated water vapor pressure at 62 ° C./saturated water vapor pressure at 65 ° C. = 0.871, the relative vapor pressure becomes 0.87 which is the adsorption limit.
Therefore, it is a condition that the temperature of the evaporator <the temperature of the adsorber. Further, it is desirable that the difference between the temperature of the evaporator and the temperature of the adsorber is as small as possible.

そのような条件を作り出すため、本発明のシステムにおいては、蒸発器(5A)での温度を吸着器(3A)の温度よりも低くかつできるだけ吸着器の温度に近づけるように、蒸発器用温水調整機(6)により調整を行なう。さらに、蒸発器(5A)の温度と吸着器(3A)の温度の差を小さくするために、蒸発器(5A)及び吸着器(3A)を低温廃熱で得られる温水を循環させる等により恒温槽(1)内に閉じ込める設定としている。   In order to create such a condition, in the system of the present invention, the temperature of the evaporator (5A) is lower than the temperature of the adsorber (3A) and as close as possible to the temperature of the adsorber as much as possible. Adjust according to (6). Furthermore, in order to reduce the difference between the temperature of the evaporator (5A) and the temperature of the adsorber (3A), the evaporator (5A) and the adsorber (3A) are kept at a constant temperature by circulating hot water obtained from low-temperature waste heat. It is set to be confined in the tank (1).

(脱着過程)
運転開始時の吸着剤ベッド(4B)は水蒸気を吸着した状態にある。コック(12H)を開き低温廃熱より得られる温水(8B)を吸着器内へ流し、凝縮器(2B)内には常温の水(7B)を導入する。次にコック(12B)を開くことにより、水蒸気は吸着器(3B)から凝縮器(2B)へと導入され、吸着剤ベッド(4B)は脱着される。このとき、水蒸気の脱着により潜熱を奪われるため、導入された温水(8B)は冷やされ、入口の温度よりも低温となる。この低温廃熱より得られる温水よりも低温となった温水は、脱着時の温水出口(10B)から送り出され、蒸発器用温水調整機(6)に送り込まれ、低温廃熱より得られる温水(11)の温度を下げるために用いられる。
また上記の吸着・脱着過程時において、作動していない凝縮器(2A)と蒸発器(5B)とを2つのコック(12Cと12L)を開くことにより、凝縮器(2A)に溜まった水は蒸発器(5B)に戻される。
(Desorption process)
The adsorbent bed (4B) at the start of operation is in a state of adsorbing water vapor. The cock (12H) is opened and hot water (8B) obtained from low-temperature waste heat is allowed to flow into the adsorber, and normal temperature water (7B) is introduced into the condenser (2B). Next, by opening the cock (12B), water vapor is introduced from the adsorber (3B) to the condenser (2B), and the adsorbent bed (4B) is desorbed. At this time, since the latent heat is taken away by the desorption of water vapor, the introduced hot water (8B) is cooled down to a temperature lower than the inlet temperature. The hot water having a temperature lower than that of the hot water obtained from the low-temperature waste heat is sent from the hot water outlet (10B) at the time of desorption and sent to the warm water regulator (6) for the evaporator to obtain the hot water (11 ) Is used to lower the temperature.
During the above adsorption / desorption process, the condenser (2A) is opened by opening the two cocks (12C and 12L) for the condenser (2A) and evaporator (5B) that are not operating. Returned to the evaporator (5B).

この脱着過程においては、吸着剤から脱着される水蒸気の脱着量が多いことが望まれる。そのためには吸着剤が脱着する際の限界となる相対蒸気圧をできる限り低くすることが望ましく、また低相対蒸気圧側で水蒸気を脱着する吸着剤が必要となる。
一般に、脱着時の限界となる相対蒸気圧は、凝縮器(2B)および吸着器(3B)の温度によって決まるものであり、
限界となる相対蒸気圧=凝縮器の温度における飽和水蒸気圧/吸着器の温度における飽和水蒸気圧
となる。
仮に低温廃熱によって得られる温水の温度が60℃であるとし、凝縮器内の温度を25℃、吸着器内の温度が55℃であるとすると、25℃の飽和水蒸気圧/55℃の飽和水蒸気圧=0.201より、脱着限界となる相対蒸気圧は0.2となる。
それゆえ凝縮器の温度<吸着器の温度であることが条件であり、さらに凝縮器の温度と吸着器の温度との差がなるべく大きいことが望ましい。
In this desorption process, it is desired that the desorption amount of water vapor desorbed from the adsorbent is large. It is desirable to do so to reduce as much as possible the relative vapor pressure as a limitation upon the desorption adsorbent, also is required adsorbent to desorb water vapor at a low relative vapor pressure side.
Generally, the relative vapor pressure that becomes the limit at the time of desorption is determined by the temperature of the condenser (2B) and the adsorber (3B).
Relative vapor pressure at the limit = saturated water vapor pressure at the condenser temperature / saturated water vapor pressure at the adsorber temperature.
Assuming that the temperature of hot water obtained by low-temperature waste heat is 60 ° C., the temperature in the condenser is 25 ° C., and the temperature in the adsorber is 55 ° C., saturated water vapor pressure of 25 ° C./saturation of 55 ° C. From the water vapor pressure = 0.201, the relative vapor pressure which becomes the desorption limit is 0.2 .
Therefore, the condition is that the temperature of the condenser is smaller than the temperature of the adsorber, and it is desirable that the difference between the temperature of the condenser and the temperature of the adsorber is as large as possible.

そのような条件を作り出すため、本発明のシステムにおいては、吸着器での温度を可能な限りの高温(この場合低温廃熱から得られる温水と同じ温度)にし、凝縮器の温度をより低くすることが望ましいため、常温の温水を用いる。   In order to create such conditions, in the system of the present invention, the temperature in the adsorber is as high as possible (in this case, the same temperature as the hot water obtained from the low temperature waste heat), and the temperature of the condenser is lowered. It is desirable to use warm water at room temperature.

次に、本発明である低温廃熱を利用し元の低温熱源よりも高温の熱を回収するシステムにおいてふさわしい吸着剤について述べる。
低温廃熱によって得られる温水の温度が60℃であるとし、吸着時の吸着器の温度が62℃、蒸発器の温度が59℃、脱着時の吸着器の温度が55℃、凝縮器の温度が25℃であるとすると、吸着時の吸着限界となる相対蒸気圧は0.87であり、脱着時の脱着限界となる相対蒸気圧は0.2となる。つまり相対蒸気圧0.2〜0.87の範囲において水蒸気吸脱着量が多いことが望ましい。そのような吸着剤として一般に知られているものとしてはシリカゲルB型があげられる。
Next, an adsorbent suitable for a system for recovering heat higher than the original low-temperature heat source using low-temperature waste heat according to the present invention will be described.
The temperature of hot water obtained by low-temperature waste heat is assumed to be 60 ° C, the temperature of the adsorber at the time of adsorption is 62 ° C, the temperature of the evaporator is 59 ° C, the temperature of the adsorber at the time of desorption is 55 ° C, the temperature of the condenser Is 25 ° C., the relative vapor pressure that becomes the adsorption limit at the time of adsorption is 0.87 , and the relative vapor pressure that becomes the desorption limit at the time of desorption becomes 0.2 . That is, it is desirable that the water vapor adsorption / desorption amount is large in the range of relative vapor pressure of 0.2 to 0.87 . A silica gel B type is generally known as such an adsorbent.

また本発明の吸着式ヒートポンプシステムにおいては、温度が高くなるにつれて、同じ相対蒸気圧における吸脱着の変化量が大きくなることがもう一つの望ましい条件である。
例えば、温度によって相対蒸気圧による吸着量が変化しない吸着剤と、温度が上昇することによって高相対蒸気圧側での吸着量が増加する吸着剤とでは、その増加した分だけ、吸脱着の変化量が大きくなる。それゆえ吸脱着の変化量が稼動相対蒸気圧範囲において大きく、さらに温度が上昇することによって高相対蒸気圧側での吸着量が増加する吸着剤が最も望ましい吸着剤となる。
In the adsorption heat pump system of the present invention, it is another desirable condition that the amount of change in adsorption / desorption at the same relative vapor pressure increases as the temperature increases.
For example, the adsorbent adsorbed amount by the relative vapor pressure does not change with temperature, and the adsorbent adsorption amount at a high relative vapor pressure side by the temperature increases is increased, the increased amount only that, the adsorption-desorption change The amount increases. Therefore the variation of adsorption and desorption are greater in operation relative vapor pressure range, sorbent adsorption amount at a high relative vapor pressure side is increased is most desirable adsorbent by further temperature increases.

次に、本発明において好ましく用いられる吸着剤の具体例を説明するが、本発明はこれによって何ら限定されるものではない。
(吸着剤)
吸着剤としては、高相対蒸気圧領域において吸着量の多い合成イモゴライト(チューブ状アルミニウムケイ酸塩)を用いた。温度を変えた水蒸気吸着量については、Quantachrome社製高温型自動吸着量測定装置Hydrosorbにより吸着時の温度を25℃、55℃、85℃として測定を行った水蒸気吸着等温線から評価を行なった。図2に、その結果を示す。
図2に示すとおり、相対蒸気圧0.2における水蒸気吸着量は、吸着温度によってほとんど変わらずその差は2wt%程度であるが、相対蒸気圧0.9における水蒸気吸着量は、温度25℃において36.6wt%、55℃で44.6wt%、85℃で49.7wt%と、同じ相対蒸気圧でも吸着時の温度が上がることによって吸着量が13.1wt%増加することが明らかとなった。
Next, specific examples of the adsorbent preferably used in the present invention will be described, but the present invention is not limited thereto.
(Adsorbent)
The adsorbent was used more synthetic imogolite adsorption amount at high relative vapor pressure region (tubular aluminum silicate). About the water vapor adsorption amount which changed temperature, it evaluated from the water vapor adsorption isotherm which measured the temperature at the time of adsorption | suction by 25 degreeC, 55 degreeC, and 85 degreeC with the high temperature type automatic adsorption amount measuring apparatus Hydrosorb by Quantachrome. FIG. 2 shows the result.
As shown in FIG. 2, the water vapor adsorption amount at a relative vapor pressure of 0.2 hardly changes depending on the adsorption temperature, and the difference is about 2 wt%, but the water vapor adsorption amount at a relative vapor pressure of 0.9 is 25 ° C. 36.6 wt%, 44.6 wt% at 55 ° C and 49.7 wt% at 85 ° C, it was revealed that the adsorption amount increased by 13.1 wt% by increasing the temperature at the time of adsorption even at the same relative vapor pressure . .

本発明のヒートポンプシステムの概念図Conceptual diagram of the heat pump system of the present invention 吸着温度で測定した際のイモゴライトの水蒸気吸着等温線Water vapor adsorption isotherm of imogolite as measured by adsorption temperature 従来のヒートポンプシステムの概念図Conceptual diagram of a conventional heat pump system

符号の説明Explanation of symbols

1:恒温槽
2A、2B:凝縮器
3A、3B:吸着器(吸着剤充填槽)
4A、4B:吸着剤ベッド
5A、5B:蒸発器(貯水槽)
6:蒸発器用温水調整器
7A、7B:凝縮器用の水(常温)
8A、8B:廃熱から得られる温水
9A、9B:吸着時の高温温水出口
10A、10B:脱着時の温水出口
11A、11B:廃熱から得られる温水
12A〜12N:コック
31、32:吸着器
33:吸着物配管
34:蒸発器
35:凝縮器
36:戻し配管
37:室内機
1: Thermostatic bath 2A, 2B: Condenser 3A, 3B: Adsorber (adsorbent filling bath)
4A, 4B: Adsorbent bed 5A, 5B: Evaporator (water tank)
6: Hot water regulator for evaporator 7A, 7B: Water for condenser (room temperature)
8A, 8B: Hot water obtained from waste heat 9A, 9B: High temperature hot water outlet 10A, 10B: Hot water outlet 11A, 11B: Hot water obtained from waste heat 12A-12N: Cock 31, 32: Adsorber 33: Adsorbent piping 34: Evaporator 35: Condenser 36: Return piping 37: Indoor unit

Claims (4)

吸着物質と、吸着物質を吸脱着する吸着剤を備えた吸着器と、蒸発器と、凝縮器とを備えた吸着式ヒートポンプシステムにおいて、吸着剤の吸着過程及び脱着過程において用いる温水の入口温度を、低温廃熱から得られる温度と同じで常に一定とするとともに、蒸発器の温度を、吸着器の温度よりも低くかつできるだけ吸着器の温度に近づけるように、蒸発器用温水調整機により調整を行うことを特徴とする吸着式ヒートポンプシステム。 In an adsorption heat pump system comprising an adsorbent, an adsorber with an adsorbent that adsorbs and desorbs the adsorbent, an evaporator, and a condenser, the inlet temperature of hot water used in the adsorption and desorption processes of the adsorbent is determined. , performed with a constant always the same as the temperature obtained from the low temperature waste heat, the temperature of the evaporator, so as to approach the temperature of the low and possible adsorbers than the temperature of the adsorber, the adjustment by evaporator heated regulator This is an adsorption heat pump system. 低温廃熱より得られる温水と、脱着過程の吸着器を通り抜けて入口温度より低くなった温水とを混合することにより、低温廃熱より得られる温水よりも若干低い温度に調整された温水を得、これを用いて前記蒸発器の温度を調整することを特徴とする請求項1に記載の吸着式ヒートポンプシステム。   By mixing warm water obtained from low-temperature waste heat and warm water that has passed through the adsorber in the desorption process and is lower than the inlet temperature, warm water adjusted to a temperature slightly lower than that obtained from low-temperature waste heat is obtained. The adsorption heat pump system according to claim 1, wherein the temperature of the evaporator is adjusted using this. 前記蒸発器と前記吸着器とを恒温槽内に収納し、低温廃熱より得られる温水を用いてその廃熱温度とほぼ同じ温度とすることを特徴とする請求項1又は2に記載の吸着式ヒートポンプシステム。   The adsorption according to claim 1 or 2, wherein the evaporator and the adsorber are housed in a thermostatic bath, and the temperature is made substantially the same as the waste heat temperature using hot water obtained from low temperature waste heat. Type heat pump system. 前記吸着剤として、相対蒸気圧が0.2〜0.9の範囲における水蒸気吸着量が20wt%以上で、かつ、温度が高くなるにつれて、同じ相対蒸気圧における吸脱着の変化量が増加する特性を有する吸着剤を用いることを特徴とする請求項1〜3のいずれかに記載の吸着式ヒートポンプシステム。   As the adsorbent, the water vapor adsorption amount in the range of 0.2 to 0.9 relative vapor pressure is 20 wt% or more, and the adsorption / desorption change amount at the same relative vapor pressure increases as the temperature increases. An adsorptive heat pump system according to any one of claims 1 to 3, wherein an adsorbent having odor is used.
JP2008014382A 2008-01-25 2008-01-25 Adsorption heat pump system using low-temperature waste heat Expired - Fee Related JP5187827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008014382A JP5187827B2 (en) 2008-01-25 2008-01-25 Adsorption heat pump system using low-temperature waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008014382A JP5187827B2 (en) 2008-01-25 2008-01-25 Adsorption heat pump system using low-temperature waste heat

Publications (2)

Publication Number Publication Date
JP2009174783A JP2009174783A (en) 2009-08-06
JP5187827B2 true JP5187827B2 (en) 2013-04-24

Family

ID=41030059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008014382A Expired - Fee Related JP5187827B2 (en) 2008-01-25 2008-01-25 Adsorption heat pump system using low-temperature waste heat

Country Status (1)

Country Link
JP (1) JP5187827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110913A (en) * 2014-07-18 2014-10-22 上海交通大学 Low-grade waste heat driven efficient moisture absorption and thermochemical reaction two-stage temperature changer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813398B (en) * 2010-04-16 2012-08-29 上海交通大学 Multi-mode thermochemical adsorption refrigeration device based on cascade utilization of energy
CN102679616B (en) * 2012-02-17 2014-07-16 南京工业大学 Double-stage adsorption refrigerating recycling system
JP5780185B2 (en) * 2012-03-15 2015-09-16 株式会社デンソー Waste heat recovery device
FR2993639B1 (en) * 2012-07-17 2017-11-10 Coldway COMPRESSOR / ABSORPTION HYBRID REFRIGERATION SYSTEM
KR101962931B1 (en) * 2016-09-06 2019-03-28 한국과학기술연구원 Heat recovery apparatus for adsorption heat pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627593B2 (en) * 1985-09-12 1994-04-13 鐘紡株式会社 Adsorption type heat pump
JP4631022B2 (en) * 2004-09-10 2011-02-16 独立行政法人産業技術総合研究所 Novel aluminum silicate and its synthesis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110913A (en) * 2014-07-18 2014-10-22 上海交通大学 Low-grade waste heat driven efficient moisture absorption and thermochemical reaction two-stage temperature changer
CN104110913B (en) * 2014-07-18 2016-04-13 上海交通大学 Low-grade exhaust heat drives efficient absorbent-thermal chemical reaction twin-stage thermode

Also Published As

Publication number Publication date
JP2009174783A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
Sumathy et al. Technology development in the solar adsorption refrigeration systems
Chen et al. Study on a compact silica gel–water adsorption chiller without vacuum valves: design and experimental study
JP6028799B2 (en) Carbon dioxide supply device
JP5187827B2 (en) Adsorption heat pump system using low-temperature waste heat
JP2005134099A (en) Air conditioner
JPH11316061A (en) Air conditioning system and its operation method
JP5571360B2 (en) Adsorption tower
JP2005233435A (en) Absorption dehumidifying air conditioning system
JP2005233435A5 (en)
JP6246046B2 (en) Waste heat storage air-conditioning heat source system using chemical heat storage
US20100300124A1 (en) Refrigerating machine comprising different sorption materials
JP2005127683A (en) Heat exchanger using heat transfer material having vapor adsorption/desorption function
JP5319476B2 (en) Separation and recovery system
JPH11223411A (en) Adsorption heat pump
Liu et al. Experimental testing of a small sorption air cooler using composite material made from natural siliceous shale and chloride
JP6256170B2 (en) Adsorption heat pump system and cold heat generation method
JP2002162130A (en) Air conditioner
Askalany et al. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane
JPH07301469A (en) Adsorption type refrigerator
Guilleminot et al. Experimental results and modeling tests of an adsorptive air-conditioning unit/Discussion
JP2000329422A (en) Adsorption refrigeration unit
JP2005172380A (en) Adsorption-type heat pump
JP2019027715A (en) Heat storage system
JPH11223416A (en) Refrigerating device
JP2000257895A (en) Heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees