JPH0627593B2 - Adsorption type heat pump - Google Patents
Adsorption type heat pumpInfo
- Publication number
- JPH0627593B2 JPH0627593B2 JP20284985A JP20284985A JPH0627593B2 JP H0627593 B2 JPH0627593 B2 JP H0627593B2 JP 20284985 A JP20284985 A JP 20284985A JP 20284985 A JP20284985 A JP 20284985A JP H0627593 B2 JPH0627593 B2 JP H0627593B2
- Authority
- JP
- Japan
- Prior art keywords
- adsorption
- activated carbon
- temperature
- water
- heat pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、見かけ密度が0.1〜0.8g/cm3、気孔
率50〜90%、平均直径1〜500μmのマクロ孔を
有する網状構造活性炭を吸着材として充填した吸着塔
と、作動媒体を入れた蒸発器及び凝縮器を連結してなる
冷却モード及び昇温モードの吸着式ヒートポンプに関す
るものであり、冷房,冷蔵,冷却等の低温分野あるい
は、給湯,暖房,昇温,蓄熱等の高温分野に於けるエネ
ルギーの有効利用に広く応用出来る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention has a net-like structure having macropores having an apparent density of 0.1 to 0.8 g / cm 3 , a porosity of 50 to 90% and an average diameter of 1 to 500 μm. The present invention relates to an adsorption heat pump in a cooling mode and a heating mode in which an adsorption tower filled with structured activated carbon as an adsorbent and an evaporator and a condenser containing a working medium are connected to each other. It can be widely applied to the effective use of energy in the field or in high temperature fields such as hot water supply, heating, heating, and heat storage.
(従来技術とその問題点) 固体吸着剤を用いる吸着剤のケミカルヒートポンプは、
コンプレッサーなどの動力源を用いる必要がなく、駆動
エネルギーとして比較的低温度の熱エネルギーが利用出
来るなどの利点があり、シリカゲル,活性アルミナ,ゼ
オライト,活性炭等の各種吸着剤を用いたヒートポンプ
が検討されている。(Prior art and its problems) Adsorbent chemical heat pumps that use solid adsorbents
There is no need to use a power source such as a compressor, and it has the advantage that thermal energy at a relatively low temperature can be used as drive energy, and heat pumps using various adsorbents such as silica gel, activated alumina, zeolite, activated carbon have been investigated. ing.
これらの吸収剤は、各種の作動媒体との組合せでその吸
着特性がきまり、ヒートポンプ用吸着剤としての適合性
が評価されるのが、例えば、ゼオライト−水系では、汲
み上げ温度差は大きく取れるが再生、脱着がしにくく、
再生温度を高くして、再生温度差を大きく取らなければ
ならないという欠点を有しており、活性アルミナもゼオ
ライトと類似した欠点がある。Adsorption characteristics of these absorbents are determined in combination with various working media, and suitability as an adsorbent for heat pumps is evaluated.For example, in the zeolite-water system, a large pumping temperature difference can be taken, but regeneration is possible. , It is difficult to remove,
It has a drawback that the regeneration temperature must be increased to make a large difference in the regeneration temperature, and activated alumina also has a drawback similar to zeolite.
また、シリカゲル−水系では、100℃以下の比較的低
い熱源によっても再生可能であるが、吸脱着量差を大き
く取れないという欠点を有している。Further, the silica gel-water system can be regenerated by a relatively low heat source of 100 ° C. or lower, but has a drawback that a large difference in adsorption / desorption amount cannot be obtained.
ところで、従来の活性炭は、水を作動媒体とした場合、
相対圧P/Ps (P:水蒸気分圧、Ps :水の飽和蒸気
圧)が0.5〜0.6近傍で吸着量が大きくかわり、操
作圧力をこの吸着量変化の大きいところをはさんで両側
に取ることにより、吸脱着を容易に行なうことができ、
吸脱着量差も大きく取れるという利点を有していること
がわかっている。しかしながら一方で、操作圧力が相対
圧0.5〜0.6近傍と大きいので汲み上げ温度差が小
さくなるという重大な欠点を有しており、実用上の大き
な障害となっている。By the way, the conventional activated carbon, when using water as the working medium,
When the relative pressure P / Ps (P: partial vapor pressure of water vapor, Ps: saturated vapor pressure of water) is around 0.5 to 0.6, the adsorption amount changes greatly, and the operating pressure is set over a large change in the adsorption amount. By taking on both sides, adsorption and desorption can be easily performed,
It is known to have an advantage that a large difference in adsorption / desorption amount can be obtained. On the other hand, however, since the operating pressure is large at a relative pressure of around 0.5 to 0.6, there is a serious drawback that the pumping temperature difference is small, which is a major obstacle to practical use.
また、上記の各種固体吸着剤は、通常、粉末あるいは粒
状として用いられるので、圧力損損失が大きく、被吸着
物質の移動が迅速でなく、吸着塔内での吸着量分布の偏
りが起りやすく、塔内での吸着剤の充填むらも加わり、
吸着塔内の場所による温度の不均一や伝熱速度のばらつ
きが生じて好ましくない。Further, the above various solid adsorbents are usually used as powders or granules, so that the pressure loss is large, the movement of the substance to be adsorbed is not rapid, and the deviation of the adsorption amount distribution in the adsorption tower easily occurs. In addition to uneven filling of the adsorbent in the tower,
It is not preferable because the temperature is non-uniform and the heat transfer rate varies depending on the location in the adsorption tower.
本発明者は、従来の吸着式ヒートポンプの上記の如き欠
点を改善すべく鋭意研究の結果本発明を完成させたもの
である。The present inventor has completed the present invention as a result of earnest research to improve the above-mentioned drawbacks of the conventional adsorption heat pump.
(問題点を解決するための手段) 本発明は、見かけ密度が0.1〜0.8g/cm3、気孔
率50〜90重量%、平均直径1〜500μmのマクロ
孔を有する網状構造活性炭を吸着材として充填した吸着
塔と、作動媒体を入れた蒸発器及び凝縮器を連結してな
る冷却モード及び昇温モードの吸着式ヒートポンプであ
る。(Means for Solving Problems) The present invention provides a reticulated structure activated carbon having an apparent density of 0.1 to 0.8 g / cm 3 , a porosity of 50 to 90% by weight, and macropores having an average diameter of 1 to 500 μm. It is an adsorption heat pump in a cooling mode and a heating mode in which an adsorption tower filled as an adsorbent is connected to an evaporator and a condenser containing a working medium.
本発明の網状構造活性炭は、従来の粉末活性炭あるいは
粒状活性炭に比較し次の如き優れた特長を有している。The network structure activated carbon of the present invention has the following excellent features as compared with the conventional powdered activated carbon or granular activated carbon.
即ち、粒状活性炭に比べ、吸脱着速度が極めて速く、短
時間に吸脱着を完了させうる。充填塔内での吸着剤の充
填状態が均一でかつ通気性も良好であるため充填塔内で
の吸着量分布のばらつきが少なく、従って温度分布のむ
らも減少し、吸着熱の取出しや、吸着塔の昇温,降温を
迅速に行なうのに好適である。That is, the adsorption / desorption rate is extremely fast as compared with the granular activated carbon, and the adsorption / desorption can be completed in a short time. Since the packed state of the adsorbent in the packed tower is uniform and the air permeability is good, there is little variation in the adsorption amount distribution in the packed tower, and therefore the uneven temperature distribution is reduced, and the heat of adsorption and adsorption tower are removed. It is suitable for rapidly raising and lowering the temperature.
また本発明の網状構造活性炭は、その賦活方法を選択す
ることにより、ミクロ孔の細孔半径(r)の分布の極大値
がr<8Å以下の極めて細かい細孔を有し、かつ、比表
面積500〜1000m2/g程度の活性炭とすること
ができる。Further, the network activated carbon of the present invention has extremely fine pores with a maximum value of the distribution of the pore radius (r) of the micropores r <8Å or less by selecting the activation method, and has a specific surface area. The activated carbon can be about 500 to 1000 m 2 / g.
本発明のミクロ孔とは、細孔半径r≦20Åの細孔のこ
とであり、またマクロ孔とは細孔半径r>100Åの細
孔のことを言う。The micropores of the invention are pores having a pore radius r ≦ 20Å, and the macropores are pores having a pore radius r> 100Å.
さて、本発明の吸着式ヒートポンプに用いる網状構造活
性炭を製造するための前駆体となる合成樹脂複合多孔体
は、例えば、特公昭58−54082号、特開昭57−
51109号、特開昭57−118009号等で開示さ
れた方法、あるいはその他の公知の方法により製造する
ことができ、ポリビニルアルコール系樹脂とフエノール
樹脂あるいはメラミン樹脂を気孔形成材とともに反応さ
せ、反応終了後、気孔形成材を除去すればよい。Now, the synthetic resin composite porous body as a precursor for producing the reticulated structure activated carbon used in the adsorption heat pump of the present invention is described in, for example, JP-B-58-54082 and JP-A-57-58.
It can be produced by the method disclosed in JP-A-51109, JP-A-57-11809 or the like, or any other known method. The polyvinyl alcohol resin and the phenol resin or melamine resin are reacted with the pore-forming material to complete the reaction. After that, the pore forming material may be removed.
上記の合成樹脂複合多孔体は、限定された賦活条件下で
賦活することにより細孔半径(r)の分布の極大値がr<
8Åとなり、相対圧の低い領域での水分吸着量を大きい
網状構造活性炭とすることができる。The synthetic resin composite porous body has a maximum value of the distribution of the pore radius (r) r <
It becomes 8 Å, and the amount of water adsorbed in the region where the relative pressure is low can be made large reticulated structure activated carbon.
上記の限定された賦活条件とは、水蒸気雰囲気あるいは
空気雰囲気中等の酸化性雰囲気下で700℃程度以下の温
度で賦活することである。例えば、水蒸気雰囲気中では
500〜700℃程度の温度範囲、空気雰囲気中では250〜500
℃程度の賦活温度が適当である。賦活温度が高過ぎると
賦活後の活性炭の細孔径が大きくなり過ぎ、相対圧の低
い領域での水分吸着量が著しく低下し、好ましくない。The limited activation condition is activation at a temperature of about 700 ° C. or lower in an oxidizing atmosphere such as a steam atmosphere or an air atmosphere. For example, in a steam atmosphere
Temperature range of 500-700 ℃, 250-500 in air atmosphere
An activation temperature of about 0 ° C is suitable. If the activation temperature is too high, the pore size of activated carbon after activation becomes too large, and the amount of adsorbed water in the region of low relative pressure is significantly reduced, which is not preferable.
通常、活性炭,シリカゲル等の微細な細孔を有する吸着
剤の細孔容積や細孔径分布は窒素ガス,エタンガス,ブ
タンガス等の吸着等温線より求められる。最も一般的に
は吸着ガスとして窒素ガスを、またキャリヤーガスとし
てヘリウムガスを用い、液体窒素温度まで冷却して吸着
剤の細孔への窒素ガスの吸着量と窒素分圧の関係を求め
ることにより吸着等温線が得られる。Usually, the pore volume and pore size distribution of an adsorbent having fine pores such as activated carbon and silica gel are obtained from the adsorption isotherm of nitrogen gas, ethane gas, butane gas and the like. Most commonly, by using nitrogen gas as the adsorption gas and helium gas as the carrier gas, cooling to liquid nitrogen temperature and determining the relationship between the adsorption amount of nitrogen gas in the pores of the adsorbent and the nitrogen partial pressure An adsorption isotherm is obtained.
吸着等温線より細孔容積及び細孔半径を求める方法とし
ては、毛管凝縮に基づくKelvin式が提案され、一般的に
は本式に基づく解析が行なわれている。As a method for obtaining the pore volume and the pore radius from the adsorption isotherm, the Kelvin equation based on capillary condensation is proposed, and the analysis based on this equation is generally performed.
P,吸着ガスが細孔に凝縮するときの飽和蒸気圧 PO,常態での吸着ガスの飽和蒸気圧 γ,表面張力 V ,液体窒素の1分子体積 R ,ガス定数 T ,絶対温度 rK,細孔のケルビン半径 細孔のケルビン半径に対しては、毛管凝縮以外の吸着に
対する補正が必要であり、例えば、樋口の単分子層吸着
量だけを補正する方法、あるいはHalsey式による補正法
等がよく用いられている。毛管凝縮に基づくKelvin式の
適用範囲は厳密には、細孔半径20Å〜300Å程度と
いわれているがKelvin式に替わる厳密な細孔半径測定法
は未だ確立されておらず、細孔半径20Å以下の領域に
於ても、しばしばKelvin式を適用した解析が用いられて
いる。本発明に於ける細孔半径及び細孔径分布の解析
は、Kelvin式をその一般的に用いられている補正法と合
せて適用したものである。 P, saturated vapor pressure P O when the adsorbed gas condenses in the pores, saturated vapor pressure γ of the adsorbed gas under normal conditions, surface tension V, one molecular volume R of liquid nitrogen, gas constant T, absolute temperature r K , Kelvin radius of pores The Kelvin radius of pores needs to be corrected for adsorption other than capillary condensation.For example, there is a method to correct only the adsorption amount of the monolayer in Higuchi, or a correction method using the Halsey equation. It is often used. Strictly speaking, the applicable range of the Kelvin formula based on capillary condensation is said to be about 20 Å to 300 Å as the pore radius, but a strict pore radius measurement method to replace the Kelvin formula has not yet been established, and the pore radius is 20 Å or less. In the domain of, the analysis applying the Kelvin equation is often used. The analysis of the pore radius and the pore diameter distribution in the present invention is an application of the Kelvin equation together with its commonly used correction method.
さて、市販の粒状活性炭及び、本発明の網状構造活性炭
の水に対する吸着等温線の結果を第1図に示す。第1図
は20℃での測定結果を示すが、50℃及び70℃での
測定でもほぼ同一の吸着等温線が得られた。Now, FIG. 1 shows the results of adsorption isotherms of commercially available granular activated carbon and the network activated carbon of the present invention to water. Although FIG. 1 shows the measurement results at 20 ° C., almost the same adsorption isotherm was obtained by the measurement at 50 ° C. and 70 ° C.
従来、活性炭はシリカゲルやゼオライトと異なり非極性
物質であるため、第1図Aに示す如く、低相対圧下(P
/Ps0.5以下)では水分吸着量が極めて少ないこ
とが知られている。しかしながら本発明者らは、網状構
造活性炭の組成と賦活条件を鋭意検討することにより細
孔半径(r)の分布の極大値がr<8Åであり、第1図B
に示す如く低相対圧下で水分吸着量の大きいヒートポン
プ用吸着剤として極めて好適な活性炭を見い出したもの
である。Conventionally, activated carbon, unlike silica gel and zeolite, is a non-polar substance, so as shown in FIG. 1A, low relative pressure (P
/ Ps 0.5 or less), it is known that the amount of adsorbed water is extremely small. However, the inventors of the present invention have found that the maximum value of the distribution of the pore radius (r) is r <8Å as a result of diligent examination of the composition of the activated carbon having a network structure and the activation conditions.
As shown in (3), the present invention has found an extremely suitable activated carbon as a heat pump adsorbent having a large water adsorption amount under a low relative pressure.
吸着式ヒートポンプの作動媒体としては、水の他、メタ
ノール,エタノール,ブタノール,シクロヘキサノー
ル,ベンジルアルコール等のアルコール類,アンモニ
ア,アセトンあるいはベンゼン,トルエン,キシレン等
の芳香族炭化水素等を用いることが出来る。これら作動
媒体の中では、水は蒸発の潜熱が約10Kcal/mol と最
も大きく、0℃〜100℃の温度範囲の作動媒体として
は最も好ましい。0℃以下の低温領域では、作動媒体と
してメタノール,エタノールなどの低級アルコール類
が、また、100℃以上の高温領域では、シクロヘキサ
ノール,ベンジルアルコール,キシレン等の高沸点の炭
化水素が好適である。吸着式ヒートポンプは、比較的温
度の低い50〜100℃の低温熱源を利用出来、また太
陽熱等を利用して吸着剤の再生と蓄熱を同時に行なえる
という利点を有しており、これらの特長をいかしたヒー
トポンプの作動媒体としては水が最も好適である。従つ
て、以下実施態様としては、水を作動媒体とする場合に
つき説明する。As the working medium of the adsorption heat pump, in addition to water, alcohols such as methanol, ethanol, butanol, cyclohexanol and benzyl alcohol, ammonia, acetone or aromatic hydrocarbons such as benzene, toluene and xylene can be used. . Among these working media, water has the largest latent heat of vaporization of about 10 Kcal / mol, and is most preferred as the working medium in the temperature range of 0 ° C to 100 ° C. In the low temperature range of 0 ° C. or lower, lower alcohols such as methanol and ethanol are suitable as the working medium, and in the high temperature range of 100 ° C. or higher, high boiling point hydrocarbons such as cyclohexanol, benzyl alcohol and xylene are suitable. The adsorption heat pump has an advantage that it can use a low temperature heat source of relatively low temperature of 50 to 100 ° C. and that it can regenerate and store heat of the adsorbent at the same time by utilizing solar heat and the like. Water is the most suitable working medium for the cool heat pump. Therefore, a case where water is used as the working medium will be described below as an embodiment.
(発明の効果) 本発明の網状構造活性炭を用いた冷却モード及び昇温モ
ードの吸着式ヒートポンプの概略図を第2図(1)(2)に示
す。(Effects of the Invention) FIGS. 2 (1) and 2 (2) are schematic views of the adsorption heat pump in the cooling mode and the temperature rising mode using the network structure activated carbon of the present invention.
第2図(1)に示す冷却モードの場合には、まず蒸発器と
吸着塔を連結して蒸発器より作動媒体を蒸発させ吸着剤
に所定の吸着量に到達するまで吸着させる。このとき作
動媒体の蒸発により蒸発器の温度が低下し、熱交換器を
通して環境温度Ta の水をTcoldまで低下させることが
できる。作動媒体の吸着量が所定量に到達したらバルブ
を切換え、吸着塔と凝縮器を接続し、吸着塔に熱源温度
Tsの温水を流して昇温し、作動媒体を脱着して凝縮器で
凝縮させる。脱着が終了したらバルブを切換え再び最初
の吸着過程に戻る。In the cooling mode shown in FIG. 2 (1), first, the evaporator and the adsorption tower are connected to each other so that the working medium is evaporated from the evaporator and adsorbed by the adsorbent until a predetermined adsorption amount is reached. At this time, the temperature of the evaporator is lowered by the evaporation of the working medium, and the water having the ambient temperature Ta can be lowered to Tcold through the heat exchanger. When the adsorption amount of the working medium reaches the specified amount, switch the valve, connect the adsorption tower and the condenser, and set the heat source temperature to the adsorption tower.
Hot water of Ts is flowed to raise the temperature, the working medium is desorbed and condensed in the condenser. When the desorption is completed, the valve is switched to return to the first adsorption process again.
第2図(2)に示す昇温モードの場合には、まず、蒸発器
と吸着塔を連結し、両方に熱源温度Tsの温水を流しなが
ら吸着剤に作動媒体を吸着させ、吸着熱による吸着塔の
昇温を熱交換により取出し温水の温度を熱源温度Ts よ
りThot まで上昇させることができる。吸着塔での吸着
量が所定量に到達後バルブを切換え作動媒体を吸着剤よ
り脱着させ温度Taの凝縮器に凝縮させる。吸着終了後は
バルブを切換え再び吸着過程に戻る。In the case of the temperature raising mode shown in Fig. 2 (2), first, the evaporator and the adsorption tower are connected, and the working medium is adsorbed to the adsorbent while flowing hot water of the heat source temperature Ts to both, and adsorption by the adsorption heat is performed. The temperature of the tower is taken out by heat exchange and the temperature of the hot water can be raised from the heat source temperature Ts to T hot . After the adsorption amount in the adsorption tower reaches a predetermined amount, the valve is switched and the working medium is desorbed from the adsorbent and condensed in the condenser at the temperature Ta. After the adsorption is completed, the valve is switched to return to the adsorption process.
第3図に本発明の吸着式ヒートポンプで水を作動媒体と
して用いた場合の作動媒体と吸着剤の間の平衡関係を表
わす相対圧P/Ps (P,水蒸気分圧、Ps ,水の飽和
蒸気圧)−温度図を示す。FIG. 3 shows a relative pressure P / Ps (P, steam partial pressure, Ps, saturated steam of water) showing an equilibrium relationship between the working medium and the adsorbent when water is used as the working medium in the adsorption heat pump of the present invention. The pressure) -temperature diagram is shown.
本発明の網状構造活性炭で水を作動媒体とする場合に
は、第1図Bの吸着等温線より、操作圧力の範囲を低圧
側(脱着側)で相対圧P/Ps =0.05〜0.25、
高圧側(吸着側)で0.25〜0.50程度に選ぶこと
ができ、好ましくは、低圧側(脱着側)で相対圧P/P
s =0.05〜0.20、高圧側で相対圧P/Ps =
0.25〜0.40程度に設定することが出来る。When water is used as the working medium in the reticulated structure activated carbon of the present invention, the relative pressure P / Ps = 0.05 to 0 on the low pressure side (desorption side) of the operating pressure range from the adsorption isotherm of FIG. 1B. .25,
The pressure can be selected from about 0.25 to 0.50 on the high pressure side (adsorption side), and preferably the relative pressure P / P on the low pressure side (desorption side).
s = 0.05 to 0.20, relative pressure P / Ps on the high pressure side =
It can be set to about 0.25 to 0.40.
例えば、20℃の水を冷却する場合、高圧側(吸着側)
での相対圧をP/Ps =0.30とすると、図3の点
と点の平衡関係より、熱交換による損失を無視するな
らば理論的には2℃まで温度低下が可能となり、冷却幅
は18℃となる。ところが従来の活性炭の場合には、図
1Aの吸着等温線を示すもので操作圧力の範囲を高く取
る必要がある。例えば、高圧側(吸着側)の相対圧をP
/Ps =0.60に設定すると、図3の点と点の平
衡関係より理論的に到達可能な温度は12℃で、冷却温
度幅は8℃となり、本発明のヒートポンプの冷却効果が
極めて大きいことがわかる。同様に昇温モードに於て
も、本発明の網状構造活性炭を用い吸着側の操作圧力を
P/Ps =0.30に設定するならば、伝熱損失を無視
した理論的に可能な汲み上げ温度は、60℃の温水で2
8℃(第3図〜)、即ち88℃までの昇温が可能と
なり、従来の活性炭を用い操作圧力を吸着側でP/Ps
=0.60とした場合の12℃(第3図〜)に比べ
て著しく大きくなる。For example, when cooling water at 20 ° C, the high pressure side (adsorption side)
Assuming the relative pressure at P / Ps = 0.30, the temperature can theoretically be reduced to 2 ° C if the loss due to heat exchange is neglected from the equilibrium relationship between points in Fig. 3, and the cooling width Is 18 ° C. However, in the case of the conventional activated carbon, the adsorption isotherm shown in FIG. For example, the relative pressure on the high pressure side (adsorption side) is P
When /Ps=0.60 is set, the theoretically attainable temperature is 12 ° C. and the cooling temperature range is 8 ° C. due to the equilibrium relationship between points in FIG. 3, and the cooling effect of the heat pump of the present invention is extremely large. I understand. Similarly, even in the heating mode, if the operating pressure on the adsorption side is set to P / Ps = 0.30 using the activated carbon of the present invention, theoretically possible pumping temperature ignoring heat transfer loss. 2 with hot water at 60 ℃
It is possible to raise the temperature to 8 ° C (Fig. 3 ~), that is, to 88 ° C. Using conventional activated carbon, the operating pressure is P / Ps on the adsorption side.
This is significantly higher than 12 ° C. (= 0.60) (see FIG. 3).
本発明の網状構造活性炭を吸着剤とする吸着式ヒートポ
ンプは、上述の如く冷却温度幅、昇温温度幅を大きく取
ることができ、エネルギー効率を著しく向上させること
ができる。The adsorption-type heat pump of the present invention, which uses the network structure activated carbon as an adsorbent, can have a large cooling temperature range and a large heating temperature range as described above, and can significantly improve energy efficiency.
また、本発明の網状構造活性炭は、吸脱着速度が極めて
速く、短時間に吸脱着を完了させうる。また、充填塔内
での充填状態が均一でかつ通気性も良好であり、充填塔
内の吸着量分布のばらつきが少なく、昇温むらが発生し
にくく、吸着熱の取出しや、吸着塔の昇温、降温を迅速
に行なうことができる。Further, the network structure activated carbon of the present invention has an extremely high adsorption / desorption rate and can complete adsorption / desorption in a short time. In addition, the packed state in the packed tower is uniform and the air permeability is good, there is little variation in the adsorption amount distribution in the packed tower, uneven temperature rise is less likely to occur, the adsorption heat is taken out, and the adsorption tower rises. The temperature can be quickly lowered.
更にまた本発明の吸着式ヒートポンプでは、吸着剤であ
る網状構造活性炭の再生温度を60〜90℃の比較的低
い温度レベルで行なうことが出来るので、太陽熱エネル
ギーを利用して再生することが出来、その場合には網状
構造活性炭を蓄熱材として利用し、蓄積された熱を暖房
あるいは給湯システム等に利用することも可能である。Furthermore, in the adsorption heat pump of the present invention, since the regeneration temperature of the network structure activated carbon that is the adsorbent can be performed at a relatively low temperature level of 60 to 90 ° C, it can be regenerated by utilizing solar heat energy, In that case, it is also possible to use the network structure activated carbon as a heat storage material and use the accumulated heat for heating or a hot water supply system.
以下、実施例により具体的に説明する。Hereinafter, a specific description will be given with reference to examples.
実施例1 重合度1700、けん化度88%のポリビニルアルコー
ル5kgを熱水で溶解後、馬鈴薯澱粉3.2kgを加えて加
熱し、糊化した。この溶解液に固形分濃度60重量%の
水溶性レゾール樹脂(昭和高分子(株)製品,BRL−2
854)17kgを加えて十分に撹拌した後、更に37%
のホルマリン9kg及び30重量%の蓚酸3.5kgを加わ
えて均一に混合し、水を加わえて液量調整し、総液量を
100とした。この混合液を内径120φ×700mm
Lの型枠に注型し、60℃で24時間反応させた後、洗
浄してPVA/フェノール系合成樹脂複合多孔体を得た。Example 1 After dissolving 5 kg of polyvinyl alcohol having a degree of polymerization of 1700 and a degree of saponification of 88% in hot water, 3.2 kg of potato starch was added and heated to gelatinize. A water-soluble resol resin having a solid content concentration of 60% by weight (BRL-2, a product of Showa Highpolymer Co., Ltd.) was added to the solution.
854) Add 17 kg and stir well, then 37%
9 kg of formalin and 3.5 kg of 30% by weight oxalic acid were added and uniformly mixed, and water was added to adjust the liquid volume, and the total liquid volume was set to 100. This mixed solution has an inner diameter of 120φ x 700 mm
It was cast in a L mold, reacted at 60 ° C. for 24 hours, and then washed to obtain a PVA / phenolic synthetic resin composite porous body.
該合成樹脂複合多孔体を電気炉に入れ、30℃/hr の
昇温速度で650℃まで昇温し、水蒸気雰囲気下で5時
間賦活し、網状構造活性炭を得た。該網状構造活性炭
は、見かけ密度ρ=0.21g/cm3、気孔率87%で、マ
クロ孔の平均直径は100μmでミクロ孔の細孔半径
(r)の分布の極大値はr<8Åであった。The synthetic resin composite porous body was placed in an electric furnace, heated to 650 ° C. at a heating rate of 30 ° C./hr, and activated in a steam atmosphere for 5 hours to obtain a reticulated structure activated carbon. The network activated carbon has an apparent density ρ = 0.21 g / cm 3 , a porosity of 87%, an average diameter of macropores of 100 μm and a pore radius of micropores.
The maximum of the distribution of (r) was r <8Å.
上記網状構造活性炭による20℃での水の吸着等温線の
測定結果が第1図Bである。50℃及び70℃での吸着
等温線も横軸を相対圧P/Psで整理すると20℃の場合
とほぼ同じになった。FIG. 1B shows the measurement result of the adsorption isotherm of water at 20 ° C. by the above-mentioned network activated carbon. The adsorption isotherms at 50 ° C. and 70 ° C. were also almost the same as those at 20 ° C. when the horizontal axis was arranged by relative pressure P / Ps.
上記の網状構造活性炭を用い、第2図に示すヒートポン
プにより冷熱を得る実験を行なった。An experiment was conducted to obtain cold heat by the heat pump shown in FIG. 2 using the above-mentioned network structured activated carbon.
実験の操作条件は、吸着塔に於ける、網状構造活性炭の
水分吸着量が、脱着時0.05g/g、吸着時0.20
g/gとなる様に設定した。対応する操作圧力の範囲
は、相対圧P/Ps =0.12〜0.30である。ま
た、冷却に用いる水の温度はTa=20℃である。The operating condition of the experiment is that the water adsorption amount of the network structure activated carbon in the adsorption tower is 0.05 g / g during desorption and 0.20 during adsorption.
It was set to be g / g. The corresponding operating pressure range is relative pressure P / Ps = 0.12-0.30. The temperature of water used for cooling is Ta = 20 ° C.
まず蒸発器に20℃の水を流し、バルブを開いて吸着塔
内の網状構造活性炭で蒸発器より蒸発する水を吸着させ
た。この操作により20℃の水温は6℃まで低下した。
第4図の平衡関係より理論的には2℃まで温度幅で18
℃の温度低下が可能であるが、本実験では伝熱損失など
により14℃低下した。40分間吸着させた後、バルブ
を切換え吸着塔と凝縮器を連絡し、吸着塔へ温水を流し
て吸着剤から脱着させ凝縮器へ凝縮させた。脱着に必要
な温水の温度Ts1は、第4図の平衡関係より59℃であ
るが本実験では、伝熱損失を考慮し、65℃の温水を流
し、40分間脱着した。本実施例の結果より、第1図B
に示す如き水の吸着等温線を示す網状構造活性炭を用い
ることにより20℃の水を6℃まで冷却することができ
た。First, water at 20 ° C. was flown into the evaporator, the valve was opened, and the water vaporized from the evaporator was adsorbed by the activated carbon having a network structure in the adsorption tower. By this operation, the water temperature at 20 ° C was lowered to 6 ° C.
From the equilibrium relationship in Fig. 4, theoretically, the temperature range up to 2 ℃ is 18
Although it is possible to lower the temperature by ℃, in this experiment, the temperature decreased by 14 ℃ due to heat transfer loss. After adsorbing for 40 minutes, the valve was switched to connect the adsorption tower and the condenser, and hot water was flowed to the adsorption tower to desorb from the adsorbent and condense it in the condenser. The temperature Ts 1 of hot water required for desorption is 59 ° C. according to the equilibrium relationship of FIG. 4, but in this experiment, desorption was performed for 40 minutes by flowing hot water of 65 ° C. in consideration of heat transfer loss. From the results of this example, FIG.
It was possible to cool water at 20 ° C. to 6 ° C. by using a network structure activated carbon that exhibits an adsorption isotherm of water as shown in FIG.
市販の粒状活性炭(粒度10〜32mesh,比表面積1,
080m2/g,充填密度0.45g/cm3)の水の吸着
等温線は第1図Aのとおりであった。この粒状活性炭を
用い、実施例1と同様にしてヒートポンプにより冷水を
得る実験を行なった。吸着量は実施例1と同様に脱着時
0.05g/g、吸着時0.20g/gに設定した。対
応する操作圧力の範囲は、P/Ps =0.42〜0.6
1であった。Commercially available granular activated carbon (particle size 10-32 mesh, specific surface area 1,
The adsorption isotherm of water having a density of 080 m 2 / g and a packing density of 0.45 g / cm 3 was as shown in FIG. 1A. Using this granular activated carbon, an experiment was conducted in the same manner as in Example 1 to obtain cold water using a heat pump. The amount of adsorption was set to 0.05 g / g during desorption and 0.20 g / g during adsorption as in Example 1. The corresponding operating pressure range is P / Ps = 0.42-0.6
It was 1.
この市販粒状活性炭による吸脱着操作の平衡関係を第5
図に示す。第5図からわかる様に理論的に低下させうる
温度幅は7.5℃で20℃の温水を12.5℃まで低下
可能であるが実際には16℃までしか低下出来なかっ
た。吸着操作は40分間行ない、その後吸着塔と凝縮器
を連結し、65℃の温水で20分間脱着した。The equilibrium relationship of adsorption and desorption operation with this commercially available granular activated carbon is described in
Shown in the figure. As can be seen from FIG. 5, the temperature range that can theoretically be lowered is 7.5 ° C., and warm water at 20 ° C. can be lowered to 12.5 ° C., but actually it could be lowered only to 16 ° C. The adsorption operation was performed for 40 minutes, after which the adsorption tower and the condenser were connected, and desorption was performed with warm water at 65 ° C. for 20 minutes.
これらの結果より、本発明の網状構造活性炭を用いるこ
とにより、冷却の温度幅を大きくとれるが判明した。From these results, it was found that the temperature range of cooling can be widened by using the network structure activated carbon of the present invention.
実施例2 実施例1と同じ網状構造活性炭を用いヒートポンプによ
る昇温実験を行なった。熱源温度(Ts2)62℃の温水
で蒸発器及び吸着塔を加熱し、蒸発器より蒸発した水を
網状構造活性炭に吸着させた。操作条件は実施例1と同
様、吸着量0.05(P/Ps=0.12)〜0.20
g/g(P/Ps=0.30)とした。Example 2 Using the same reticulated activated carbon as in Example 1, a heat pump temperature rising experiment was conducted. The evaporator and the adsorption tower were heated with hot water having a heat source temperature (Ts2) of 62 ° C., and the water evaporated from the evaporator was adsorbed by the activated carbon having a network structure. The operating conditions are the same as in Example 1, and the adsorption amount is 0.05 (P / Ps = 0.12) to 0.20.
It was set to g / g (P / Ps = 0.30).
本実施例の条件下での吸着平衡関係を第4図に示した。
62℃の熱源温度は、理論的には90℃まで28℃の昇
温が可能であるが、本実施例では40分間の吸着時間で
62℃より75℃まで13℃昇温することができた。脱
着は、吸着塔と凝縮器を連結し、凝縮器に18℃の水を
通すことにより40分間実施した。The adsorption equilibrium relationship under the conditions of this example is shown in FIG.
The heat source temperature of 62 ° C. can theoretically be raised to 90 ° C. by 28 ° C., but in the present example, it was possible to raise 13 ° C. from 62 ° C. to 75 ° C. by the adsorption time of 40 minutes. . Desorption was carried out by connecting an adsorption tower and a condenser and passing water at 18 ° C. through the condenser for 40 minutes.
〔比較例2〕 実施例2と同様にして比較例1に用いた市販の粒状活性
を用い、ヒートポンプによる昇温実験を行なった。ヒー
トポンプの操作範囲は、比較例1の場合と同様に吸着量
0.05(P/Ps=0.42)〜0.20(P/Ps=
0.61)、熱源温度は62℃とした。[Comparative Example 2] In the same manner as in Example 2, using the commercially available granular activity used in Comparative Example 1, a temperature rising experiment by a heat pump was performed. The operating range of the heat pump is the same as in the case of Comparative Example 1, and the adsorption amount is 0.05 (P / Ps = 0.42) to 0.20 (P / Ps =
0.61) and the heat source temperature was 62 ° C.
第5図に示す平衡関係より、市販粒状活性炭を吸着剤と
するヒートポンプでは理論的に到達可能な温度は71.
5℃であり昇温可能な温度幅は9.5℃と小さい。本実
験では、40分間吸着を実施し、実際に得られた温水の
温度は、66℃であった。脱着は、吸着塔と凝縮器を連
絡し、凝縮器に18℃の水を通して20分間実施した。From the equilibrium relationship shown in FIG. 5, the theoretically attainable temperature of the heat pump using the commercial granular activated carbon as the adsorbent is 71.
The temperature range is 5 ° C and the temperature range in which the temperature can be raised is as small as 9.5 ° C. In this experiment, adsorption was carried out for 40 minutes, and the temperature of the hot water actually obtained was 66 ° C. The desorption was performed by connecting the adsorption tower and the condenser and passing water at 18 ° C. through the condenser for 20 minutes.
第1図は、市販の粒状活性炭及び本発明に係る網状構造
活性炭の水に対する吸着等温線図、第2図は本発明に係
る網状構造活性炭を用いた冷却モード及び昇温モードの
吸着式ヒートポンプの概略図、第3図は本発明の吸着式
ヒートポンプで水を作動媒体として用いた場合の作動媒
体と吸着剤との間の平衡関係を表わす相対圧(P/Ps)
−温度図、第4図は本発明に係る網状活性炭−水系ヒー
トポンプの平衡関係図、第5図は市販粒状活性炭−水系
ヒートポンプの平衡関係図を表わす。FIG. 1 is an adsorption isotherm diagram for water of commercially available granular activated carbon and reticulated activated carbon according to the present invention, and FIG. 2 is an adsorption heat pump in cooling mode and heating mode using the reticulated activated carbon according to the present invention. Schematic and FIG. 3 are relative pressures (P / Ps) representing the equilibrium relationship between the working medium and the adsorbent when water is used as the working medium in the adsorption heat pump of the present invention.
-Temperature diagram, Fig. 4 is an equilibrium relation diagram of the reticulated activated carbon-water heat pump according to the present invention, and Fig. 5 is an equilibrium relation diagram of the commercial granular activated carbon-water heat pump.
Claims (3)
孔率50〜90%、平均直径1〜500μmのマクロ孔
を有する網状構造活性炭を吸着剤として充填した吸着塔
と、作動媒体を入れた蒸発器及び凝縮器を連結してなる
冷却モード及び昇温モードの吸着式ヒートポンプ1. An adsorption tower filled with as an adsorbent a network structure activated carbon having an apparent density of 0.1 to 0.8 g / cm 3 , a porosity of 50 to 90% and an average diameter of 1 to 500 μm. Adsorption heat pump in cooling mode and heating mode, which is formed by connecting an evaporator and a condenser containing a medium.
の分布の極大値がr<8Åのものである特許請求の範囲
第(1)項記載の吸着式ヒートポンプ2. The network activated carbon has a micropore radius (r) of micropores.
Adsorption pump according to claim (1), wherein the maximum value of the distribution of r is less than 8 Å
項又は第(2)項記載の吸着式ヒートポンプ3. The claim (1), wherein the working medium is water.
Heat pump of paragraph (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20284985A JPH0627593B2 (en) | 1985-09-12 | 1985-09-12 | Adsorption type heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20284985A JPH0627593B2 (en) | 1985-09-12 | 1985-09-12 | Adsorption type heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6262164A JPS6262164A (en) | 1987-03-18 |
JPH0627593B2 true JPH0627593B2 (en) | 1994-04-13 |
Family
ID=16464208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20284985A Expired - Lifetime JPH0627593B2 (en) | 1985-09-12 | 1985-09-12 | Adsorption type heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0627593B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8895774B2 (en) | 2008-05-15 | 2014-11-25 | Asahi Kasei Chemicals Corporation | Process for producing isocyanates using diaryl carbonate |
US9233918B2 (en) | 2008-05-15 | 2016-01-12 | Asahi Kasei Chemicals Corporation | Isocyanate production process |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4669914B2 (en) * | 2001-10-05 | 2011-04-13 | 三菱樹脂株式会社 | Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent |
JP5052486B2 (en) * | 2002-08-15 | 2012-10-17 | 株式会社デンソー | Adsorbent |
JP4975970B2 (en) * | 2005-01-21 | 2012-07-11 | 日本エクスラン工業株式会社 | Sorptive heat exchange module and method for producing the same |
JP5187827B2 (en) * | 2008-01-25 | 2013-04-24 | 独立行政法人産業技術総合研究所 | Adsorption heat pump system using low-temperature waste heat |
JP4710023B2 (en) * | 2008-05-23 | 2011-06-29 | 三菱樹脂株式会社 | Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent |
US9863673B2 (en) | 2012-08-22 | 2018-01-09 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Adsorption heat pump system and method of generating cooling power |
JP6155732B2 (en) * | 2013-03-21 | 2017-07-05 | 株式会社豊田中央研究所 | Adsorption heat pump |
JP2017048945A (en) * | 2015-08-31 | 2017-03-09 | カルソニックカンセイ株式会社 | Adsorption type heat exchanger and manufacturing method for the same |
-
1985
- 1985-09-12 JP JP20284985A patent/JPH0627593B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8895774B2 (en) | 2008-05-15 | 2014-11-25 | Asahi Kasei Chemicals Corporation | Process for producing isocyanates using diaryl carbonate |
US9233918B2 (en) | 2008-05-15 | 2016-01-12 | Asahi Kasei Chemicals Corporation | Isocyanate production process |
Also Published As
Publication number | Publication date |
---|---|
JPS6262164A (en) | 1987-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6695803B2 (en) | Hybrid adsorption device Heat exchange device manufacturing method | |
Munusamy et al. | Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101 (Cr): Volumetric measurements and dynamic adsorption studies | |
WO2006022329A8 (en) | Evaporated fuel gas adsorbent, evaporated fuel gas trapping apparatus, active carbon and process for producing the same | |
JP2009019572A (en) | Canister, adsorbent for canister and method of manufacturing its adsorbent | |
CN104056599A (en) | Composite carbon dioxide adsorption material, preparation method and application thereof | |
JPH0627593B2 (en) | Adsorption type heat pump | |
JP2005009703A (en) | Adsorber/desorber and cold/hot heat system using the same | |
Togawa et al. | Water sorption property and cooling performance using natural mesoporous siliceous shale impregnated with LiCl for adsorption heat pump | |
Wang et al. | Fabrication of hierarchical N-doped carbon nanotubes for CO2 adsorption | |
Wang et al. | N-Rich porous carbon with high CO 2 capture capacity derived from polyamine-Incorporated metal–Organic framework materials | |
Narayanan et al. | Design and optimization of high performance adsorption-based thermal battery | |
Tiwari et al. | Urea-formaldehyde derived porous carbons for adsorption of CO 2 | |
BR112013031322B1 (en) | METHOD FOR THE ENRICHMENT OF AT LEAST ONE COMPONENT COMPOSED OF A GAS MIXTURE OF THE SUBSTANCE | |
Ülkü et al. | Adsorption in energy storage | |
JP5187827B2 (en) | Adsorption heat pump system using low-temperature waste heat | |
JPS60247073A (en) | Hydrogen adsorbing and storage apparatus | |
Fu et al. | Positional isomers of covalent organic frameworks for indoor humidity regulation | |
Liu et al. | Experimental testing of a small sorption air cooler using composite material made from natural siliceous shale and chloride | |
Miksik et al. | Theoretical dehumidification capacity of acorn nutshell-based activated carbon under two Asian urban cities’ ambient air condition | |
US11548789B2 (en) | Stable ammonia absorbents | |
Ambrożek et al. | Equilibrium and heat of adsorption for selected adsorbent-adsorbate pairs used in adsorption heat pumps | |
Sivadas et al. | Effect of catalyst concentration and high-temperature activation on the CO2 adsorption of carbon nanospheres prepared by solvothermal carbonization of β-cyclodextrin | |
Shkolin et al. | Thermodynamics of methane adsorption on the microporous carbon adsorbent ACC | |
Pedram et al. | Pure vapor adsorption of water on Mobil Sorbead R silica gel | |
Kumita et al. | Adsorption equilibria for activated carbon fiber/alcohol pairs and their applicability to adsorption refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |