JPS6073013A - Intake-gas cooling apparatus for engine equipped with supercharger - Google Patents

Intake-gas cooling apparatus for engine equipped with supercharger

Info

Publication number
JPS6073013A
JPS6073013A JP58181602A JP18160283A JPS6073013A JP S6073013 A JPS6073013 A JP S6073013A JP 58181602 A JP58181602 A JP 58181602A JP 18160283 A JP18160283 A JP 18160283A JP S6073013 A JPS6073013 A JP S6073013A
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling
intake
metal hydride
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58181602A
Other languages
Japanese (ja)
Inventor
Yasuaki Hasegawa
泰明 長谷川
Yukio Yamamoto
幸男 山本
Tatsumi Hagiwara
多津美 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58181602A priority Critical patent/JPS6073013A/en
Publication of JPS6073013A publication Critical patent/JPS6073013A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To permit the efficient cooling operation for a supercharger continuously from an outside temp. to a low temp. by cooling intake gas in two stages of the first and the second cooling systems and allowing a metal hydride to be regenerated in one heat exchanger during the time when the cooling for the supercharger is performed in the other heat exchanger, in each system. CONSTITUTION:The supercharged gas having a high temp. of, for example, about 140 deg.C is allowed to flow into the first intake passage 3A by switching selector valves 6 and 26, and then cooled to about 85 deg.C by the heat exchange in a heat exchanger 9A. In this case, hydrogen transfers to a metal hydride 12B side from a metal hydride 11A side, and the heat generated through the occlusion of hydrogen in a heat exchanger 10B is released to cooling wind W. The supercharged gas is cooled to about 30 deg.C in a heat exchanger 10A. Similarly, the metal hydride transfers between the heat exchanger 10A and the heat exchanger 9B, and when each cooling capacity of the heat exchangers 9A and 10A reduces, the supercharged gas is allowed to flow into the second intake passage 3B by switching the selector valves 6 and 26.

Description

【発明の詳細な説明】 C産業上の利用分野) 本発明は、金属水素化物の水嵩解離時における吸熱反応
を利用して吸気を冷却するようにした過給機付エンジン
の吸気冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake air cooling device for a supercharged engine that cools intake air by utilizing an endothermic reaction during water bulk dissociation of a metal hydride. It is.

(従来技術) 過給機付エンジンの吸気冷却袋(社)(いわゆるインタ
ークーラ)の従来例としては例えば、実開昭3;7−1
/7723号公報にボされる如く車室内クーラの冷媒を
利用して吸気を冷却するタイプのもの(第1従来例)、
実開昭!;7−/3113.2/号公報に示される如く
吸気を冷却風によって冷却する空冷タイプのもの(第2
従来例)、実開昭57−137735号公報に示される
如く吸気をエンジン冷却水によって冷却する水冷タイプ
のもの(第3従来例)等が知られているが、上記第1従
来例のものにおいてはクーラ用コンプレッサがエンジン
によって駆動されるものであるところからエンジンの出
力低下を招くという不具合があり、また第2、第3従来
例のものにおいては吸気を外気温度又は冷却水温度以下
に冷却することが困難であり十分な吸気冷却効果を期待
できないという不具合があった。
(Prior art) A conventional example of an intake cooling bag (so-called intercooler) for a supercharged engine is, for example, Utility Model No. 3; 7-1.
The type that cools the intake air using the refrigerant of the cabin cooler, as disclosed in Publication No. 7723 (first conventional example),
Akira Miki! 7-/3113.2/ is an air-cooled type that cools intake air with cooling air (second
Conventional example), water-cooled type in which intake air is cooled by engine cooling water as shown in Japanese Utility Model Application Publication No. 57-137735 (third conventional example), etc.; however, in the first conventional example mentioned above, Since the cooler compressor is driven by the engine, there is a problem that the engine output decreases, and in the second and third conventional examples, the intake air is cooled to below the outside air temperature or the cooling water temperature. However, there was a problem in that it was difficult to do so, and a sufficient intake air cooling effect could not be expected.

(発明の目的) 本発明は、上記の如き従来の吸気冷却装置における問題
点に鑑み、エンジンの出力低下を招くことなく吸気を動
量的に冷却し得るようにした過給機付エンジンの吸気冷
却装置を提供することを目的としてなされたものである
(Object of the Invention) In view of the problems with conventional intake air cooling devices as described above, the present invention provides an intake air cooling system for a supercharged engine that can dynamically cool intake air without causing a decrease in engine output. This was done for the purpose of providing equipment.

(発明の構成) 本発明は、過給機付エンジンにおいて、過給機下流の吸
気通路を第1吸気通路と第λ吸気通路とで構成し該第1
吸気通路と第2吸気通路への過給気の流入を切換弁によ
って交互に行なうようにする一方、上記第1吸気通路と
第2吸気通路に、水素吸蔵時に発熱し水素放出時に吸熱
する第1金属水素化物を内蔵した第1熱交換器を上記両
吸気通路内を流れる過給気と熱交換可能にそれぞれ取り
つけるとともに、該第1、第2吸気通路におりjる前記
各第1熱交換器取付位置より吸気下流位置に、水素吸蔵
時に発熱し水素放出時に吸熱し、しかも所定温度におけ
る水素解離圧が上記第1金属水素化物より高い第2金属
水素化物を内μδした第!熱交換器を上記第1、第!吸
気通路内を流れる過給気と熱交換可能にそれぞれ取りつ
け、さらに上記相互いに別々の吸気通路にある第1熱交
換器と第2熱交換器を接続する各連通路に該連通路内の
水素の移動を制御する制御弁をそれぞれ設けて前記第1
吸気通路の第1熱交換器と第2吸気通路の第2熱交換器
で第1の冷却系を、また第2吸気通路の第1熱交換器と
第1吸気通路の第!熱交換器とで第2の冷却系をそれぞ
れ構成し、前記第1の冷却系と第2の冷却系とにおいて
吸気を2段階に冷却するようにするとともに、各冷却系
においては一方の熱交換器で過給気の冷却が行なわれて
いる時には他方の熱交換器で金属水素化物の再生が行わ
れるようにし、もって金属水素化物の水素解離時の吸熱
現象によって過給気を連続的にしかも必要に応じて外気
温度より低温度まで冷却し得るようにしたことを特徴と
するものである。
(Structure of the Invention) The present invention provides a supercharged engine in which the intake passage downstream of the supercharger is configured with a first intake passage and a λ-th intake passage.
The flow of supercharging air into the intake passage and the second intake passage is alternately performed by a switching valve, while the first intake passage and the second intake passage have a first intake passage which generates heat when storing hydrogen and absorbs heat when releasing hydrogen. A first heat exchanger containing a metal hydride is installed so as to be able to exchange heat with the supercharged air flowing in both of the intake passages, and each of the first heat exchangers that enters the first and second intake passages. A second metal hydride, which generates heat when absorbing hydrogen and absorbs heat when releasing hydrogen, and whose hydrogen dissociation pressure at a predetermined temperature is higher than that of the first metal hydride, is placed at a position downstream of the intake air from the mounting position. The first and second heat exchangers above! The hydrogen in the communication passages is installed to enable heat exchange with the supercharging air flowing in the intake passages, and the hydrogen in the communication passages is connected to each communication passage connecting the first heat exchanger and the second heat exchanger located in the separate intake passages. control valves for controlling the movement of the first
The first heat exchanger in the intake passage and the second heat exchanger in the second intake passage form the first cooling system, and the first heat exchanger in the second intake passage and the second heat exchanger in the first intake passage form the first cooling system. Each of the heat exchangers constitutes a second cooling system, and the intake air is cooled in two stages in the first cooling system and the second cooling system, and in each cooling system, one heat exchange is performed. While the supercharged air is being cooled in the heat exchanger, the metal hydride is regenerated in the other heat exchanger, so that the supercharged air can be continuously and It is characterized in that it can be cooled to a temperature lower than the outside air temperature if necessary.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は、異なる特性の金属水素化物を用いた場合の特
性線図、第2図は金属水素化物を利用した吸気冷却装置
の原理図をボし、第1図及び第2図に基づいて本発明の
実施例の原理を説明する。
Figure 1 shows a characteristic diagram when metal hydrides with different characteristics are used, and Figure 2 shows a principle diagram of an intake air cooling device using metal hydrides. The principle of an embodiment of the present invention will be explained.

金属水素化物は、水素吸蔵時に発熱し、水素放出時に吸
熱するという特性を有しており、しかもこの金属水素化
物の吸熱、発熱反応は可逆反応である。
Metal hydrides have the characteristic of generating heat when absorbing hydrogen and absorbing heat when releasing hydrogen, and the endothermic and exothermic reactions of metal hydrides are reversible.

又、金属水素化物の水素M、離圧及び解離温度は、各種
の金属水素化物個々に特有のものであり、例えば金属水
素化物の一種であるLσN15(ランタン・ニッケル合
金、以下、第1金属水素化物という)は第1図の温度−
水素解離圧線図において直線へで示す如き特性を有し、
これに対してTiFe(チタン・鉄合金、以下、第1金
属水素化物という)は同図の直線Bで示す如き特性を有
する。即ち、第1金属水素化物と第2金属水素化物とで
は第1金属水素化物の方が第1金属水素化物よりも所定
温度における水素解離圧が低くなっている。
In addition, the hydrogen M, depressurization, and dissociation temperature of metal hydrides are unique to each metal hydride. For example, LσN15 (lanthanum-nickel alloy, hereinafter referred to as the first metal hydrogen ) is the temperature shown in Figure 1 -
It has characteristics as shown by a straight line in the hydrogen dissociation pressure diagram,
On the other hand, TiFe (titanium-iron alloy, hereinafter referred to as first metal hydride) has characteristics as shown by straight line B in the figure. That is, between the first metal hydride and the second metal hydride, the first metal hydride has a lower hydrogen dissociation pressure at a predetermined temperature than the first metal hydride.

従って、第2図(イ)に示す如く第1金属水素化物S3
を内蔵した第1谷器S/と第2金に4水素化物Sグを内
蔵した第2容器夕2とを連通管5Sで接続し、第1容器
Sl内の第1金属水素化物53側で水素ガスの放出、第
2容器5.2内の第2金属水素化物夕弘側で水素ガスの
吸蔵、がそれぞれ連続的に行われるような条件(第1金
属水素化物53側を高温(温度=T、)の流体Xで加熱
し、第1金属水素化物!を側を空気等の冷奴y (温度
”ta)で冷却する)を設定してやると、第1金属水素
化物53は高温流体Xから吸熱(吸熱量二01)しつつ
、換言すれば高温流体Xを冷却しつつ(冷却後温度=T
1)水素ガスを放出し、他力の第1金属水素化物S≠は
該水菓ガスを吸、蔵しつつ発熱しその熱を冷1s、Yへ
放熱する(放熱量二二Qユ)。この間、第1容器5/内
は温度t1、圧力p1となり、第2容器5.2内は温度
tユ、圧力p、 (p、< p、)となる。
Therefore, as shown in FIG. 2(a), the first metal hydride S3
A first metal hydride S/ containing a metal hydride S/ is connected to a second container 2 containing a tetrahydride S in a second metal via a communication pipe 5S, and on the side of the first metal hydride 53 in the first container Sl. Conditions are such that the release of hydrogen gas and the storage of hydrogen gas on the second metal hydride Yuhiro side in the second container 5.2 are performed continuously (the first metal hydride 53 side is heated to a high temperature (temperature = When the first metal hydride 53 is heated with the fluid X of the high-temperature fluid (heat absorption amount 201), in other words, while cooling the high temperature fluid X (temperature after cooling = T
1) Hydrogen gas is released, and the other-power first metal hydride S≠ absorbs and stores the hydrogen gas, generates heat, and radiates the heat to the cooler Y (amount of heat radiation: 22 Q). During this time, the inside of the first container 5.2 has a temperature t1 and a pressure p1, and the inside of the second container 5.2 has a temperature t and a pressure p, (p, < p,).

なお、これらの温度1..1ユ、圧力pl、pユは固定
的なものではなく、高温流体Xからの吸熱量QO冷媒Y
への放熱ff1Q、、の変化に応じて変動する。また、
この吸熱、発熱反応は第1金属水素化物j3側での水素
ガス放出または第一金属水素化物5を側での水素ガス吸
蔵が停止した段階で終了(飽和)する。この第2図(イ
)に示す吸熱、発熱反応は第1図の温度−水素解既圧線
図において矢印Cで示されている。
Note that these temperatures 1. .. 1 u, pressure pl, p yu are not fixed values, but the amount of heat absorbed from high temperature fluid X QO refrigerant Y
It fluctuates according to changes in the heat radiation ff1Q, . Also,
This endothermic and exothermic reaction ends (saturation) when hydrogen gas release on the first metal hydride j3 side or hydrogen gas storage on the first metal hydride 5 side stops. The endothermic and exothermic reactions shown in FIG. 2(a) are indicated by arrow C in the temperature-hydrogen decomposition pressure diagram of FIG.

次に、上記の如く吸熱反応(水素ガスの放出)の終了し
た第、/金属水素化物53を再生する場合を第2図(ロ
)によって説明すると、第1金ffA水紫化物S3の再
生を行うには、前記第2図Cイ)の反応と逆の反応を生
じさせればよい。即ち今度は、第2容器5.2内の第!
金属水素化tm311側で水素ガスの放出、第1容器S
l内の第1金属水素化物53側で水素ガスの吸蔵、がそ
れぞれ連続的に行われるような条件第1金属水素化物5
3側を空気等の冷奴Y’ (温度=t≦)で冷却する)
を設定してやると、第2金屈水紫化物Stは高温流体X
′から吸熱(吸熱ffi = Q’、) bつつ、換言
すれば高温流体X′を冷却しつつ(冷却後温度=T、′
)水素ガスを放出し、他方の第1台屈水シζ化9433
は影水ガ(ガスを吸蔵(再生)シつつ発黙しその熱を冷
1s:Y′へ放熱する(放熱量二Q;)。この間、第1
容器Sl内は温度t)、圧力pl′となり、第2容μ↑
)夕、!内は温度ぢ、圧力p、’ (p、′< 可)と
なる。この第d図C口)に示す吸熱、発熱反応は第1図
の泪X度−水緊解離圧線図において矢印りで示されてい
る。
Next, to explain the case of regenerating the metal hydride 53 after the endothermic reaction (release of hydrogen gas) as described above with reference to FIG. To do this, it is sufficient to cause a reaction opposite to the reaction shown in FIG. 2 C-a). That is, this time, the second container 5.2 is the !
Release of hydrogen gas on the metal hydrogenation tm311 side, first container S
Conditions such that hydrogen gas is continuously stored on the first metal hydride 53 side in the first metal hydride 5
Cool the 3rd side with air or other cold tofu Y' (temperature = t≦))
By setting
' While absorbing heat (endothermic ffi = Q',) b, in other words, while cooling the high temperature fluid X' (temperature after cooling = T,'
) Release the hydrogen gas and convert the other first water flexure into 9433
The shadow water moth (absorbs (regenerates) gas, remains silent, and radiates its heat to the cold 1s:Y' (heat radiation amount 2Q;).During this time, the first
The temperature inside the container Sl is t), the pressure pl', and the second volume μ↑
)evening,! Inside, the temperature is ㎢, and the pressure is p,' (p, ′< possible). The endothermic and exothermic reactions shown in FIG.

なお、上M−[!の反応システムにおいては高温流体(
X又はx’)の冷却は金属水素化物(33又は5I1.
)の吸熱反応によって行われるものであるため、該高温
流体(X又はX’)の冷却後の温度(T。
In addition, upper M-[! In reaction systems, high-temperature fluids (
X or x') is cooled using a metal hydride (33 or 5I1.
), the temperature (T) of the high-temperature fluid (X or X') after cooling.

又はTl′)は冷(1(’i又はY′)の、t、4 H
n、(1,、又iJt、;)に制約されることl、工く
、必要があれば高温流体(X又はX′)の菖却椋温反(
T、又はT1′)を冷奴温度(1,又けt;)よりも低
くすることもできる。
or Tl') is cold (1 ('i or Y'), t, 4 H
n, (1, and iJt,;).If necessary, the temperature of the hot fluid (X or
T or T1') can also be lower than the chilled tofu temperature (1, or T1').

さらに、第2図に示す冷却システムにおいては、第1金
属水素化物53側における冷却作用と第2金属水素化物
5を側における冷却作用とは連続、して行わせることが
できないため、連続的に高温流体x、x’に対する冷却
作用を得ようとする場合it、第2図に示す如き反応シ
ステムを2組以上設ルプ、却を行なっている間に他方の
反応システム蚤こおし1て再生作用を行なわしめるよう
にするとよい。
Furthermore, in the cooling system shown in FIG. 2, the cooling action on the first metal hydride 53 side and the cooling action on the second metal hydride 5 side cannot be performed continuously. When trying to obtain a cooling effect on high-temperature fluids x and x', two or more sets of reaction systems as shown in Fig. 2 are installed, and while cooling is being performed, the other reaction system is regenerated by flea-crashing. It is better to let it work.

本発明の過給機付エンジンの吸気冷却装置は、上記の如
き金属水素化物の吸熱・発熱反応に着目し、該金属水素
化物の水素放出時の吸熱現象を利用して過給気の冷却を
行なおうとするものである。
The intake air cooling device for a supercharged engine of the present invention focuses on the endothermic and exothermic reactions of metal hydrides as described above, and utilizes the endothermic phenomenon when the metal hydride releases hydrogen to cool the supercharged air. That's what I'm trying to do.

第3図には本発明の実施例に係る過給綴付エンジンの吸
気冷却装置のシステム図が示されており、図中符号/は
エンジンであり、該エンジン/には吸気通路3と排気通
路tを介してターボ過給機2が接続されている。
FIG. 3 shows a system diagram of an intake air cooling device for a supercharged engine according to an embodiment of the present invention. In the figure, the symbol / is an engine, and the engine / includes an intake passage 3 and an exhaust passage. A turbocharger 2 is connected via t.

吸気通路3は、その途中において第1吸気通路3Aと第
2吸気通路3Bの2通路に分岐形成されており、その吸
気上流側の分岐点には第1切換弁乙が、また吸気下流側
の分岐点には第2切換弁2乙がそれぞれ取りつけられて
いる。この第1、第2吸気通路3A、3Bは、第1、第
2切換弁乙。
The intake passage 3 is bifurcated into two passages, a first intake passage 3A and a second intake passage 3B, in the middle, and a first switching valve B is provided at the branch point on the intake upstream side, and a first switching valve B is provided at the branch point on the intake downstream side. A second switching valve 2B is attached to each branch point. The first and second intake passages 3A and 3B are the first and second switching valves B.

2乙を同詩に開閉操作することにより択一的にエンジン
/及びターボ過給機−に連通せしめられるようになって
いる。この第1、第2吸気通路3A。
By opening and closing 2 and 3 in the same manner, it is possible to selectively communicate with the engine/and the turbo supercharger. These first and second intake passages 3A.

3B中に本発明の実施例に係る吸気冷却袋ff15が取
付けられている。
An intake air cooling bag ff15 according to an embodiment of the present invention is installed in 3B.

この実施例では吸熱、発熱反応を行う、2種類の金属水
素化物の第1の金属水素化物としてランタン・ニッケル
合金を、また第2の金属水素化物としてチタン・鉄合金
を使用する。
In this example, a lanthanum-nickel alloy is used as the first metal hydride of two types of metal hydrides that undergo endothermic and exothermic reactions, and a titanium-iron alloy is used as the second metal hydride.

吸気冷却装置Sは、その内部に第1金属水素化物(//
A、//B)を収容した第1熱交換器(9A、9B)を
第1吸気通路3Aと第2吸気通路3Bの吸気上流側位置
にそれぞれ7個づつ取付けるとともに、該第1熱交換器
(qA、qB)より吸気下流側の第1吸気通路3Aと第
2吸気通路3Bに、その内部に第2金属水素化物(/、
2A。
The intake air cooling device S has a first metal hydride (//
Seven first heat exchangers (9A, 9B) each containing heat exchangers (A, //B) are installed at the intake upstream positions of the first intake passage 3A and the second intake passage 3B, and A second metal hydride (/,
2A.

12B>を内蔵した第2熱交換器(IOA、10B)を
それぞれ−個づつ取付け、さらに第1吸気通路3A側の
第1熱交換器qAと第2吸気通路3B側の第2熱交換器
10Bとを第1連通路/3Aを介して、また第2吸気通
路3B側の第1熱交換器9Bと第1吸気通路3A側の第
2熱交換器IOAとを第2連通路/3Bを介してそれぞ
れ連通せしめている。この第1、第2連通路/3A、/
3Bは、第1熱交換器qA、9Bの第1金属水紫化物/
/AN//Bと第2熱交換器IOA 、 10Hの第2
金属水紫化物/2A、/2Bとの同において水素を移動
させるためのものであり、該第1、第2連通路/3A 
、/3B中には、該第1.第2連通路/3A、/3B内
を流れる水素の流通を制御する第1制御弁15Aと第2
制御弁73Bがそれぞれ取付けられている。この2つの
第1熱交換器9 A + qBと2つの第2熱交換器I
OA、IOBのうち、第1吸気通路3A側の第1熱交換
器ヲAと第2吸気通路3B側の第1熱交換器10Bで第
7冷却系7Aを、また第2吸気通路3B側の第1熱交換
器qBと第1吸気通路3A側の第2熱交換器10Aで第
2冷却系7Bを購成している(第1/−図)。
12B> are installed, respectively, and the first heat exchanger qA on the first intake passage 3A side and the second heat exchanger 10B on the second intake passage 3B side are installed. and the first heat exchanger 9B on the second intake passage 3B side and the second heat exchanger IOA on the first intake passage 3A side via the second communication passage /3B. They are connected to each other. These first and second communication paths /3A, /
3B is the first metal water purple of the first heat exchanger qA, 9B/
/AN//B and second heat exchanger IOA, second of 10H
It is for transferring hydrogen in the same way as the metal water purple compound /2A and /2B, and the first and second communication passages /3A
, /3B, the first . The first control valve 15A and the second control valve control the flow of hydrogen flowing through the second communication passages /3A and /3B.
A control valve 73B is attached to each. These two first heat exchangers 9 A + qB and two second heat exchangers I
Of OA and IOB, the first heat exchanger A on the first intake passage 3A side and the first heat exchanger 10B on the second intake passage 3B side connect the seventh cooling system 7A, and the second cooling system 7A on the second intake passage 3B side. A second cooling system 7B is constructed with the first heat exchanger qB and the second heat exchanger 10A on the side of the first intake passage 3A (Figure 1/-).

又、この各冷却系の第1熱交換器9A l qB及び第
2熱交換器101x 108は、それぞれ図示しない冷
却ファン(在来のエンジン?&却ファンでよい)からの
送風あるいは自動車走行時の走行風等の冷却風Wによっ
て冷却可能とされており、第1吸気通路3A側の第1熱
交換器9八と第2熱交換器IOAと、第2吸気通路3B
側の第1熱交換器9Bと第2熱交換器10Rとがそれぞ
れ交互に択一的に冷却される。尚、この実施例において
は、各熱交換器9A、9B、IOA、10Bを冷却風W
によって冷却する場合、第1、第1金属水素化物//A
N//B、/、2h、/、2nをそれぞれ約p o ’
cに温度維持するような風fifが得られるようになっ
ている。
In addition, the first heat exchanger 9A l qB and the second heat exchanger 101x 108 of each cooling system receive air from a cooling fan (not shown) (a conventional engine fan may be used) or when the car is running. The first heat exchanger 98 on the first intake passage 3A side, the second heat exchanger IOA, and the second intake passage 3B can be cooled by cooling air W such as running wind.
The first heat exchanger 9B and the second heat exchanger 10R on the side are alternately and selectively cooled. In this embodiment, each heat exchanger 9A, 9B, IOA, 10B is connected to cooling air W.
When cooling by the first, first metal hydride //A
N//B, /, 2h, /, 2n respectively about po'
It is designed to obtain a wind fif that maintains the temperature at c.

尚、この実施例の冷却装置においてはターボ過給機−の
過給圧P=0.7気圧、過給気流量Q=にNlll7m
 i n (2000c cディーゼルエンジン300
0rpm時)、冷却風量V = 2(:lN7/win
 (外気温度20℃)としている。また金属水素化物の
量を、第1熱交換器9Δ+ 9 nの第1金属水紫化物
(LΦN1.)を各にに9に、また第2熱交換器IOA
、10Hの第2金馬水素化物(TiFe )を各7に9
にそれぞれ設定してνする。
In the cooling system of this embodiment, the supercharging pressure P of the turbocharger is 0.7 atm, and the supercharging air flow rate Q is N117 m.
i n (2000cc c diesel engine 300
0 rpm), cooling air volume V = 2 (:lN7/win
(Outside air temperature 20°C). In addition, the amount of metal hydride is changed to 9 for each of the first metal water hydride (LΦN1.) of the first heat exchanger 9Δ+9n, and 9 for each of the second heat exchanger IOA.
, 10H second gold horse hydride (TiFe) to 7 and 9 each
and set them respectively to ν.

続いて、この冷却装置5の作用を第1図及び第3図を併
用して説明する。
Next, the operation of this cooling device 5 will be explained using FIG. 1 and FIG. 3 together.

先ず、第!吸気通路3Bを閉塞してターボ過給機2から
の高温(約/≠0°C)の過給気を第1吸気通路3Aを
介してエンジン/側に供給する場合について説明すると
、この場合、約1tto℃の高温吸気とされた過給気S
は、先ず第1冷却系7Aの第1熱交換器qAにおいて該
第1熱交換器9A内の第1金属水緊化物//Aと熱交換
して約f3℃まで冷却される。即ち、第1熱交換器qA
の第1金属水素化物//Aは、過給気温によって第1図
に示す如く約KO℃まで加熱されるが第1冷却系7Aの
第2熱交換器10B (第2通路3B側にある)の第2
金属水素化物/2Bは冷却風Wlとよって冷却され約t
io”cに温度保持されてしxる。従って、第1金属水
素化物//Aと第2金属水素化物72Bの間に△P)の
圧力勾配が生じ、第1金属水素化物//A側から第2金
属水素化物/2B側に向って第7連通W!5/3Δを介
して水素が移動し、第1熱交換器qAにおいて第1金屈
水素化物//Aの吸熱(水素ガス放出)作用により過給
気Sを約/ llO’Cから約f 5 ℃まで冷却する
とともに、第1熱交換器108においては水素吸蔵によ
り生じた熱を冷却風Wに放出する。即ち、この第1冷却
系7Aにおいては、第1吸気通路3A側にある第1熱交
換器9Aにおいて過給気Sの冷却(−次冷却)を行なう
一方、第2吸気通路313側にある第2熱交換器/□H
において第2金属水票化物/2Bの再生(即ち、水素の
吸蔵)を過給気熱によって行なっている。
First, number! A case will be described in which the intake passage 3B is closed and high-temperature (approx. Supercharged air S with high temperature intake air of about 1tto℃
First, in the first heat exchanger qA of the first cooling system 7A, the water is cooled to about f3° C. by exchanging heat with the first metal water condensate //A in the first heat exchanger 9A. That is, the first heat exchanger qA
The first metal hydride//A is heated to approximately KO°C by the supercharging temperature as shown in FIG. the second of
Metal hydride/2B is cooled by cooling air Wl for about t
io"c. Therefore, a pressure gradient of ΔP) is generated between the first metal hydride //A and the second metal hydride 72B, and the first metal hydride //A side Hydrogen moves from the second metal hydride/2B side via the seventh communication W!5/3Δ, and in the first heat exchanger qA, the first metal hydride//A absorbs heat (hydrogen gas is released). ) action cools the supercharged air S from about /llO'C to about f 5 °C, and in the first heat exchanger 108, the heat generated by hydrogen absorption is released to the cooling air W. That is, this first In the cooling system 7A, the supercharged air S is cooled (-cooling) in the first heat exchanger 9A located on the first intake passage 3A side, while the second heat exchanger / □H
In this process, the second metal water droplet/2B is regenerated (that is, hydrogen is absorbed) using supercharged air heat.

第1冷却系7Aにおいて一次冷却されて約g5″Cとさ
れた過給気Sは、さらに第2冷却系7Bの第2熱交換器
IOAにおいて二次冷却される。即ち、第2冷却系7B
の第2熱交換器IOA内の第2金属水紫化物/2Aは第
2制柳弁/ !; riを開くと吸熱(水素ガス放出)
反応を行い、20”C程度まで温度降下する。この吸熱
反応により一次冷却後の過給気Sはこの第1熱交換器I
OAを通過する間に約に夕°Cから約30℃まで冷、却
−されるC二次冷却)。
The supercharged air S that has been primarily cooled to about g5''C in the first cooling system 7A is further cooled secondarily in the second heat exchanger IOA of the second cooling system 7B. That is, the second cooling system 7B
The second metal water purple compound in the second heat exchanger IOA/2A is the second willow valve/! ; Opening ri absorbs heat (releases hydrogen gas)
A reaction occurs, and the temperature drops to about 20"C. Due to this endothermic reaction, the supercharged air S after primary cooling is transferred to this first heat exchanger I.
While passing through the OA, it is cooled from about 30°C to about 30°C (secondary cooling).

一方、第2冷却系7Bの第1熱交換器9B(第2吸気通
路3B側にある)内の第1金属水素化物//Bは冷却風
Wによって約p o ’cに温度維持されている。従っ
て、第1吸気通路3A側にある第1熱交換器IOAの第
2金属水素化物/、2Aと第2吸気通路3B側にある第
1熱交換器q11の第1金属水素化物l/Bの間に第1
図に示す如くΔもの圧力勾配が生じ、第2金属水素迫−
Qj2A側から第1金属水紫化物//B側に水素が移励
し、第1熱交換器りBにおいて第1金凪水紫化物//B
の再生(水素ガス吸蔵)が行われる。この場合、第1熱
交換器9Bにおいて発生する反応熱は冷却風Wに放出さ
れる。即ち、この第1冷却系7Bにおいては、第2熱交
換器/(7Aで過給気Sの二次冷却を行なう一方、第1
熱交換器qBにおいて該第1金属水素化#j//Bの再
生(水素ガス吸蔵)を行なうようになっている。
On the other hand, the temperature of the first metal hydride //B in the first heat exchanger 9B (located on the second intake passage 3B side) of the second cooling system 7B is maintained at approximately p o 'c by the cooling air W. . Therefore, the second metal hydride /, 2A of the first heat exchanger IOA located on the first intake passage 3A side and the first metal hydride /B of the first heat exchanger q11 located on the second intake passage 3B side. 1st in between
As shown in the figure, a pressure gradient of Δ is generated, and the second metal hydrogen is
Qj2 Hydrogen is transferred from the A side to the first metal water purpide //B side, and in the first heat exchanger B, the first metal water purpide //B
regeneration (hydrogen gas storage). In this case, the reaction heat generated in the first heat exchanger 9B is released to the cooling air W. That is, in the first cooling system 7B, the second heat exchanger/(7A performs secondary cooling of the supercharged air S, while the first
The first metal hydrogenation #j//B is regenerated (hydrogen gas storage) in the heat exchanger qB.

このようにターボ過給R,2からの過給気Sは、第1吸
気通路3Aにおいて2段階に冷却され、約/I−0℃の
高温から約30 ’CのfI温まで冷却される。従って
、エンジンにおける吸気の充填効率が−m向上し、エン
ジンの出力特性が良好となる。
In this way, the supercharged air S from the turbocharger R,2 is cooled in two stages in the first intake passage 3A, from a high temperature of about /I-0°C to an fI temperature of about 30'C. Therefore, the filling efficiency of intake air in the engine is improved by -m, and the output characteristics of the engine are improved.

尚、従来用いられていた空冷式の吸気冷却装置によれば
、約/ + 0 ’Cの過給気Sを約70″Cに冷却す
るのが限度である。
Note that, according to the conventionally used air-cooled intake air cooling device, the limit is that the supercharged air S of about /+0'C can be cooled to about 70''C.

上記吸熱、発熱反応の進行により第1冷却系7Aの第1
熱交換器Aの冷却能力及び第2冷却系7Bの第2熱交換
器/θAの冷MJ能カが落ちてきたときには、前記第1
、第2切換弁乙、2乙を切換えて過給気Sの流通経路を
第1吸気通路3A側から第2吸気通路3B側に変更し、
過給気冷却を第2冷却系7Bの第1熱交換器qBと第1
冷却系7Aの第2熱交換器10Bで行なう。即ち、吸気
通路が第1吸気通路3A側から第2吸気通路3B側に切
換わった時点においては第1冷却系7Aの第1熱交換器
ワAの第1金馬水素化物//Aは約rO6Cに、第2熱
交換器IOHの第2金属水素化物/2Bは約IIO℃に
、また第1冷却系7Aの第1熱交換器qBの第1金応水
素化物//Bは約11.O″Cに、第2熱交換器lOA
のN2金属水紫化#ff12Aは約20℃にそれぞれ温
度保持されている。
Due to the progress of the above-mentioned endothermic and exothermic reactions, the first cooling system 7A
When the cooling capacity of the heat exchanger A and the cold MJ capacity of the second heat exchanger/θA of the second cooling system 7B decrease, the first
, change the flow path of the supercharged air S from the first intake passage 3A side to the second intake passage 3B side by switching the second switching valves O and 2 O,
The supercharged air is cooled by the first heat exchanger qB of the second cooling system 7B and the first heat exchanger qB of the second cooling system 7B.
This is done in the second heat exchanger 10B of the cooling system 7A. That is, at the time when the intake passage is switched from the first intake passage 3A side to the second intake passage 3B side, the first gold horse hydride//A of the first heat exchanger A of the first cooling system 7A is approximately rO6C. The second metal hydride/2B in the second heat exchanger IOH is at about IIO°C, and the first metal hydride//B in the first heat exchanger qB in the first cooling system 7A is at about 11.0°C. O″C, second heat exchanger lOA
The N2 metal water purification #ff12A is maintained at a temperature of approximately 20°C.

この状態において過給気Sの流通経路が切換ねると、先
ず、第2冷却系7Bにおいては、第1熱交換器ワBの第
1金属水素化物//Bが過給気熱によって約110℃か
ら次第に昇温せしめられ、該男/金属水素化物//Bの
温度が約50℃に達して該第1金バ水素化IN//Bの
水素解雇圧が第2熱交換器IOAの第2金属水套化#/
、?Aの水素解雇圧より高くなり両者間に圧力単記が生
じた時点から該第7金灰水素化物//B側から第2金属
水素化物/、2A側に水素が移励し始め、過給気Sの冷
却作用が開始される。この第7金属水素化物//Bと第
2金属水素化物/、2A間の圧力単記は、該第1S第2
金瓜水素化物//B 、/、2Aの温度上昇(尚、第2
金馬水素化物/、2Aは水素ガス吸蔵に伴って次第に昇
温せしめられる)とともに大きくなり、最終的には第7
図において矢8ICで示す如き圧力単記に落ち若き、こ
の圧力単記駅頭で過給気Sの冷却く一次冷却)が行なわ
れる。尚、この時、第2冷却系7Bの第2熱交換器IO
Aの第2金馬水紫化物/2Aは、このときの水素ガス吸
蔵反応によりて再生される。
When the flow path of the supercharged air S is switched in this state, first, in the second cooling system 7B, the first metal hydride//B of the first heat exchanger B is heated to about 110°C by the heat of the supercharged air. The temperature of the first metal hydride IN//B reaches about 50°C, and the hydrogen discharge pressure of the first metal hydride IN//B reaches the second temperature of the second heat exchanger IOA. Metal water cloak #/
,? From the point when the hydrogen discharge pressure of A becomes higher and a pressure is generated between the two, hydrogen begins to be transferred from the seventh gold ash hydride//B side to the second metal hydride/2A side, and the supercharging gas The cooling action of S begins. The pressure between the seventh metal hydride//B and the second metal hydride/, 2A is the pressure between the 1S and 2A.
Temperature increase of gold melon hydride //B, /, 2A (in addition, the second
Kinma hydride/2A gradually increases in temperature as it absorbs hydrogen gas), and eventually the seventh
When the pressure reaches a point indicated by arrow 8IC in the figure, primary cooling (primary cooling) of the supercharging air S is performed at the station where the pressure is indicated. At this time, the second heat exchanger IO of the second cooling system 7B
The second gold horse water purple compound/2A of A is regenerated by the hydrogen gas storage reaction at this time.

一方、第1冷却系7Aにおいては、第1熱交換器qAの
第7金3水素化物//Aが冷却mWによって冷却されて
温度低下しその温度が約7I1.℃に達して第2金属水
素化@72B側から第1金属水素化物//A側に圧力単
記が生じた時点から第2金爬水紫化# / 2 B側か
ら第1金E5水紫化物//A側への水紫移励が開始され
(この時点で第1制御弁/jAを開く)、該第1熱交換
器10Rにおいて過給気冷却が、また第1熱交換器9A
において第1金篤水紫化物//Aの再生作用がそれぞれ
開始される。この両者間の圧力単記は、冷却MWによる
第1熱交換器ワAの冷却と過給気Sによる第2熱交換器
lOBの加熱により次第に太きくなリ、最終的には詔/
図において矢印りに示す如き圧力単記となって落ち善き
、過給気Sの冷却作用(二次冷却)と詔l熱交換器ワA
の第1金属水素化物//A再生作用とが動量的に行なわ
れる。
On the other hand, in the first cooling system 7A, the seventh gold trihydride//A of the first heat exchanger qA is cooled by the cooling mW and its temperature decreases to about 7I1. ℃ and the second metal hydride @ 72 B side to the first metal hydride / / From the time when the pressure is generated from the A side, the second gold water purplish # / 2 From the B side to the first metal E5 water purple // Water purple transfer to the A side is started (at this point, the first control valve /jA is opened), supercharge air cooling is started in the first heat exchanger 10R, and supercharge air cooling is started in the first heat exchanger 9A.
The regenerating action of the first kinatsumizupurikado//A is started at each step. The pressure between the two gradually increases due to the cooling of the first heat exchanger A by the cooling MW and the heating of the second heat exchanger IOB by the supercharging air S, and eventually
In the figure, the pressure decreases as shown by the arrow, and the cooling effect of the supercharged air S (secondary cooling) and the heat exchanger W
The regeneration action of the first metal hydride//A is carried out dynamically.

以後、上記の如く第7第2切換弁乙、2乙を適当に切換
制御してゆくことにより、過給気Sは連続的に冷却され
る。
Thereafter, the supercharged air S is continuously cooled by appropriately switching and controlling the seventh and second switching valves O and 2 as described above.

尚、上述の如く吸気通路3の第1、第2切換弁乙、2乙
の切換えは、各熱交換器(ワA、IOA>。
As mentioned above, the first and second switching valves B and 2 B of the intake passage 3 are switched by the respective heat exchangers (A, IOA).

(ヲBl/(7B)の冷却能力が落ちたときに行なうも
のであるが、この冷却能力の駅前を検知する方法として
は例えば各熱交換器内の圧力を圧力センサで検出し、吸
熱側(水素ガス友出側)の熱交換器中の水音圧力が所定
圧力以下に低下したときその冷却能力が低下したものと
同断する方法がある。またこの外に、例えばタイマーに
より、一定時間毎に吸気通路を切換える等の方法を採用
することもできる。
(This is done when the cooling capacity of ヲBl/(7B) has decreased, but a method for detecting this cooling capacity is, for example, by detecting the pressure inside each heat exchanger with a pressure sensor, and detecting the pressure on the heat absorption side ( There is a method to determine that when the water sound pressure in the heat exchanger (on the hydrogen gas side) falls below a predetermined pressure, it is assumed that the cooling capacity has decreased. It is also possible to adopt a method such as switching the intake passage.

次に、吸気冷却装置Sの具体的な構造例(2例)を説明
すると、先ず第4図には第1の構造例に係る吸気冷却装
置5が示されている。この吸気冷却装置5は、過給気S
の流通方向とエンジン冷却ファンからの送風による冷却
風Wの流通方向が平行とされたパラレルフロータイブの
ものであり、隔壁/9により第1呈/にAと第、2至/
gBのλ室に区画されたケーシング/gのItiI記第
1室/gAに第1冷却系7Aの第1熱交換器9Aと第2
冷却系7Bの第2熱交換器10Aを、また第、2至/g
Bに第2冷却系7Bの第1熱交換器qBと第1冷却系7
Aの第2熱交換器10Bをそれぞれ取付けるとともに、
該第1冷却系7Aの第1熱交換器9Aと第2熱交換器1
0Bを第1連通路/3Aで、また第2冷却系7Bの第1
熱交換器9Bと第1熱交換器IOAを第2連通路/3B
でそれぞれ接続している。この第1、第2連通路/3A
 、 /3T3にはそれぞれ水素の流通制御弁の第1、
第!制御弁/!;A、/3Bが取付けられている。又、
このケーシング/にの第1室/にΔには、吸気通路3か
ら分岐した第1吸気通路3Aと、冷却風通路2μから分
岐した第1冷却風通路211Aが、また第、2室/g8
には第2吸気通路3Bと第2冷却風通路、!lll1が
それぞれ接続されている。この吸気通路3の分岐点には
吸気通路切換用の第1、第2切換弁乙、2乙が、また冷
却風通路2’lの分岐点には冷却風通路切換用の第1、
第2冷却風切換弁ざ。
Next, to explain concrete structural examples (two examples) of the intake air cooling device S, first, FIG. 4 shows an intake air cooling device 5 according to a first structural example. This intake air cooling device 5 has supercharging air S
This is a parallel flow type in which the direction of flow of the cooling air W from the engine cooling fan is parallel to the direction of flow of the cooling air W blown from the engine cooling fan.
The first heat exchanger 9A of the first cooling system 7A and the second
The second heat exchanger 10A of the cooling system 7B is also
The first heat exchanger qB of the second cooling system 7B and the first cooling system 7 are connected to B.
While installing the second heat exchanger 10B of A,
The first heat exchanger 9A and the second heat exchanger 1 of the first cooling system 7A
0B in the first communication path/3A, and the first in the second cooling system 7B.
Heat exchanger 9B and first heat exchanger IOA are connected to second communication path/3B
are connected to each other. This first and second communication path/3A
, /3T3 have the first and third hydrogen flow control valves, respectively.
No.! Control valve/! ;A, /3B are installed. or,
In the first chamber/Δ of this casing, there are a first intake passage 3A branched from the intake passage 3 and a first cooling air passage 211A branched from the cooling air passage 2μ, and a second chamber/g8
The second intake passage 3B and the second cooling air passage,! lll1 are connected to each other. At the branching point of the intake passage 3, there are first and second switching valves O and 2 O for switching the intake passage, and at the branching point of the cooling air passage 2'l, there are first and second switching valves B and 2 O for switching the cooling air passage.
Second cooling air switching valve.

2Kがそれぞれ取付けられている。このように購成され
た吸気冷却装置Sにおいては、過給気切換用の第1、第
2切換弁乙、2乙及び第1、第2冷却風切換弁1.2.
fを適宜に切換制御して第1室/にAと第2室/にB内
に過給気Sと冷却風Wを択一的に流通せしめることによ
り、前述の如き過給気Sの冷却作用が行なわれる。
2K are installed respectively. In the intake air cooling device S purchased in this way, the first and second switching valves O, 2 O and the first and second cooling air switching valves 1, 2, 1, 2, and 3 are used for switching supercharging air.
The cooling of the supercharged air S as described above is achieved by selectively flowing the supercharging air S and the cooling air W into the first chamber/A and the second chamber/B by appropriately switching and controlling f. action is taken.

第5図及び第4図には第2の構造例に係る吸気冷却装H
5が示されている。この吸気冷却装置5は、冷却風Wと
して自動車の走行風を利用し且つ過給気Sと冷却風Wを
交差状に流通させるようにしたいわゆるクロスフロータ
イブのものであり、隔壁19によりその内部が第1室/
g八と第2室ノ、7Bに区画形成されたケーシング/に
の前記第1室/KAと第2呈/にB内に、第1金属水素
化物(//A、//A ・ ・) 、(//n、//n
 ・ ・)と冷却フィン2S付きの冷却風通路、2.l
l−92Il・・と吸気分通路20..20・・とを層
駄に積みil(ねて形成した第1熱交換器(qA、qB
>と、第2金属水素化物(/、、3A、/jA・・)、
(/、:IB。
5 and 4 show an intake air cooling system H according to the second structural example.
5 is shown. This intake air cooling device 5 is of a so-called cross-flow type that uses the running wind of a car as the cooling air W and allows the supercharging air S and the cooling air W to flow in a crosswise manner. is the first room/
g A first metal hydride (//A, //A ・ ・) is contained in the first chamber /KA and second chamber /B of the casing / which is divided into eight and second chambers and 7B. , (//n, //n
・・) and a cooling air passage with cooling fins 2S, 2. l
l-92Il... and intake passage 20. .. The first heat exchanger (qA, qB
> and second metal hydride (/,, 3A, /jA...),
(/, :IB.

/2B・・)と冷却フィン、23(=Jきの冷却風通路
2I/−,211・・と吸免分通路、20’、20・・
とを層駄に積み重ねて形成した第2熱交換器(/QA。
/2B...) and cooling fins, 23 (=J's cooling air passage 2I/-, 211... and suction/discharge branch passage, 20', 20...
The second heat exchanger (/QA.

10B)とをそれぞれ直列的に配置するとともに、第1
雀/、!i’A側の第1熱交換器9八と第2室/ざB側
の第2熱交換器10Bを第1 ili制御弁/りA付き
の第1連通路/3Δにより、また第1至/gAの第2熱
交換器IOAと第25≦/gBの第1熱交換器qBを8
2制御弁15Il付きの第2連通路/3Bによりそれぞ
れ連通せしめている。又、この各熱交換器(9A、qL
l)、(10Δ+ioB>の冷却風通路2≠と冷却フィ
ン25は相互に直交方向に形成されている。この第1 
室/ g Aと第2室/gDは、吸気通路3との接u2
 r?l−に設けられた第11第2切換弁6,2乙によ
って択−的逸こ吸気通路3側に接続されるとともに、該
第1、第2切換弁乙9.2乙の取付位置と直交する位置
に形成した第1、第2冷却風導入0.22A、22Bに
設けた第7ゲート2/A及び第2ゲート、2/B (択
一的に開閉される)により冷却風(走行風)Wがその内
部に択一的に導入されるようになっている。
10B) are arranged in series, and the first
sparrow/,! The first heat exchanger 98 on the i'A side and the second heat exchanger 10B on the second chamber/za B side are connected to the first The second heat exchanger IOA of /gA and the first heat exchanger qB of 25≦/gB are 8
They are communicated with each other by a second communication passage/3B equipped with two control valves 15Il. In addition, each heat exchanger (9A, qL
l), (10Δ+ioB> cooling air passage 2≠ and cooling fins 25 are formed in mutually orthogonal directions.
The chamber/gA and the second chamber/gD are connected to the intake passage 3 by u2
r? The first and second switching valves 6 and 2 are connected to the intake passage 3 side by the 11th and 2nd switching valves 6 and 2 provided at 9. Cooling air (driving wind ) W is selectively introduced into it.

この第2構造例の吸気冷却装置Sは、第1、第2切換弁
乙、2乙と第1.82ゲート、2/Δ、2/Bを適宜に
開閉制御することにより前述の如くして過給気Sの冷却
作用を行なう。
The intake air cooling device S of this second structural example is constructed as described above by appropriately opening and closing the first and second switching valves O, 2 O, and the 1.82nd gate, 2/Δ, and 2/B. Performs a cooling effect on the supercharged air S.

(発明の効果) 本発明の過給機付エンジンの吸気冷却装置は、水素吸蔵
時に発熱し、水素放出時に吸熱する金属水素化物の吸熱
作用を利用して過給気を冷却し、しかもその場合該金風
水素化物の再生(水素ガス吸蔵・放熱反応)を特別の動
力を用いることなく行うようにしているため、過給気を
車雀内クーラの冷媒を利用して冷却するようにした従来
の吸気冷却装置(実開昭!;7−117723号公報)
の場合の如く過給気冷却時にエンジン出力が低下すると
いうような不具合が発生することがなく、より動量的に
過給気の冷却を行なうことができるという効果がある。
(Effects of the Invention) The intake air cooling device for a supercharged engine of the present invention cools supercharged air by utilizing the endothermic action of metal hydrides, which generate heat when storing hydrogen and absorb heat when releasing hydrogen. Since the regeneration of the gold wind hydride (hydrogen gas storage/heat release reaction) is performed without using special power, the conventional method used to cool the supercharged air using the refrigerant in the cooler inside the car. intake air cooling device (Jitsukaisho!; Publication No. 7-117723)
This method has the advantage that the supercharged air can be cooled more dynamically without causing problems such as a decrease in engine output during cooling of the supercharged air as in the case of the above.

又、金属水素化物の吸熱反応を利用して過給気を冷却す
るようにしているため、必要に応じて過給銀を外気温度
以下にまで冷却することができ、実開昭!;7−/31
132/号公報に示されている空冷タイプの吸侭冷却−
JA買あるいは実開昭57−/3773!;号公報に示
されている水冷タイプの吸気冷却装置に比して過給気の
冷却限界をさらに低下(吸気の充填効率冬増進)させる
ことができるという効果もある。
In addition, since the supercharged air is cooled by utilizing the endothermic reaction of metal hydrides, the supercharged silver can be cooled down to below the outside air temperature if necessary, which is a real breakthrough! ;7-/31
Air cooling type suction cooling shown in Publication No. 132/
JA buy or Jitsukai Showa 57-/3773! There is also the effect that the cooling limit of supercharged air can be further lowered (improvement of intake air filling efficiency in winter) compared to the water-cooled type intake air cooling device shown in the publication.

1、図面のB@な脱明 第7図は金属水素化物の特性線図、爪!図は金属水素化
物を利用した吸気冷却装置の原理図、第3図は、本発明
の実脂例に係る吸気γhi′11装置のシステム図、第
を図ないし第3図は’53[21に示した吸気冷却装置
の具体的な鼎造例脱明図である。
1. Figure 7 of the drawing is a characteristic diagram of metal hydrides, nails! The figure is a principle diagram of an intake air cooling device using metal hydride, FIG. FIG. 3 is an exploded view of a specific example of the construction of the intake air cooling device shown in FIG.

/・・−・・エンジン λ・・・・・過給機 3・・・・・吸気通路 3A・・・・第1吸気通路 3B・・・・第2吸気通路 グ・・・・・排気通路 デA、7B・・・第1熱交換器 10Δ、10D・・・第2熱交換器 //AI//B・・・第1金属水素化物/、2A、/、
2B・・・第−金属水素化物73A 、 /3B・・・
連通路 15AI/3T3・・・制御弁 出 願 人 東洋工業株式会社 代理人 弁理士太浜 博、′ユ、”、?・)二J′−+
、、、、−□ +1′1.1度(C) 、2.0 .2汐 30 3S ゲ0 +i、、1、度逆敢 1000/T (//10第6川 手続補正書(自発) (q゛1°許庁審判長 殿) (特許庁審査官 殿) 1、事件の表示 昭和jに年 特 訂 願 第 /ざ7602号2、発明
の名称 過給機付エンジンの吸気冷却装置3、補正をす
る者 1f(’lとの1y、1係 特許出願人11 所 広、
17、□1県安芸郡府中町新地6番1−」2′1(ろ:
 (313) 東洋工業株式会社イ5 、’<と 山 
崎 分 樹 4、代理 人 5、補正命令の1」イ・] 自 発 7 補正の内容 ′i) 明細書第7頁末行「条件第1金属」とあるの:
「条件(M/金金属と補正する。
/... Engine λ... Supercharger 3... Intake passage 3A... First intake passage 3B... Second intake passage group... Exhaust passage DeA, 7B...first heat exchanger 10Δ, 10D...second heat exchanger//AI//B...first metal hydride/, 2A,/,
2B...-th metal hydride 73A, /3B...
Communication path 15AI/3T3...Control valve Applicant: Toyo Kogyo Co., Ltd. Agent Patent attorney Hiroshi Taihama,'Yu,',?・)2J'-+
, , , -□ +1'1.1 degrees (C) , 2.0 . 2 Shio 30 3S Ge0 +i,, 1, degree of reversal 1000/T (//10 6th river procedural amendment (voluntary) (q゛1° Chief Examiner of the Patent Office) (Mr. Patent Office Examiner) 1. Indication of the case Showa J to 2003 Special Request for Correction No. 7602 No. 2, Title of Invention Intake Air Cooling Device for Supercharged Engine 3, Amended Person 1f ('l and 1y, 1 Patent Applicant 11 Places) wide,
17, □ 6-1 Shinchi, Fuchu-cho, Aki-gun, 1-"2'1 (Ro:
(313) Toyo Kogyo Co., Ltd. I5, '< and Mt.
Waki Saki 4, Agent 5, Amendment Order 1'i) Spontaneous 7 Contents of the Amendment 'i) The last line of page 7 of the specification says ``Condition No. 1 Metal'':
“Conditions (M/Gold metal and correct.

(2)明則薔第1乙頁第1ノ行「熱交換器A」とあるの
を「熱交換器7Δ」と補正する。
(2) Correct the phrase ``Heat exchanger A'' in the first line of page 1 of Akinorihara to ``Heat exchanger 7Δ''.

(3)明細書第17頁第1≠行、同負第1ざ行、第1g
頁第12行及び同頁第1ざ行にそ扛ぞれ1−単記」とあ
るのをそれぞれ1勾配」と補正する。
(3) Page 17 of the specification, line 1≠, line 1, line 1, g
In the 12th line of the page and the 1st line of the same page, the words ``1-single note'' are corrected to ``1 slope, respectively''.

(4)明?Iui書第1f頁第3行[圧力単記・・・単
記状態」とりるのを「圧力勾配に落ち増き、この圧力勾
配状態」と補正する。
(4) Ming? Iui, page 1f, line 3 [Pressure single entry...single entry state] is corrected to "pressure gradient increases and falls, and this pressure gradient state".

(6)明細曹第1り頁第≠行「化物//A再生」とある
のを「化物//Aの再生」と補正する。
(6) On the first page of the specification, the line ≠ "Reproduction of monster //A" is corrected to "Reproduction of monster //A."

明f4II盲第1り頁第j狛丁「第1第ノ切侠弁」とる
のを[第/、第二切換弁4と補正する。
Clear f4II blind 1st page No. J Koma-cho ``1st switch valve'' is corrected as [No./, 2nd switch valve 4.

Claims (1)

【特許請求の範囲】[Claims] /、過給機を備えたエンジンにおいて、過給機下流の吸
気通路を第1吸気通路と第2吸気通路とで描成し、上記
副吸気通路への過給気の流入を交互に行なう切換弁を設
け、水素吸蔵時に発熱し、水嵩放出時に吸熱する第7金
属水素化物を内蔵した第1熱交換器を、上記両吸気通路
内を流れる過給気と熱交換可能に上記副吸気通路にそれ
ぞれ設け、水素吸蔵時に発熱し、水嵩放出時に吸熱し、
しかも所定温度における水嵩解離圧が上記第1金式水素
化物より高い第2金属水素化物を内蔵した第2熱交換器
を上記両吸気通路内を流れる過給気と熱交換可能にしか
も上記第1熱交換器より下流の上記副吸気通路にそれぞ
れ設け、上記相互に別々の吸気通路にある第1熱交換器
と第2熱交換器を接続する各連通路に、該連通路内の水
嵩の移動を制御する制御弁をそれぞれ設けたことを特徴
とする過給機付エンジンの吸気冷却装置。
/ In an engine equipped with a supercharger, the intake passage downstream of the supercharger is defined as a first intake passage and a second intake passage, and supercharged air is alternately introduced into the sub-intake passage. A first heat exchanger provided with a valve and containing a seventh metal hydride that generates heat when storing hydrogen and absorbs heat when releasing water in bulk is connected to the sub-intake passage so as to be able to exchange heat with the supercharging air flowing in both of the intake passages. They are installed respectively, generate heat when absorbing hydrogen, absorb heat when releasing bulk water,
Moreover, the second heat exchanger containing a second metal hydride having a water bulk dissociation pressure higher than that of the first metal hydride at a predetermined temperature is capable of exchanging heat with the supercharging air flowing in both the intake passages. Movement of water volume in each communication passage provided in each of the sub-intake passages downstream of the heat exchanger and connecting the first heat exchanger and the second heat exchanger located in the mutually separate intake passages. An intake air cooling device for an engine with a supercharger, characterized in that each control valve is provided to control the following.
JP58181602A 1983-09-27 1983-09-27 Intake-gas cooling apparatus for engine equipped with supercharger Pending JPS6073013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58181602A JPS6073013A (en) 1983-09-27 1983-09-27 Intake-gas cooling apparatus for engine equipped with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58181602A JPS6073013A (en) 1983-09-27 1983-09-27 Intake-gas cooling apparatus for engine equipped with supercharger

Publications (1)

Publication Number Publication Date
JPS6073013A true JPS6073013A (en) 1985-04-25

Family

ID=16103673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58181602A Pending JPS6073013A (en) 1983-09-27 1983-09-27 Intake-gas cooling apparatus for engine equipped with supercharger

Country Status (1)

Country Link
JP (1) JPS6073013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741156A (en) * 1985-10-26 1988-05-03 Daimler-Benz Aktiengesellschaft Process for igniting a regenerative soot filter in the exhaust gas connection of diesel engines
US5085271A (en) * 1988-05-25 1992-02-04 Hitachi, Ltd. Heat accumulation system and method of operating the same
US7096860B2 (en) * 2000-10-05 2006-08-29 Audi Ag Charge cooling circuit for a multi-cylinder internal combustion engine with a turbo-supercharger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741156A (en) * 1985-10-26 1988-05-03 Daimler-Benz Aktiengesellschaft Process for igniting a regenerative soot filter in the exhaust gas connection of diesel engines
US5085271A (en) * 1988-05-25 1992-02-04 Hitachi, Ltd. Heat accumulation system and method of operating the same
US7096860B2 (en) * 2000-10-05 2006-08-29 Audi Ag Charge cooling circuit for a multi-cylinder internal combustion engine with a turbo-supercharger

Similar Documents

Publication Publication Date Title
US4161211A (en) Methods of and apparatus for energy storage and utilization
EP2412950B1 (en) Charge air cooler, cooling system, and intake control system
US4085590A (en) Hydride compressor
US5085271A (en) Heat accumulation system and method of operating the same
JP2005517857A (en) Method for controlling temperature of gas sent to engine of automobile and apparatus for adjusting temperature of gas
US11624318B2 (en) Thermal energy storage system comprising a packed-bed heat storage unit and a packed-bed cold storage unit, and method for operating a thermal energy storage system
CN105977573A (en) Battery heat management system for electromobile
KR102273464B1 (en) Integrated thermal management circuit for vehicle
JPS6073013A (en) Intake-gas cooling apparatus for engine equipped with supercharger
JP2002056865A (en) Compressed air supply device for fuel cell
CN113324348B (en) Adsorption heat pump based cooling, heating and power combined supply system and method utilizing coal-fired flue gas
CN115139741A (en) Pure electric vehicle type heat pump system with hot gas bypass circulation
JPH109709A (en) Metal hydride adsorption type thermally driven refrigerating machine
CN114110833B (en) Air conditioning unit and control method thereof
JPH0213715Y2 (en)
JPH07243717A (en) Hydrogen absorbing alloy heat pump
JPS5835397A (en) Method for changing over number of circulations through passages in finned multi-pipe type heat exchanger
CN111923693A (en) Electric automobile heat pump air conditioning system and electric automobile
CN114810255B (en) Unmanned underwater vehicle power system based on compressed carbon dioxide energy storage
JPH0210259Y2 (en)
CN220904626U (en) Thermal management system and car
KR100406980B1 (en) Compressor-driven Metal Hydride Heat Pump System for Cooling And Refrigerating Operating with Two Different Metal Hydrides
CN211625763U (en) Air source cooling and heating heat pump system with efficient heat exchange function
JP2643235B2 (en) Metal hydride heating and cooling equipment
RU21951U1 (en) HEAT EXCHANGER