JPS5835397A - Method for changing over number of circulations through passages in finned multi-pipe type heat exchanger - Google Patents

Method for changing over number of circulations through passages in finned multi-pipe type heat exchanger

Info

Publication number
JPS5835397A
JPS5835397A JP13331781A JP13331781A JPS5835397A JP S5835397 A JPS5835397 A JP S5835397A JP 13331781 A JP13331781 A JP 13331781A JP 13331781 A JP13331781 A JP 13331781A JP S5835397 A JPS5835397 A JP S5835397A
Authority
JP
Japan
Prior art keywords
heat exchanger
circulations
heat
sea water
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13331781A
Other languages
Japanese (ja)
Inventor
Seiichi Konaka
小仲 清一
Shinya Ooya
大矢 新屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKUSHIYON GAS KIKAN SEISAKUSHO KK
Original Assignee
SAKUSHIYON GAS KIKAN SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKUSHIYON GAS KIKAN SEISAKUSHO KK filed Critical SAKUSHIYON GAS KIKAN SEISAKUSHO KK
Priority to JP13331781A priority Critical patent/JPS5835397A/en
Publication of JPS5835397A publication Critical patent/JPS5835397A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes

Abstract

PURPOSE:To maintain a predetermined flow velocity in a passage at a heat-transmitting part and prevent a heat exchanger from generating a malfunction or an accident, by a method wherein the number of circulations through the passage in a heat exchanger is changed over at a predetermined value of the change ratio of operating conditions of the heat exchanger. CONSTITUTION:At the time of operating under a rated load, at gated partition walls 11-14 provided in an inlet chamber 6' for a heat-transmitting medium (sea water) at an end of the heat exchanger and a turning-back chamber at the other end, only a valve 11' is closed and the other valves are opened. As a result, the cooling sea water W1 of about 30 deg.C used as the heat- transmitting medium eneters the chamber 6', passes through about one half of cooling pipes 1, turns back in the chamber 7' at the other end, passes through the rest of the pipes 1, enters a downstream-side partitioned chamber partitioned by the valve 11', and flows out as sea water W2 heated to about 38 deg.C. At the time of operating under 75-50% load, the flow rate q1 of sea water is set to be 1/2-1/4W1, the valve 11' is opened, the other valves 12'-14' are closed, and the number of circulations of q1 through the passage is set at 4. Accordingly, the flow velocity of the sea water in the passage becomes 2q1/W1 times, namely, 1-1/2 times of that under the rated load, so that a flow velocity higher than the scaling limit can be obtained.

Description

【発明の詳細な説明】 この発明は、システム中の一翼をになって設備される熱
交換器の負荷熱交換量、または熱交換流体流量の変動割
合が、ある程度を越えて大幅な場合、熱交換器の性能2
機能をそれに追随せしめる合理的方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION This invention provides a heat exchanger that is installed as a part of a system when the load heat exchange amount or the rate of change in the heat exchange fluid flow rate is large beyond a certain level. Exchanger performance 2
It concerns a rational method for making functions follow it.

熱交換器は、それぞれ熱媒体、交換流体の温度。Heat exchangers change the temperature of the heat medium and exchange fluid, respectively.

圧力、流量等の使用条件に応じ、適正な構成材料。Appropriate constituent materials depending on usage conditions such as pressure and flow rate.

熱伝達率、各部流速があることは当然である。熱交換器
の使用条件変動に対し、従来、熱媒体流量をそれに追随
せしめる方法が一般であるが、その変動割合がある限度
以上となると、熱交換器の性能9機能に悪影響が生ずる
ことは勿論、取扱う流体、熱媒体の物性によっては、全
体または局部的過熱、適冷、塩析や局部的閉塞等重大な
故障の原因となる例も少なくない。
It goes without saying that there are heat transfer coefficients and flow velocities at each part. Conventionally, the conventional method is to make the heat medium flow rate follow changes in the operating conditions of the heat exchanger, but if the rate of change exceeds a certain limit, it goes without saying that the performance 9 functions of the heat exchanger will be adversely affected. Depending on the physical properties of the fluid and heat medium being handled, there are many cases in which serious failures such as overall or local overheating, inadequate cooling, salting out, or local blockage occur.

この発明は、熱交換器の使用条件変動割合の一定値を境
にして、器内流路回流回数を変換し2例えば負荷半減、
流量半減に応じてその流路回流回数を2倍または4倍に
する等、適当な伝熱部流路流速金維持し1機能不全、事
故発生を防止することのできる案際的方法を提供するも
のでおる。
This invention converts the number of circulations in the internal flow path at a constant value of the rate of change in the operating conditions of the heat exchanger.
To provide a practical method that can prevent malfunctions and accidents by maintaining an appropriate flow rate in a heat transfer section, such as doubling or quadrupling the number of circulations in the flow path in response to a halving of the flow rate. It's something.

以下具体例について説明する。第1図は、船舶推進主機
としてのディーゼル機関の過給装置中間冷却器の従来形
式を概念的に示した説明図である。
A specific example will be explained below. FIG. 1 is an explanatory diagram conceptually showing a conventional type of supercharger intercooler for a diesel engine as a main marine propulsion engine.

排気タービン過給装置等で圧縮された200’0桿度の
高温空気が中間冷却器空気入口4よりA1の如く流入し
、海水冷却管束1により冷却され、密度を増し50℃程
度となって空気出口5よりA2の方向に流出する。
High-temperature air of 200'0 degrees Celsius compressed by an exhaust turbine supercharging device, etc. flows into the intercooler air inlet 4 as shown in A1, is cooled by the seawater cooling tube bundle 1, increases its density, becomes about 50 degrees Celsius, and becomes air. It flows out from the outlet 5 in the direction of A2.

、一方、熱媒体として約30’O程度の冷却海水w1は
ツ管接手9より流入室6咳入り、はぼ半数の冷却管1を
通って他端の折返室7に中間集合、折返して。
On the other hand, as a heat medium, cooling seawater w1 of about 30°O enters the inlet chamber 6 from the tube joint 9, passes through about half of the cooling tubes 1, and is intermediately collected in the turning chamber 7 at the other end, where it is turned back.

残り約半数の冷却管1を流れ、仕切壁8によって仕切ら
れた下流側仕切室に入り、管接手1oより約38℃程度
の受熱したw2を流出する。2及び3は管板を示い空気
側と海水側の区割壁となっている。
It flows through the remaining half of the cooling pipes 1, enters the downstream partition chamber partitioned by the partition wall 8, and flows out w2 which has received heat of about 38° C. from the pipe joint 1o. 2 and 3 indicate tube plates, which serve as dividing walls between the air side and seawater side.

冷却媒体として海水を使用するのが一般であるため、冷
却管内の着力を未然に防止することが絶対要件であり、
管内海水温度の最高を45℃程度。
Since seawater is generally used as a cooling medium, it is an absolute requirement to prevent build-up in the cooling pipes.
The maximum seawater temperature within the jurisdiction is approximately 45℃.

管内流速を0−5 rv’s程度以上に保つことが必要
とされている現状である。近時、省エネルギーが益々急
務となり、船舶の巡航速度も益々低下するに至り、定格
出力の50%程度で巡航する時代となった。
Currently, it is necessary to maintain the flow velocity in the pipe at about 0-5 rv's or higher. In recent years, energy conservation has become an increasingly urgent issue, and the cruising speed of ships has become lower and lower, and we are now in an era where ships are cruising at about 50% of their rated output.

従ってその時の定格との変化割合は下記のごとく大幅と
なり、ん流3量がほぼ半減、要交換熱量は%程度の部分
負荷での連続稼動も要求されることとなる。上記要求に
従来の方法で応じた場合、冷却海水量Wは約にとなり、
管内流速は定格時の又と低減し2着力限界速度を下回る
結果となり、連続稼動が甚だ危険なものとなるので、現
状は海水量W1をそれ以上のある程度の値に押さえ、従
って。
Therefore, the rate of change from the rating at that time will be significant as shown below, and continuous operation at a partial load will be required, with the amount of perfusion being reduced by almost half and the amount of heat exchanged being approximately %. If the above request is met using the conventional method, the amount of cooling seawater W will be approximately
The flow velocity in the pipe decreases compared to the rated value, resulting in a fall below the 2-force limit speed, making continuous operation extremely dangerous. Therefore, at present, the seawater volume W1 is kept at a certain value higher than that.

必要以下の低温となった空気Mの対応策を取り妥協して
いる現状である。この発明は、上記現状の問題点を解決
したもので、以下第2.第3図の説明図について説明す
る。
The current situation is that a compromise is being taken to deal with the air M, which has become lower than necessary. This invention solves the above-mentioned current problems. The explanatory diagram of FIG. 3 will be explained.

第2図は、定格負荷時、第3図は2定格の75〜50%
部分負荷時において、定格負荷時の流路回流回数を切換
えた場合の、それぞれ説明図である。
Figure 2 shows rated load, Figure 3 shows 75 to 50% of 2 rated load.
FIG. 6 is an explanatory diagram of a case where the number of passage circulations at a rated load is switched between at a partial load and at a rated load.

定格負荷時は第2図のごとく、熱交換器の熱媒体海水人
口M 6’及び他端折返N7′に設けた。おのおの開口
付仕切壁11.12. 13及び14のうち、弁11′
のみを閉とし、弁12’、 13’及び14′を開とす
るので、海水w1の流れは第1図と全く同様である。こ
の場合。
At the time of rated load, as shown in Fig. 2, the heat exchanger was provided at the heat medium seawater population M6' and the other end turned back N7'. Partition walls with respective openings 11.12. Among 13 and 14, valve 11'
Since the valves 12', 13', and 14' are opened, the flow of seawater w1 is exactly the same as in FIG. 1. in this case.

それぞれの弁開口の大きさ、即ち流量能力は、弁14′
のみはW+ K対して差支えのないものとい その他の
弁11’、 12’及び13′はW1/2に対するもの
でょいgなお、開口形状、大きさ及び仕切壁への付設関
係位置等、最合理的に選定するものとする。
The size of each valve opening, i.e. the flow capacity, is determined by the valve 14'
The other valves 11', 12' and 13' are for W1/2.Please note that the opening shape, size, position of attachment to the partition wall, etc. The selection shall be made rationally.

75〜50チ負荷時は第3図のととく外弁を開閉し。When the load is 75 to 50 inches, open and close the outer valve shown in Figure 3.

海水の流路回流数を第2図の2倍に変換したものである
。即ち、海水流量q1を(3A −% ) Wlとない
弁11′ヲ開とし、その他の弁12′、13′及び14
′ヲ閉となしe q+の流路回流数は4となす。この場
合、管内海水速度は定格負荷時のW、 X 2となりe
’ (Hk (3A〜K ) Wlとした時の管内流速
は定格負荷時流速の(1〜イ)となり管内着力限度以上
の流速とすることが出来る。必要に応じ海水の管内流路
回流数を6.筐たは8とすることも上述と同一思想で可
能である。
The number of circulations in the seawater channel has been converted to twice that in Figure 2. That is, when the seawater flow rate q1 is (3A -%) Wl, the valve 11' is opened, and the other valves 12', 13' and 14 are opened.
The number of circulations in the flow path for q+ is 4. In this case, the seawater velocity in the pipe is W at the rated load, X 2, and e
'(Hk (3A~K) Wl) The flow velocity in the pipe is (1~A) of the flow velocity at rated load, and it is possible to make the flow velocity higher than the limit of the bonding force in the pipe.If necessary, the number of circulations of seawater in the pipe can be changed. 6. It is also possible to use casing 8 or 8 with the same idea as above.

従って負荷範囲は50%に上筒らず、必要に応じいくら
でも低減負荷に対し安定した機能の熱交換器を提供する
ことができる。これらの変換弁は。
Therefore, the load range is not limited to 50%, and it is possible to provide a heat exchanger with stable functions even when the load is reduced as necessary. These conversion valves.

仕切壁の上流側室の開口と偏心した位置に設けたそれぞ
れ回転軸11: 12τ13’及び14’により、熱又
換器璧を気密貫通した軸端を2手動または自動その他の
動力で仕切壁前後の流体圧力差により、−それぞれ閉り
勝手の弁として開閉することに困難はなく、また場合に
よっては熱交換器内に適当な開閉装置を内蔵せしめるこ
ともできる。こnらの弁は、それぞれその部に働く流体
圧力により閉り勝手とし、開閉する偏心軸と閉り方向に
余裕のある構成とし、弁座と−の水密を差支えない程度
とすることは容易である。なお、この際多少の弁座より
の漏洩は何等本来の目的をそこなうものではないことを
付言する。弁を閉り勝手構成となし、弁座当りを容易に
し開閉機何も簡単小型なものとなし得る上、多少の振動
に対しても弁気密を保つことができ、比較的狭隘な室内
装備に流体抵抗を最小として装備できる実際的利点があ
る。
Rotating shafts 11 and 12τ13' and 14', respectively, are installed at positions eccentric to the opening of the upstream chamber of the partition wall, and the shaft ends, which pass through the heat exchanger wall in an airtight manner, are rotated manually or automatically or with other power to rotate the front and back of the partition wall. Due to the fluid pressure difference, there is no difficulty in opening and closing the valves as closed-handed valves, and if necessary a suitable switching device can also be integrated into the heat exchanger. These valves can be easily closed by the fluid pressure acting on each part, and have a structure with ample space in the opening/closing eccentric shaft and in the closing direction, so that it is easy to maintain watertightness between the valve seat and the valve seat. It is. It should be noted that a small amount of leakage from the valve seat does not impair the original purpose in any way. The valve has a structure that allows it to be closed easily, making it easy to touch the valve seat and making the opening/closing machine simple and compact.The valve can also be kept airtight even against slight vibrations, making it suitable for relatively small indoor installations. It has the practical advantage of being equipped with minimal fluid resistance.

以上熱媒体の流路回流回数変換方法を説明したが、必要
に応じ熱交換流体側の流路回流回数を変換する方法につ
いても上記と同様にしてなし得るものである。
The method for converting the number of times the heat medium circulates through the flow path has been described above, but the method for converting the number of times the heat exchange fluid circulates through the flow path can also be performed in the same manner as described above.

この発明の効果については一部前述したが、フィン付多
管式熱交換器の流路回流回数を、その容器内で、その稼
動を停止することなく随時変換できる方法を提供するこ
とにより、その熱交換器を含む全体システムの操業範囲
を拡大できる結果ともなり、その中から拘束なく最適操
業条件を選択できる利点につながる。フィン付多管式熱
交換器の性能1機能を定格負荷から以下広範囲に最低部
分負荷1で安定確得できる方法を提供した効果は少なく
ない。
Some of the effects of this invention have been described above, but by providing a method that can change the number of circulations in the flow path of a finned multitubular heat exchanger at any time without stopping its operation within the container. This also results in the ability to expand the operating range of the entire system including the heat exchanger, leading to the advantage of being able to select the optimal operating conditions from among them without restriction. The effect of providing a method that can stably obtain performance 1 function of a finned shell-and-tube heat exchanger over a wide range from the rated load to the lowest partial load 1 is considerable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、船舶推進主機としてのディーゼル機関の過給
装置の中間冷却器の従来形式を概念的に示した説明図、
第2図は、定格負荷時におけるこの発明方法を実施した
第1図と同一目的の中間冷却器の概念的説明図、第3図
は、第2図の中間冷却器t−ハは50チ負荷とした時の
熱媒体海水流路回流回数を4に変換した時の概念的説明
図である。 1・・・・・・海水冷却管束、  2,3・・・・・・
管板。 4・・・・・・中間冷却器空気入口 5・・・中間冷却器空気出口。 6.6′・・・冷却海水流入室、。 7.7′・・・冷却海水折返室、  8−・従来の仕切
壁。 11、12. 13.14・・・この発明方法における
開口を設けた仕切壁。 11:12z13;14′・・・この発明方法における
仕切壁開口の開閉弁。 11τ12? 13τ14’・、、この発明方法におけ
る開閉弁を開閉する回転軸。 A1・・・高温入口空気、A2・・・冷却された低温空
気。 Wl・・・流入冷却海水、Wl・・・出口海水。 al・・・部分負荷時の高温入口空気。 a2・・・冷却され!低温空気。 ql・・・部分負荷時の流入冷却溝X、   q2・・
・出口海水。 以  上 特許出願人     小 仲 清 − ■サクション瓦斯機関製作所 莢りは 、、、al 1上匡
FIG. 1 is an explanatory diagram conceptually showing a conventional type of intercooler of a supercharging device of a diesel engine as a main engine for marine propulsion;
Fig. 2 is a conceptual explanatory diagram of an intercooler having the same purpose as Fig. 1 in which the method of the present invention is implemented at rated load, and Fig. 3 shows that the intercooler t-c in Fig. 2 is loaded with 50 cm. FIG. 2 is a conceptual explanatory diagram when the number of circulations in the heat medium seawater flow path is converted to 4. 1...Seawater cooling tube bundle, 2,3...
tube plate. 4...Intercooler air inlet 5...Intercooler air outlet. 6.6'...Cooling seawater inflow chamber. 7.7'... Cooling seawater turning room, 8-. Conventional partition wall. 11, 12. 13.14...Partition wall provided with an opening in the method of this invention. 11:12z13;14'... Opening/closing valve for the partition wall opening in the method of this invention. 11τ12? 13τ14'., Rotating shaft for opening and closing the on-off valve in the method of this invention. A1...High temperature inlet air, A2...Cooled low temperature air. Wl...Inflow cooling seawater, Wl...Outlet seawater. al...High temperature inlet air during partial load. a2...cooled down! cold air. ql...Inflow cooling groove X during partial load, q2...
・Outlet seawater. Patent applicant: Kiyoshi Konaka - ■Suction Gas Engine Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)フィン付多管式熱交換器にt・いて、熱交換流体
及び、または被熱交換流体の流入及び流出室の流路回流
仕切壁に、開閉可能な開口を設けたことを特徴としたフ
ィン付多管式熱交換器の流路回流回数変換方法。
(1) A multi-tubular heat exchanger with fins is characterized in that openings that can be opened and closed are provided in the flow path circulation partition walls of the inflow and outflow chambers for the heat exchange fluid and/or the fluid to be heat exchanged. A method for converting the number of circulations in a finned multitubular heat exchanger.
(2) 4I許晴求S囲第1項において、流体の流入及
び流出基の仕切璧忙設けた開口を開閉する弁体を、仕切
壁開口の上流側偏心位置に設けた回転軸により、閉じ勝
手の弁となして開閉する構成としたフィン付多管式熱交
換器の流路回流回数変換方法。
(2) In Paragraph 1 of Section 4I, the valve body that opens and closes the opening provided in the partition wall of the fluid inflow and outflow base is operated by a rotating shaft located at an eccentric position on the upstream side of the partition wall opening, so that it can be closed easily. A method for converting the number of circulations in a finned multitubular heat exchanger configured to open and close as a valve.
JP13331781A 1981-08-27 1981-08-27 Method for changing over number of circulations through passages in finned multi-pipe type heat exchanger Pending JPS5835397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13331781A JPS5835397A (en) 1981-08-27 1981-08-27 Method for changing over number of circulations through passages in finned multi-pipe type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13331781A JPS5835397A (en) 1981-08-27 1981-08-27 Method for changing over number of circulations through passages in finned multi-pipe type heat exchanger

Publications (1)

Publication Number Publication Date
JPS5835397A true JPS5835397A (en) 1983-03-02

Family

ID=15101855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13331781A Pending JPS5835397A (en) 1981-08-27 1981-08-27 Method for changing over number of circulations through passages in finned multi-pipe type heat exchanger

Country Status (1)

Country Link
JP (1) JPS5835397A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638855A (en) * 1983-03-31 1987-01-27 Kamyr, Inc. Heat exchange treatment of fluids
JPS6229586U (en) * 1985-08-02 1987-02-23
EP1336736A3 (en) * 2002-02-14 2005-04-20 Delphi Technologies, Inc. Intercooler for an engine
DE102005017974A1 (en) * 2005-04-19 2006-11-02 Audi Ag Switching radiator for air conditioning system of motor vehicle, has two cooling channels that are provided with two outlet controllers, where flow of coolant is switchable between U-flow and I-flow under utilization of backflow connection
WO2007104595A1 (en) * 2006-03-16 2007-09-20 Pierburg Gmbh Heat transfer unit
CN111780611A (en) * 2020-07-30 2020-10-16 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Subregion flow self-adjusting heat exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638855A (en) * 1983-03-31 1987-01-27 Kamyr, Inc. Heat exchange treatment of fluids
JPS6229586U (en) * 1985-08-02 1987-02-23
JPH05700Y2 (en) * 1985-08-02 1993-01-11
EP1336736A3 (en) * 2002-02-14 2005-04-20 Delphi Technologies, Inc. Intercooler for an engine
DE102005017974A1 (en) * 2005-04-19 2006-11-02 Audi Ag Switching radiator for air conditioning system of motor vehicle, has two cooling channels that are provided with two outlet controllers, where flow of coolant is switchable between U-flow and I-flow under utilization of backflow connection
WO2007104595A1 (en) * 2006-03-16 2007-09-20 Pierburg Gmbh Heat transfer unit
JP2009529650A (en) * 2006-03-16 2009-08-20 ピールブルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat transfer device
US8403031B2 (en) 2006-03-16 2013-03-26 Pierburg Gmbh Heat transmission unit
CN111780611A (en) * 2020-07-30 2020-10-16 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Subregion flow self-adjusting heat exchanger
CN111780611B (en) * 2020-07-30 2022-03-15 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Subregion flow self-adjusting heat exchanger

Similar Documents

Publication Publication Date Title
FR2827372B1 (en) HEAT EXCHANGER OF EXHAUST GAS
CN105977573A (en) Battery heat management system for electromobile
CN209012023U (en) A kind of efficient heat recovery system with variable curvature helical fin coil heat exchanger
JPS5835397A (en) Method for changing over number of circulations through passages in finned multi-pipe type heat exchanger
CN214068775U (en) Ship power battery cooling system based on seawater/shaping phase-change material channel
CN109441765B (en) Efficient heat recovery system suitable for air compressor
CN109625229A (en) Heat-exchange system for Ship Power Equipment and the ship equipped with the heat-exchange system
CN109989832A (en) A kind of expansion pre-cooling cycle system for aerospace engine
CN214120873U (en) Multi-stage adjustable baffle rod shell-and-tube heat exchange device
JPS6234147Y2 (en)
CN213578852U (en) Compact type multi-stage shell-and-tube heat exchanger system
JPS5852160B2 (en) Heat exchanger temperature control device
JPS5852919A (en) Heat pump device
JP2735017B2 (en) Plate fin coil
JPS5610692A (en) Heat exchanger
CN214120857U (en) Compact multi-stage adjustable shell-and-tube heat exchange device
CN107621181A (en) A kind of titanium tube heat exchanger
CN213932169U (en) Sensible heat storage heat exchange pipeline connecting structure based on series-parallel connection combination adjustment
CN210922246U (en) Condensing heat exchanger for petrochemical equipment
JP2004251597A (en) Heat pump type hot-water supply apparatus and heat pump type hot-water supply heating apparatus
JPS6073013A (en) Intake-gas cooling apparatus for engine equipped with supercharger
JPS6034948Y2 (en) Sealed heat storage tank
CN113390277A (en) Adjustable printing plate type heat exchanger
JP2003227695A (en) Exhaust heat exchanger
JPS6339571Y2 (en)