WO2003106899A1 - Hydrogen absorbing alloy, hydrogen absorbing alloy unit, heat pump using hydrogen absorbing alloy, and hydrogen compressing device - Google Patents
Hydrogen absorbing alloy, hydrogen absorbing alloy unit, heat pump using hydrogen absorbing alloy, and hydrogen compressing device Download PDFInfo
- Publication number
- WO2003106899A1 WO2003106899A1 PCT/JP2003/006849 JP0306849W WO03106899A1 WO 2003106899 A1 WO2003106899 A1 WO 2003106899A1 JP 0306849 W JP0306849 W JP 0306849W WO 03106899 A1 WO03106899 A1 WO 03106899A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen storage
- storage alloy
- hydrogen
- heat
- alloy device
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0078—Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
- F17C11/005—Use of gas-solvents or gas-sorbents in vessels for hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B17/00—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
- F25B17/12—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type using desorption of hydrogen from a hydride
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0047—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/45—Hydrogen technologies in production processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
Definitions
- Hydrogen storage alloy Hydrogen storage alloy, hydrogen storage alloy unit, heat pump and hydrogen compression device using hydrogen storage alloy
- the present invention relates to a hydrogen storage alloy, a hydrogen storage alloy unit, and a heat pump and a hydrogen compression device using the hydrogen storage alloy.
- JP-A-2-110263 JP-A-60-9839, JP200-549926
- Japanese Patent Application Laid-Open No. 63-1616-1368 Japanese Utility Model Registration No. 25288621
- U.S. Patent No. 4,609,038 Japanese Patent Laid-Open No. No. 02
- Japanese Patent Application Laid-Open No. 2-1880841 etc.
- the present invention has been made in view of the above circumstances, and a first object of the present invention is to make the apparatus compact, and to reduce heat loss during switching while heating and cooling the hydrogen storage alloy while accelerating heat propagation.
- An object of the present invention is to provide a hydrogen storage alloy unit that is less likely to damage a container housing the hydrogen storage alloy due to expansion during hydrogenation of the hydrogen storage alloy.
- a second object of the present invention is to provide a heat pump capable of achieving an extremely low temperature with a compact configuration.
- a third object of the present invention is to provide a hydrogen compression device capable of compressing hydrogen at a higher pressure.
- a fourth object of the present invention is to provide a hydrogen storage alloy device in which a hydrogen storage alloy accommodated in a container is not biased by vibration.
- a first aspect of the present invention is a hydrogen storage alloy, in which a powder of a eutectic mixture of a hydrogen storage alloy material and a hydrogen storage material is mixed with a viscous substance to form a paste. I have.
- a second aspect of the present invention is a hydrogen storage alloy unit, comprising a heat exchange chamber through which a heat medium source flows, a pair of hydrogen chambers formed on both sides of the heat exchange chamber, and a pair of hydrogen chambers. One end faces each other, the other end extends into the heat exchange chamber in a free state, and a pair of hydrogen storage alloy pipes having a pair of hydrogen storage alloy pipes each having one end fixed to the pair of hydrogen chambers is provided.
- Each hydrogen storage alloy pipe constituting the alloy pipe group has a hydrogen storage alloy inside, the free end inside the heat exchange chamber is closed, and a hydrogen flow hole opens at the end inside the hydrogen chamber. It is characterized by doing.
- the hydrogen storage alloy pipes forming a pair are preferably arranged in a honeycomb shape, and the dissociation pressure of the hydrogen storage alloy inside the pipes is made different so that a common heat medium source can simultaneously store and release hydrogen. It becomes feasible.
- Each of the hydrogen storage alloy pipes was attached in paste form between a pound material made of a porous material having a hydrogen passage hole at the center and a shell material between the pound material and the outer shell pipe. It is preferable in terms of production to have a hydrogen storage alloy paste to be solidified later.
- carbon fibers or carbide fibers are wound around the outer periphery of the hydrogen storage alloy pipe.
- a third aspect of the present invention is a heat pump, comprising: a first hydrogen storage alloy device including a first hydrogen storage alloy having a predetermined dissociation pressure; and a second hydrogen storage device having a higher dissociation pressure than the first hydrogen storage alloy.
- the second hydrogen storage alloy device and the fourth hydrogen storage alloy device are passed through a pump capable of transferring hydrogen from the fourth hydrogen storage alloy device to the second hydrogen storage alloy device. Is preferred.
- a single-pong fiber or a carbide fiber is wound around the outer periphery of the hydrogen storage alloy pipe used in the heat pump.
- a fourth aspect of the present invention is a heat pump, comprising: a first hydrogen storage alloy device including a first hydrogen storage alloy having a predetermined dissociation pressure; and a second hydrogen storage device having a lower dissociation pressure than the first hydrogen storage alloy.
- Fourth hydrogen storage with fourth hydrogen storage alloy An alloy device, wherein the first hydrogen storage alloy device and the second hydrogen storage alloy device form a first system connected by a pump unit, and the third hydrogen storage alloy device and the fourth hydrogen storage alloy device A second system connected by the pump unit is formed.
- the first hydrogen storage alloy device is heated or cooled, and the first hydrogen storage device is operated by operating the pump unit. Transfer of hydrogen is performed in the opposite directions between the alloy device and the second hydrogen storage alloy device, and between the third hydrogen storage alloy device and the fourth hydrogen storage alloy device.
- a fifth aspect of the present invention is a hydrogen compression apparatus, comprising: a hydrogen storage alloy obtained by mixing powder of a eutectic mixture of a hydrogen storage alloy material and a hydrogen storage material with a viscous substance; A hydrogen storage alloy device capable of exchanging heat with the hydrogen storage alloy device, and a hydrogen storage container communicating with the hydrogen storage alloy device via a pump. By operating to transfer hydrogen from the hydrogen storage alloy device to the hydrogen storage container, the hydrogen is compressed and stored in the hydrogen storage container.
- a sixth aspect of the present invention is a hydrogen compression apparatus, comprising: a hydrogen storage alloy apparatus having a hydrogen storage alloy; and a first pressure vessel and a second pressure vessel, each of which is switchably connected to the hydrogen storage alloy apparatus.
- a hydrogen storage alloy device comprising: a pump connected to both the first pressure container and the second pressure container and capable of transferring a fluid; and a hydrogen storage container connected to each of the first pressure container and the second pressure container.
- FIG. 1 is a longitudinal sectional view showing the structure of the hydrogen storage alloy unit according to the first embodiment of the present invention.
- FIG. 2A is a sectional view taken along the line II-IIA of FIG.
- FIG. 2B is a cross-sectional view taken along the line II-III of FIG.
- FIG. 3A is a cross-sectional view perpendicular to the axis showing the structure of the hydrogen storage alloy pipe according to the first embodiment of the present invention.
- FIG. 3B is a perspective view showing the structure of the hydrogen storage alloy pipe according to the first embodiment of the present invention.
- FIG. 4A is a schematic configuration diagram of a heat pump according to a second embodiment of the present invention, showing an ultra-low temperature generation step.
- FIG. 4B is a schematic configuration diagram of the heat pump according to the second embodiment of the present invention, showing a regeneration step.
- FIG. 5 is a schematic configuration diagram of a heat pump according to a third embodiment of the present invention.
- FIG. 6A is a schematic configuration diagram of a hydrogen compression device according to a fourth embodiment of the present invention, and is a diagram illustrating a hydrogen storage step.
- FIG. 6B is a schematic configuration diagram of the hydrogen compression apparatus according to the fourth embodiment of the present invention, and is a view showing a hydrogen compression step. '
- FIG. 7 is a schematic configuration diagram of a hydrogen compression device according to a fifth embodiment of the present invention.
- the hydrogen storage alloy unit 10 includes a substantially cylindrical main body 11, outwardly protruding end plates 12, 13 closing both ends of the main body 11, and end plates 12, 13. Bowl-shaped portions 22 and 23 which are welded to the outside of 13 and form sealed hydrogen chambers 32 and 33 between the end plate portions 12 and 13 respectively.
- the end plate portions 12 and 13 and the bowl-shaped portions 22 and 23 as wall surfaces forming the hydrogen chambers 32 and 33 are thick so as to withstand high pressure.
- the hydrogen storage alloy unit 10 can be formed of a metal material such as titanium, SUS, and aluminum.
- the main body 11 of the hydrogen storage alloy unit 10 is provided with nozzles 14 and 15 on the end plate 12 side and the end plate 13 side, respectively.
- Nozzles 14 and 15 are hydrogen They are respectively connected to heat medium sources (not shown) arranged outside the storage alloy unit 10 and communicate with the heat exchange chamber 16 inside the hollow main body 11. Therefore, it is possible to adjust the ambient temperature of the heat exchange chamber 16 by adjusting or selecting the temperature of the heat medium source connected to the nozzles 14 or 15.
- a heat medium source it is possible to use natural outside air temperature including snow and ice, solar heat, geothermal heat, factory waste heat, waste incineration heat, combustion heat of fuel, etc., fuel cell waste heat, waste heat during equipment operation it can.
- the bowls 22 and 23 constituting the hydrogen chambers 32 and 33 have the hydrogen chambers 32 and
- a nozzle (hydrogen nozzle) 24 and a nozzle (hydrogen nozzle) 25 for connecting 33 to the outside are provided.
- first and second hydrogen storage alloy pipes (group) '41, 42 having the same structure are arranged in a honeycomb shape (honeycomb shape).
- the first hydrogen storage alloy pipe 41 has a closed end (leaving end) 41 a in the heat exchange chamber 16 and an open other end (fixed end) 41 b is an end plate. It penetrates airtightly and faces the hydrogen chamber 32.
- the hydrogen-absorbing alloy pipe 42 has a closed end 42 a disposed in the heat exchange chamber 16, and an open other end 42 b air-tightly penetrating the end plate 13 to form the hydrogen chamber 3. You are within 3.
- these first and second hydrogen storage alloy pipes 41 and 42 only the ends on the side of the hydrogen chambers 32 and 33 are fixed to the end plates 12 and 13, respectively. Therefore, even if the hydrogen storage alloy pipes 41 and 42 expand due to heat, the left ends 41 a and
- the hydrogen storage alloy pipes 41 and 42 can be formed of, for example, titanium or SUS.
- carbon fibers or carbide fibers are wound around the hydrogen storage alloy pipes 41 and 42.
- carbon fibers or carbide fibers for example, SiC
- the hydrogen storage alloy pipes 41 and 42 are connected to the heat medium source connected to the nozzles 14 or 15 PC leak 3/06849
- the heat generated or absorbed by the hydrogen storage alloy of one of the hydrogen storage alloy pipes when storing (hydrogenating) or releasing is used for the other hydrogen storage alloy pipe.
- the hydrogen storage alloy pipes 41 and 42 are arranged so as to be in contact with each other, a small amount of heat medium is used. Therefore, it is possible to quickly switch the temperature in the heat exchange chamber 16 when the heat medium is changed.
- the dissociation pressure of the hydrogen storage alloy used for the hydrogen storage alloy pipes 41 and 42 is made different, and the hydrogen storage alloy pipes 41 and 42 are heated or cooled to the same temperature by a common heat medium source, One of the hydrogen storage alloy pipes can release hydrogen, while the other hydrogen storage alloy pipe can store hydrogen.
- the hydrogen storage alloy pipes (group) 41 and 42 have the above functions. Next, a preferred embodiment of the hydrogen storage alloy pipes 41 and 42 will be described with reference to FIG. Since the hydrogen storage alloy pipes 41 and 42 have the same structure, only the hydrogen storage alloy pipe 41 will be described here. Of course, the structures of the hydrogen storage alloy pipes 41 and 42 may be different.
- the hydrogen storage alloy pipe 41 has a uniform cross section having a metal tubular member 41 f, a hydrogen storage alloy paste 41 g, a pound material 41 c, and a metal plate 41 d.
- the left end 4 1 a of 4 1 f is closed.
- the metal plate 41d has a length extending in the radial direction of the cylindrical member 41f, and a corrugated bent portion 41d 'is formed at the center thereof.
- the pound material 41c is a substantially semi-cylindrical porous member (a member through which hydrogen can pass) located on the front and back of the metal plate 41d.
- a hydrogen flow hole 41e is formed between the part 41d and the pound material 41c.
- the hydrogen flow hole 41 e opens into the hydrogen chamber 32.
- the pound material 41c a material having high heat resistance and elasticity is preferable, and for example, a foamed silicone rubber agent can be used.
- the hydrogen storage alloy base 41 g is solidified after being filled in the gap between the pound material 41 c and the cylindrical member 41 f.
- By attaching the hydrogen storage alloy material in paste form it is possible to prevent the fine particles of the hydrogen storage alloy material from being scattered, and to realize fast heat propagation, so that hydrogenation in the hydrogen storage alloy material and water The reaction time required for releasing element can be shortened.
- the hydrogen storage alloy contained in the cylindrical member 41 is not biased by vibration.
- a hydrogen storage alloy paste 41 g was formed on the inner wall of the cylindrical member 41 f, and the inside of the hydrogen storage alloy paste 41 g was hydrogen.
- the hole may be formed as a flow hole, or the hydrogen storage alloy paste may be formed by attaching a powder of the hydrogen storage alloy material to the cylindrical member 41 f having an adhesive applied to the inner wall in advance.
- the hydrogen storage alloy base 41 g a powdered hydrogen storage alloy material whose particle diameter has been adjusted to about 20 to 50 m in advance and mixed with a polymer adhesive is used.
- a powder obtained by mixing powder of a eutectic mixture (eutectic) of a hydrogen storage alloy material and a hydrogen storage material with a viscous substance such as an adhesive By using the eutectic mixture, the weight ratio of hydrogen storage to the weight of the alloy can be increased.
- the hydrogen adsorbing material has the property that the amount of hydrogen adsorbed increases with an increase in pressure, it is possible to take in more hydrogen than in the case of using the hydrogen storage alloy material alone, and to apply a high pressure as in the present invention. This effect is remarkable in a hydrogen storage alloy unit that can be realized.
- hydrogen storage alloy materials include Ca, La, Mg, Ni, Ti, LaNi alloy, MgTi alloy, and V alloy by mechanical alloying method.
- a eutectic mixture in which the element (1) is mixed can be used.
- the hydrogen adsorbing material for example, a carbon material, nano-carbons having a graphite structure and a graphite structure, carbides and oxides can be used.
- Nanocarbons are used as a hydrogen-absorbing material because the nanocarbons dissolve into the hydrogen-absorbing alloy material during the production of the eutectic mixture, and the hydrogen-absorbing alloy material is carbonized. It is preferable to form a film of a hydrogen-dissociable metal, carbide or oxide in advance. This film is formed by selecting a method according to the type of nano-ribbon from the film-forming methods such as wet plating, CVD, and PVD.
- the eutectic mixture of the nanocarbons, carbides and oxides thus coated and the hydrogen storage alloy material is formed by the hydrogen dissociation properties of the hydrogen storage alloy material around the carbons, carbides and oxides.
- To absorb more hydrogen because gaseous hydrogen molecules (H 2 ) come into contact with the hydrogen storage alloy material and separate into protons (H), which settle on the surface and inside gaps of the fine particles of the hydrogen storage material. Can be.
- a rubber agent can be used instead of the above-mentioned adhesive. That is, a powder of a hydrogen storage alloy material alone or a eutectic mixture of a hydrogen storage alloy material and a hydrogen adsorption material is mixed as a hydrogen storage alloy paste 41 g as a paste, for example, by mixing with a rubber agent of silicon. Is also good. In this case, the hydrogen storage alloy paste 41 g filled in the tubular member 41 f is hardened by heating the hydrogen storage alloy pipe 41. In the hydrogen storage alloy unit 10 configured as described above, the temperature of the heat exchange chamber 16 is adjusted by setting the temperature of the heat medium source connected to the nozzles 14 or 15 to a predetermined temperature. be able to.
- Hydrogen in the hydrogen storage alloy pipe 41, the hydrogen chamber 32, and the external equipment communicating with the nozzle 24 is gradually stored in the hydrogen storage alloy of the hydrogen storage alloy pipe 41, and is stored in the hydrogen storage alloy pipe 42.
- the hydrogen in the hydrogen chamber 33 and the external equipment communicating with the nozzle 25 is gradually stored in the hydrogen storage alloy of the hydrogen storage alloy pipe 42.
- Also connected to nozzles 14 or 15 The inside of the heat exchange chambers 32, 33 and pipes 41, 42 is evacuated from the nozzles 24, 25 while heating the heat medium source at about 80 ° C to remove the hydrogen storage alloy.
- the hydrogen storage alloy unit 10 is a hydrogen storage tank which is a high pressure resistant and lightweight hydrogen storage container without mounting a hydrogen storage alloy or a material for hydrogen adsorption inside the hydrogen storage alloy pipes 41 and 42. Can be used for automobiles.
- the high-temperature heat generated by the fluid friction accompanying the filling of the high-pressure hydrogen can be easily cooled by the heat medium source as compared with the conventional cylinder-type hydrogen storage container, and the filling time of the high-pressure hydrogen can be greatly reduced.
- Second embodiment heat pump
- the heat pump 50 according to the second embodiment will be described with reference to FIGS. 4A and 4B.
- the heat pump 50 has four hydrogen storage alloy devices with different hydrogen dissociation pressures (first hydrogen storage alloy device) 60, the hydrogen storage alloy device (third hydrogen storage alloy device) 61, and the hydrogen storage alloy device (second It has a hydrogen storage alloy device 62 and a hydrogen storage alloy device (fourth hydrogen storage alloy device) 63.
- Heat medium sources 70, 71, 72, and 73 are connected to the hydrogen storage alloy devices 60 and 63, respectively, so that they can be separated from each other. 7 1 is connected.
- a pump 74 that can transfer hydrogen generated in the hydrogen storage alloy device 63 to the hydrogen storage alloy device 62 is disposed between the hydrogen storage alloy devices 62 and 63. 2 and 6 3 are communicated.
- the heat medium source 71 can be selectively connected to one of the hydrogen storage alloy devices 61 and 62 and the hydrogen storage alloy device 63.
- Heat medium sources 70, 71, and 72 include natural outside air temperature including snow and ice, solar heat, geothermal heat, factory waste heat, waste incineration heat, and fuel. Combustion heat of fuel, exhaust heat of fuel cells, exhaust heat during operation of equipment, etc. can be used.
- the hydrogen storage alloy devices 61 and 62 constitute the hydrogen storage alloy unit 10 shown in FIG. That is, the hydrogen storage alloy devices 61 and 62 constitute one of the hydrogen storage alloy pipes 41 and 42 in the hydrogen storage alloy unit 10, respectively, and the hydrogen storage alloy devices are respectively provided by the nozzles 24 and 25.
- the heating medium source 71 is connected to the nozzles 14 and 15. Further, the number of hydrogen storage alloy devices can be set arbitrarily, and the number of hydrogen storage alloy devices constituting the hydrogen storage alloy unit 10 shown in FIG. 1 may be two or more. Further, it is preferable that carbon fibers or carbide fibers (for example, SiC) are wound around the outer circumference of the hydrogen storage alloy pipes 41 and 42. With this configuration, it is possible to realize a hydrogen storage alloy device for a heat pump having high pressure resistance.
- the hydrogen dissociation pressure of the hydrogen storage alloys of the hydrogen storage alloy devices 60, 61, 62 and 63 is the smallest for the hydrogen storage alloy of the hydrogen storage alloy device 60, the hydrogen storage alloy device 62, and the hydrogen storage alloy.
- the hydrogen storage alloy of the hydrogen storage alloy device 63 is arranged so as to become the largest. Therefore, the hydrogen release start temperature of the hydrogen storage alloy of the hydrogen storage alloy device 60 is the highest, the temperature of the hydrogen storage alloy device 62 is lower in the order of the hydrogen storage alloy device 61, and the hydrogen storage alloy device 63 of the hydrogen storage alloy device 63 is lower. The lowest for occlusion alloys.
- Examples of the hydrogen storage alloy materials used in the hydrogen storage alloy devices 60, 61, 62 and 63 include, for example, La, Ni, Ti, and La Ni Alloys, and MgTi-based alloys.
- the hysteresis characteristic value will be minimized, so the heat pump It is desirable only in such cases.
- the hydrogen storage alloy paste 41 g the powder of the hydrogen storage alloy A paste may be formed by mixing with a rubber agent.
- the hydrogen storage alloy paste 41 g filled in the cylindrical member 4 If is hardened by heating the hydrogen storage alloy pipe 41.
- the hydrogen storage alloy devices 60 and 63 can have any configuration.
- the hydrogen storage alloy devices 60 and 63 have a structure in which a hydrogen storage alloy is arranged in a pipe, such as a hydrogen storage alloy pipe 41 in FIG. be able to.
- the heat pump 50 configured as described above, hydrogen is transferred from the hydrogen storage alloy device 63 to the hydrogen storage alloy device 62 and from the hydrogen storage alloy device 61 to the hydrogen storage alloy device 60. Then, the ultra-low temperature generation step (Fig. 4A), which takes heat from the heat medium source 73 to make it ultra-low temperature, and from the hydrogen storage alloy device 60 to the hydrogen storage alloy device 61, and the hydrogen storage alloy device 62 One cycle consisting of a regeneration step (Fig. 4B) for transferring hydrogen from the hydrogen storage alloy device 63 to the hydrogen storage alloy device 63 can be realized.
- a regeneration step Fig. 4B
- the pressure resistance is improved, so that the hydrogen storage alloy devices 60, 61, 62, 63 are required.
- the hydrogen storage alloy of the present invention containing a hydrogen-absorbing material, in which the higher the pressure, the higher the amount of hydrogen absorbed, can take in more hydrogen than in the case of the hydrogen-absorbing alloy material alone. .
- the hydrogen storage alloy and the hydrogen storage alloy device 6 of the hydrogen storage alloy device 60 are used.
- the hydrogen generated from the hydrogen storage alloy of the hydrogen storage alloy device 61 is transferred to the hydrogen storage alloy device 60 due to the difference in the hydrogen dissociation pressure with the hydrogen storage alloy 1.
- the hydrogen storage alloy of the hydrogen storage alloy device 61 takes away heat from the heat medium source 71 and the hydrogen storage alloy of the hydrogen storage alloy device 62 is cooled, so that the hydrogen storage alloy devices 62 and 63
- the hydrogen released from the hydrogen storage alloy of the hydrogen storage alloy device 63 due to the difference in hydrogen dissociation pressure of the hydrogen storage alloy with the hydrogen storage alloy is transferred to the hydrogen storage alloy device 62 and the hydrogen storage of the hydrogen storage alloy device 63
- the alloy removes heat from the heating medium source 73.
- the temperature of the heat medium source 73 can be made lower.
- hydrogen is forcibly transferred from the hydrogen storage alloy device 63 to the hydrogen storage alloy device 62. Therefore, the ultra-low temperature of the heat medium source 73 can be efficiently realized.
- the heat storage medium source 70 is heated to a high temperature to heat the hydrogen storage alloy device 60, thereby generating hydrogen from the hydrogen storage alloy of the hydrogen storage alloy device 60 to generate the hydrogen storage alloy.
- the hydrogen pressure in the device 60 is increased to transfer hydrogen to the hydrogen storage alloy device 61.
- the hydrogen storage alloy of the hydrogen storage alloy device 61 that has absorbed the hydrogen transferred from the hydrogen storage alloy device 60 generates heat and gives heat to the hydrogen storage alloy device 62.
- the hydrogen storage alloy of the hydrogen storage alloy device 62 whose temperature has been increased by the heat given from the hydrogen storage alloy device 61 releases hydrogen.
- the hydrogen released from the hydrogen storage alloy of the hydrogen storage alloy device 62 is transferred to the hydrogen storage alloy device 63 communicating with the hydrogen storage alloy device 62, and the hydrogen storage alloy of the hydrogen storage alloy device 63 that stores the hydrogen is used. Discharges heat. At this time, the pump 74 is not operating, and the hydrogen storage alloy device 62 and the hydrogen storage alloy device 63 are in communication.
- the connection between the hydrogen storage alloy device 63 and the heat medium source 73 and the connection between the hydrogen storage alloy devices 61 and 62 and the heat medium source 71 are respectively released, and the hydrogen storage alloy device 63 Is connected to a heat medium source 71.
- the heat medium source 71 receives the exhaust heat from the hydrogen storage alloy device 63 and its temperature rises to generate the heat medium source 71 at a high temperature. Can be used as a heat supply source to the hydrogen storage alloy device 61 in the above. Further, as described above, if the amount of the hydrogen storage alloy in the hydrogen storage alloy device 61 is larger than the amount of the hydrogen storage alloy in the hydrogen storage alloy device 62 in the generation step, the temperature of the heat medium source 71 becomes lower. When the heat medium source 71 is used in the regeneration step, heat can be more efficiently transferred from the hydrogen storage alloy device 63 to the heat medium source 71.
- a heat pump 80 according to the third embodiment will be described with reference to FIG.
- the heat pump 80 has two systems for transferring hydrogen through a single pump unit 90 to achieve extremely low temperatures.
- the two hydrogen transfer paths are connected via a pump unit 90 to a first system connecting the hydrogen storage alloy device 100 and the hydrogen storage alloy device 101 connected via a pump unit 90.
- This is a second system connecting the hydrogen storage alloy device 102 and the hydrogen storage alloy device 103.
- the hydrogen storage alloy devices 100, 101, 102, and 103 each constitute a unit of the hydrogen storage alloy unit 10 shown in FIG. .
- the hydrogen storage alloy devices 100, 101, 102, and 103 are respectively composed of the hydrogen storage alloy pipes 41, 42 of the hydrogen storage alloy unit 10, and the hydrogen storage alloy
- the hydrogen storage alloys of the devices 101 and 102 are also composed of the hydrogen storage alloy pipes 41 and 42 of the hydrogen storage alloy unit 10 respectively.
- the hydrogen storage alloy devices 100, 101, 102, and 103 may each have a configuration other than the hydrogen storage alloy unit 10, but if they are configured by the hydrogen storage alloy unit 10, the heat medium source Less heat loss during replacement.
- Hydrogen storage alloy devices 100, 101, 102 and 103 consist of a hydrogen storage alloy device (first hydrogen storage alloy device) 100 and a hydrogen storage alloy device (fourth hydrogen storage device). Alloy device) 103 has the same kind of hydrogen storage alloy, and hydrogen storage alloy device (second hydrogen storage alloy device) 101 and hydrogen storage alloy device (third hydrogen storage alloy device) 102 Have the same type of hydrogen storage alloy. The hydrogen dissociation pressure of these hydrogen storage alloys is higher in the hydrogen storage alloy devices 100 and 103 than in the hydrogen storage alloy devices 101 and 102, respectively. Equipped with a hydrogen storage alloy with characteristics that match the target heat collection temperature.
- the pump unit 90 has a pump 91, switching valves 92, 93, 94, 95, and one-way valves 96, 97.
- the switching valves 92 and 93 are connected to the hydrogen storage alloy device 100. Downstream of the pump 91, there is provided a one-way valve 96 that allows the flow from the pump 91 to the hydrogen storage alloy device 101 and blocks the flow from the hydrogen storage alloy device 101.
- the switching valves 94 and 95 are connected to the hydrogen storage alloy device 103.
- a one-way valve 97 is provided downstream of the pump 91 to allow the flow from the pump 91 to the hydrogen storage alloy device 102 and block the flow from the hydrogen storage alloy device 102. ing.
- the switching valve 92 is closed, the switching valve 93 and the one-way valve 96 are opened, and high-temperature hydrogen storage is performed.
- the alloy apparatus 101 is cooled at room temperature. Then, due to the difference in the dissociation pressure of the hydrogen storage alloy between the hydrogen storage alloy devices 101 and 100, hydrogen is released from the hydrogen storage alloy of the hydrogen storage alloy device 100, and the hydrogen storage alloy device 101 is moved to the hydrogen storage alloy device 101. Be transported. At this time, when the pump 91 is operated, the transfer of hydrogen from the hydrogen storage alloy device 100 to the hydrogen storage alloy device 101 is efficiently performed.
- the hydrogen storage alloy of the hydrogen storage alloy device 100 is supplied with more heat from the heat medium source 105 connected to the hydrogen storage alloy device 100. Since heat can be removed, this heat medium source can be brought to extremely low temperatures.
- the switching valve 95 is opened, and the switching valve 94 and the one-way valve 97 are closed.
- hydrogen is released from the hydrogen storage alloy device 102. Then, it is transferred to the hydrogen storage alloy device 103 and the regeneration process is performed.
- the heat medium source 106 and 108 for cooling natural outside air temperature including snow and ice is used as the heat medium source 106 and 108 for cooling
- the heat medium source 107 for heating is solar heat, geothermal, factory exhaust heat, and garbage. It is possible to use the heat of incineration, the heat of combustion of fuel, the exhaust heat of the fuel cell, and the exhaust heat during machine operation.
- hydrogen is transferred from the hydrogen storage alloy device 100 to the hydrogen storage alloy device 101 in the first system, and from the hydrogen storage alloy device 102 to the hydrogen storage alloy device 103 in the second system. Be transported. By switching the transfer valves 92 to 95 and the one-way valves 96 and 97, the hydrogen transferred in this way can be returned to the original hydrogen storage alloy device in the reverse process.
- the heat medium source connected to the hydrogen storage alloy device 101 is opened.
- the hydrogen storage alloy has a larger hydrogen dissociation pressure than the hydrogen storage alloy of the hydrogen storage alloy device 101.
- the regeneration process is performed by transferring hydrogen to the apparatus 100.
- the switching valve 94 and the one-way valve 97 are opened, and the switching valve 9 hinder ⁇
- the pump 91 is operated to transfer hydrogen from the hydrogen storage alloy device 103 to the hydrogen storage alloy device 102 to perform the generation process.
- the heat medium sources 105 and 107 for cooling use the natural outside air temperature including snow and ice
- the heat medium sources 106 for heating include solar heat, geothermal heat, factory exhaust heat, and garbage. It is possible to use the heat of incineration, the heat of combustion of fuel, the exhaust heat of the fuel cell, and the exhaust heat during machine operation.
- the step of generating a cryogenic heat medium source and regenerating the heat pump 80 can be repeated without interruption of the heat medium source. Furthermore, since the pump 91 can be continuously driven by either the first system or the second system, it is possible to prevent problems caused by intermittent driving of the pump.
- a hydrogen compressor 110 according to the fourth embodiment will be described with reference to FIGS. 6A and 6B.
- the hydrogen compression device 110 stores compressed hydrogen in a hydrogen storage container 125, and is a low-pressure hydrogen storage container 120 for hydrogen purification, reforming, etc., for high-pressure storage. It has a hydrogen storage container 125, a hydrogen storage alloy device 121, a heat medium source 122 for cooling, a heat medium source 124 for heating, and a pump 123.
- the hydrogen storage alloy device 122 can have any configuration, but the hydrogen storage alloy unit 10 shown in FIG. 1 can also be used. In this case, it is preferable to attach the hydrogen storage alloy having the same hydrogen dissociation pressure to the hydrogen storage alloy pipes 41 and 42.
- the hydrogen storage alloy is attached by filling the hydrogen storage alloy in paste form into the hydrogen storage alloy pipes 41 and 42 and then solidifying the same.
- the hydrogen compression device 110 configured as described above has a hydrogen storage process (FIG. 6A) in which hydrogen is stored in the hydrogen storage alloy device 121, and a hydrogen storage process in which hydrogen is compressed and stored in the hydrogen storage container 125.
- a cycle consisting of the compression process (Fig. 6B) is feasible.
- the hydrogen storage alloy device 121 is cooled at room temperature by the heat medium source 122. Then, the hydrogen storage alloy in the hydrogen storage alloy device 121 stores hydrogen existing in the hydrogen storage container 120.
- the temperature of the hydrogen storage alloy device 1 2 1 connected thereto rises.
- hydrogen is released.
- the valve provided between the hydrogen storage container 125 and the pump 123 is open, and the released hydrogen is stored in the hydrogen storage container 125.
- the pump 123 with the hydrogen storage alloy device 121 as the inlet and the hydrogen storage container 125 side as the outlet is operating, and the hydrogen storage alloy device 121 is forced to store hydrogen. Since the hydrogen released by the alloy is stored in the hydrogen storage container 125, the hydrogen can be stored in the hydrogen storage container 125 while being compressed to a high pressure.
- the heat medium source 124 is heated by heat exchange with waste heat of about 60 to 90 ° C, and the hydrogen release pressure of the hydrogen storage alloy of the hydrogen storage alloy device 121 is 10 to 20 kg. / cm 2 and pressurize the suction side of the pump 123 (the hydrogen storage alloy device 121 side), the outlet side pressure of the pump 123 easily becomes high.
- the hydrogen compression device 140 is a device that stores compressed hydrogen in the hydrogen storage container 140, and includes a hydrogen storage container 140, a hydrogen storage alloy device 141, and a pressure container 144, 144. And a pump 144.
- the hydrogen storage alloy device 14 1 is a check valve 15 0 that allows only the flow from the hydrogen storage alloy device 14 1 to the outside, and branches from the check valve 15 0 and the pressure vessel from the check valve 1 50.
- Check valve 1 5 2 that allows only flow to 1 4 2 and check valve that branches from check valve 1 50 and allows only flow from check valve 1 50 to pressure vessel 14 3 It is connected to the pressure vessels 14 2 and 14 3 via 15 3.
- the pressure vessels 14 2 and 14 4 are supplied with hydrogen via check valves 15 4 and 15 5, respectively, which allow only the flow from pressure vessels 14 2 and 14 3 to the hydrogen storage vessel 140. It is connected to storage container 140.
- a switching valve 156 is arranged between the check valves 154 and 155 and the hydrogen storage container 140.
- a pump 144 capable of bi-directional conveyance is arranged between the pressure vessels 144 and 144. With such an arrangement, the hydrogen released from the hydrogen storage alloy of the hydrogen storage alloy device 141 can be selectively conveyed to one of the pressure vessels 144 and 144.
- the hydrogen storage alloy device 14 1 can have any configuration, but the hydrogen storage alloy unit 10 in FIG. 1 can be used.
- the hydrogen storage alloy pipes 41 and 42 are filled with a hydrogen storage alloy having the same hydrogen dissociation pressure.
- the heat medium source 144 is connected to the nozzles 14 and 15, and the open ends of the hydrogen storage alloy pipes filled with the hydrogen storage alloy of the hydrogen storage alloy pipes 41 and 42 pass through the hydrogen chamber and the nozzle. Connected to the check valve 150.
- the heat medium source it is possible to use natural outside air temperature including snow and ice, solar heat, geothermal heat, factory exhaust heat, waste incineration heat, combustion heat of fuel, fuel cell exhaust heat, exhaust heat during equipment operation, etc. it can.
- Each of the pressure vessels 142 and 144 constitutes a liquid level piston composed of a closed vessel containing a working fluid 160.
- a working fluid for example, water can be used. When using water, it is desirable to use pure water or distilled water. Since the pressure vessels 14 2 and 14 3 are connected via the pump 14 4, if the check valve 15 2 is opened and the check valve 15 3 is closed, the hydrogen storage alloy device 1 4 1 The hydrogen released from the hydrogen storage alloy flows into the pressure vessel 14 2 and pushes down the working fluid 16 0 therein, and the working fluid 16 0 flows into the pressure vessel 14 3, The hydrogen present above the working fluid 160 in 144 is stored in the hydrogen storage container 140.
- the hydrogen released from the hydrogen storage alloy of the hydrogen storage alloy device 141 flows into the pressure vessel 144 (the pressure vessel on the hydrogen introduction side, the first pressure vessel).
- the hydrogen in 3 compression side pressure vessel, 2nd pressure vessel
- the check valves 15 0, 15 3, 15 4 and the switching valve 15 6 open, the check valves 15 5 and 15
- the hydrogen storage alloy device 1 4 1 is heated by the source 1 4 5
- the hydrogen released from the hydrogen storage alloy is converted into a symbol (1) ⁇ (2) ⁇ (3) ⁇ (4) Is stored in the hydrogen storage container 140 via the route of FIG.
- pump 1 4 4 is driven to pump working fluid PC leak 49
- the liquid level piston of the pressure vessel 142 rises to compress the internal hydrogen, and hydrogen can be stored in the hydrogen storage vessel 140 in a high-pressure compressed state.
- the heat medium source use the natural outside air temperature including snow and ice for the heat medium source for cooling, and use the solar heat, geothermal, factory exhaust heat, and waste incineration for the heat medium source for heating. Heat, combustion heat of fuel, etc., fuel cell exhaust heat, exhaust heat during equipment operation, etc. can be used.
- the hydrogen released from the hydrogen storage alloy of the hydrogen storage alloy device 141 flows into the pressure vessel 144 (pressure vessel on the hydrogen introduction side), and the pressure vessel 144 (pressure on the compression side)
- the hydrogen in the container is stored in the hydrogen storage container 140.
- the connected heat medium When the hydrogen storage alloy device 1 4 1 is heated by the source 1 4 5, the hydrogen released from the hydrogen storage alloy is converted into a symbol (1) ⁇ (5 ⁇ (6) ⁇ (7) ⁇ It is stored in the hydrogen storage container 140 via the route of (8) ⁇ (9) At this time, the working fluid is pumped from the pressure container 144 to the pressure container 144 by driving the pump 144. By doing so, the liquid level piston of the pressure vessel 144 rises to compress the hydrogen inside, and the hydrogen can be stored in the hydrogen storage vessel 140 in a highly compressed state.
- hydrogen storage and storage can be performed by heat exchange with waste heat of about 6 to 90 ° C.
- Device 1 4 1 is heated, by pressurizing the hydrogen release pressure of a hydrogen storage alloy apparatus 1 4 1 of the hydrogen storage alloy is increased to 1 0-2 about 0 kg Z cm 2, the pressure vessel 1 4 2 and the pressure vessel Of the 144, the volume inside the hydrogen inlet side pressure vessel can be once reduced (primary compression) and introduced, so the pump 144 can easily be reduced from a normal pressure volume to an ultra-high pressure volume.
- Hydrogen is compressed and transferred (secondary compression) into the hydrogen storage container 140, and the time required is shorter than that of conventional equipment.
- the hydrogen storage alloy unit comprises: a heat exchange chamber through which a heat medium source flows;
- a pair of hydrogen chambers formed on both sides of the heat exchange chamber, and one end respectively facing the pair of hydrogen chambers, and the other end extending into the heat exchange chamber in a free state;
- a pair of hydrogen-absorbing alloy pipes each having a fixed end, and each of the hydrogen-absorbing alloy pipes constituting the pair of hydrogen-absorbing alloy pipes has a hydrogen-absorbing alloy therein. Since the free end on the heat exchange chamber side is closed and the hydrogen circulation hole is open on the end on the hydrogen chamber side, the apparatus can be made compact, and the switching between heating and cooling of the hydrogen storage alloy can be performed. The loss of heat is small, heat can be transferred instantaneously between the hydrogen storage alloy and the heat medium source, and the effect of reducing the possibility of damage to the container due to expansion of the hydrogen storage alloy during hydrogenation is obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
A hydrogen absorbing alloy unit, comprising a heat exchange chamber allowing
heating medium source to flow therein, a pair of hydrogen chambers formed on both
sides of the heat exchange chamber, and a group of pairs of hydrogen absorbing
alloy pipes having one end parts positioned in the pair of hydrogen chambers and
fixed to the pair of hydrogen chamber sides and the other end parts extending into
the heat exchange chamber in free state, wherein the hydrogen absorbing alloy
pipes forming the group of the pairs of hydrogen absorbing alloy pipes contain
a hydrogen absorbing alloy therein, and the free end parts thereof in the heat
exchange chamber are closed, and hydrogen flow holes are opened at the inside
end parts of the hydrogen chambers.
Description
明 細 書 Specification
水素吸蔵合金、 水素吸蔵合金ユニット、 並びに、 水素吸蔵合金を用いたヒートポ ンプ及び水素圧縮装置 技術分野 Hydrogen storage alloy, hydrogen storage alloy unit, heat pump and hydrogen compression device using hydrogen storage alloy
本発明は、 水素吸蔵合金、 水素吸蔵合金ユニット、 並びに、 水素吸蔵合金を用 いたヒ一トポンプ及び水素圧縮装置に関する。 背景技術 The present invention relates to a hydrogen storage alloy, a hydrogen storage alloy unit, and a heat pump and a hydrogen compression device using the hydrogen storage alloy. Background art
従来、 複数の水素吸蔵合金を使用する場合には、 各水素吸蔵合金ごとに熱媒体 源、 水素取出し流路を設けなければならなかったため、 装置が複雑化、 大型化し やすく、 大量の熱媒体源を用意しなければならなかった。 また、 水素吸蔵合金の 加熱と冷却の切り替え時の熱のロスも多かった。 さらに、 水素吸蔵合金を固定配 置すると、 水素吸蔵合金の水素化時の膨張により水素吸蔵合金を収容する容器が 破損することがあった。 Conventionally, when multiple hydrogen storage alloys were used, a heat medium source and a hydrogen extraction channel had to be provided for each hydrogen storage alloy. Had to be prepared. There was also a large heat loss when switching between heating and cooling of the hydrogen storage alloy. Furthermore, when the hydrogen storage alloy was fixedly arranged, the container containing the hydrogen storage alloy was sometimes damaged due to expansion during hydrogenation of the hydrogen storage alloy.
一方、 従来の水素吸蔵合金を用'いるヒートポンプにおいては、 超低温を達成す るのは困難であって、 達成するためには大掛かりな装置を用いなければならなか つた。 On the other hand, it was difficult to achieve ultra-low temperatures in conventional heat pumps using hydrogen storage alloys, and large-scale equipment had to be used to achieve it.
また、 従来の水素圧縮装置においては、 コンプレッサのピストンリングとシリ ンダ内壁との間隙から水素漏れが生じやすかつたため、 高圧縮を達成することが 困難であった。 Further, in the conventional hydrogen compressor, it was difficult to achieve high compression because hydrogen leaked easily from the gap between the piston ring of the compressor and the inner wall of the cylinder.
さらに、 粉体状の水素吸蔵合金を用いた場合、 水素吸蔵合金を収容した容器が 振動するとその振動によって内部の水素吸蔵合金が偏ってしまうことで水素吸蔵 合金の水素化時の膨張により水素吸蔵合金を収容する容器が破損することがあつ た。 In addition, when a powdery hydrogen storage alloy is used, when the container containing the hydrogen storage alloy vibrates, the vibration causes the internal hydrogen storage alloy to be biased, causing the hydrogen storage alloy to expand due to expansion during hydrogenation. The container containing the alloy was sometimes damaged.
関連技術としては、 例えば、 特開平 2— 1 1 0 2 6 3号公報、 特開昭 6 0 - 9 8 3 9号公報、 特開 2 0 0 0— 4 5 9 2 6号公報、 特開昭 6 3— 1 6 1 3 6 8号 公報、 実用新案登録第 2 5 2 8 6 2 1号公報、 米国特許第 4, 6 0 9 , 0 3 8号 公報、 特開平 4一 2 3 2 2 0 2号公報、 特開平 2 - 1 8 8 4 0 1号公報等が挙げ
られる。 発明の開示 Related technologies include, for example, JP-A-2-110263, JP-A-60-9839, JP200-549926, Japanese Patent Application Laid-Open No. 63-1616-1368, Japanese Utility Model Registration No. 25288621, U.S. Patent No. 4,609,038, Japanese Patent Laid-Open No. No. 02, Japanese Patent Application Laid-Open No. 2-1880841, etc. Can be Disclosure of the invention
本発明は、 上記事情に鑑みてなされたもので、 本発明の第 1の目的は、 装置を コンパクトにでき、 水素吸蔵合金の加熱と冷却において熱伝播を速めながら切り 替え時の熱のロスが少なく、 水素吸蔵合金の水素化時の膨張により水素吸蔵合金 を収容する容器が破損するおそれの少ない水素吸蔵合金ユニットを提供すること にある。 The present invention has been made in view of the above circumstances, and a first object of the present invention is to make the apparatus compact, and to reduce heat loss during switching while heating and cooling the hydrogen storage alloy while accelerating heat propagation. An object of the present invention is to provide a hydrogen storage alloy unit that is less likely to damage a container housing the hydrogen storage alloy due to expansion during hydrogenation of the hydrogen storage alloy.
本発明の第 2の目的は、 コンパク卜な構成で超低温を達成することのできるヒ ートポンプを提供することにある。 A second object of the present invention is to provide a heat pump capable of achieving an extremely low temperature with a compact configuration.
本発明の第 3の目的は、 より高圧で水素を圧縮可能な水素圧縮装置を提供する ことにある。 A third object of the present invention is to provide a hydrogen compression device capable of compressing hydrogen at a higher pressure.
本発明の第 4の目的は、 振動によつて容器内に収容された水素吸蔵合金が偏る ことのない水素吸蔵合金装置を提供することにある。 A fourth object of the present invention is to provide a hydrogen storage alloy device in which a hydrogen storage alloy accommodated in a container is not biased by vibration.
上記の問題点を解決するために、 本発明の第 1の態様は、 水素吸蔵合金であつ て、 水素吸蔵合金材料及び水素吸着材料の共融混合物の粉末を粘性物質と混合し てペースト化している。 In order to solve the above problems, a first aspect of the present invention is a hydrogen storage alloy, in which a powder of a eutectic mixture of a hydrogen storage alloy material and a hydrogen storage material is mixed with a viscous substance to form a paste. I have.
本発明の第 2の態様は、 水素吸蔵合金ユニットであって、 熱媒体源が流通する 熱交換室と、 熱交換室の両側に形成された一対の水素室と、 一対の水素室内にそ れぞれ一端部が臨み、 他端部が自由状態で熱交換室内に延び、 一対の水素室側に それぞれ一端部が固定された対をなす水素吸蔵合金パイプ群とを備え、 対をなす 水素吸蔵合金パイプ群を構成する各水素吸蔵合金パイプは、 その内部に水素吸蔵 合金を有していて、 熱交換室内側の自由端部は閉じており、 水素室内側の端部に 水素流通孔が開口していることを特徴としている。 A second aspect of the present invention is a hydrogen storage alloy unit, comprising a heat exchange chamber through which a heat medium source flows, a pair of hydrogen chambers formed on both sides of the heat exchange chamber, and a pair of hydrogen chambers. One end faces each other, the other end extends into the heat exchange chamber in a free state, and a pair of hydrogen storage alloy pipes having a pair of hydrogen storage alloy pipes each having one end fixed to the pair of hydrogen chambers is provided. Each hydrogen storage alloy pipe constituting the alloy pipe group has a hydrogen storage alloy inside, the free end inside the heat exchange chamber is closed, and a hydrogen flow hole opens at the end inside the hydrogen chamber. It is characterized by doing.
対をなす水素吸蔵合金パイプは、ハニカム状に配置されていることが好ましく、 その内部の水素吸蔵合金の解離圧を異ならせることにより、 共通の熱媒体源によ り水素の吸蔵と放出を同時に実現可能となる。 The hydrogen storage alloy pipes forming a pair are preferably arranged in a honeycomb shape, and the dissociation pressure of the hydrogen storage alloy inside the pipes is made different so that a common heat medium source can simultaneously store and release hydrogen. It becomes feasible.
水素吸蔵合金パイプはそれぞれ、 中心部の水素流通孔を有する多孔質材料から なるパウンド材と、 このパウンド材と外殻パイプとの間にペースト状で装着した
後に固化させる水素吸蔵合金ペーストとを有すると製造上好ましい。 Each of the hydrogen storage alloy pipes was attached in paste form between a pound material made of a porous material having a hydrogen passage hole at the center and a shell material between the pound material and the outer shell pipe. It is preferable in terms of production to have a hydrogen storage alloy paste to be solidified later.
さらに、 水素吸蔵合金パイプの外周にはカーボン繊維または炭化物繊維が巻き つけられていることが好ましい。 Further, it is preferable that carbon fibers or carbide fibers are wound around the outer periphery of the hydrogen storage alloy pipe.
また、 本発明の第 3の態様は、 ヒートポンプであって、 所定の解離圧を有する 第 1水素吸蔵合金を備える第 1水素吸蔵合金装置と、 第 1水素吸蔵合金より高い 解離圧を有する第 2水素吸蔵合金を備える第 2水素吸蔵合金装置と、 第 2水素吸 蔵合金より高い解離圧を有する第 3水素吸蔵合金を備える第 3水素吸蔵合金装置 と、 第 3水素吸蔵合金より高い解離圧を有する第 4水素吸蔵合金を備える第 4水 素吸蔵合金装置とを有し、 第 2水素吸蔵合金装置と第 3水素吸蔵合金装置は一つ のユニットを形成し、 ユニットは、 第 2水素吸蔵合金を有する第 1水素吸蔵合金 パイプ群と、 第 1水素吸蔵合金パイプの一端が固定される第 1水素室と、 第 3水 素吸蔵合金を有する第 2水素吸蔵合金パイプ群と、 第 2水素吸蔵合金パイプのー 端が固定される第 2水素室と、 を備え、 第 2水素吸蔵合金パイプの他端及び第 3 水素吸蔵合金パイプの他端は共通の熱交換室に配置され、 第 1水素吸蔵合金装置 は、 第 2水素吸蔵合金装置及び第 3水素吸蔵合金装置のうちの一方と連通し、 第 4水素吸蔵合金装置は、 第 2水素吸蔵合金装置及び第 3水素吸蔵合金装置のうち の他方と連通し、 第 1水素吸蔵合金装置乃至第 4水素吸蔵合金装置のいずれかを 加熱又は冷却することにより、 第 1水素吸蔵合金装置及び第 4水素吸蔵合金装置 は、 それぞれュニットへ水素を移送させる。 Further, a third aspect of the present invention is a heat pump, comprising: a first hydrogen storage alloy device including a first hydrogen storage alloy having a predetermined dissociation pressure; and a second hydrogen storage device having a higher dissociation pressure than the first hydrogen storage alloy. A second hydrogen storage alloy device having a hydrogen storage alloy, a third hydrogen storage alloy device having a third hydrogen storage alloy having a higher dissociation pressure than the second hydrogen storage alloy, and a higher dissociation pressure than the third hydrogen storage alloy. A second hydrogen storage alloy device having a fourth hydrogen storage alloy device, wherein the second hydrogen storage alloy device and the third hydrogen storage alloy device form one unit, and the unit is a second hydrogen storage alloy device. A first hydrogen storage alloy pipe group having a first hydrogen storage alloy pipe, a first hydrogen chamber to which one end of the first hydrogen storage alloy pipe is fixed, a second hydrogen storage alloy pipe group having a third hydrogen storage alloy pipe, and a second hydrogen storage alloy Second water to which the end of the alloy pipe is fixed And the other end of the second hydrogen storage alloy pipe and the other end of the third hydrogen storage alloy pipe are arranged in a common heat exchange chamber, and the first hydrogen storage alloy device is a second hydrogen storage alloy device and The fourth hydrogen storage alloy device communicates with one of the third hydrogen storage alloy devices, and the fourth hydrogen storage alloy device communicates with the other of the second hydrogen storage alloy device and the third hydrogen storage alloy device, and the first hydrogen storage alloy device through By heating or cooling one of the fourth hydrogen storage alloy devices, the first hydrogen storage alloy device and the fourth hydrogen storage alloy device transfer hydrogen to the unit, respectively.
上記のヒー卜ポンプにおいて、 第 2水素吸蔵合金装置と第 4水素吸蔵合金装置 とは、 第 4水素吸蔵合金装置から第 2水素吸蔵合金装置へ水素を移送可能なボン プを介して達通されていることが好ましい。 In the above heat pump, the second hydrogen storage alloy device and the fourth hydrogen storage alloy device are passed through a pump capable of transferring hydrogen from the fourth hydrogen storage alloy device to the second hydrogen storage alloy device. Is preferred.
上記ヒートポンプに用いる水素吸蔵合金パイプの外周には力一ポン繊維または 炭化物繊維が巻きつけられていることが好ましい。 It is preferable that a single-pong fiber or a carbide fiber is wound around the outer periphery of the hydrogen storage alloy pipe used in the heat pump.
本発明の第 4の態様は、 ヒートポンプであって、 所定の解離圧を有する第 1水 素吸蔵合金を備える第 1水素吸蔵合金装置と、 第 1水素吸蔵合金より低い解離圧 を有する第 2水素吸蔵合金を備える第 2水素吸蔵合金装置と、 前記第 1水素吸蔵 合金より低い解離圧を有する第 3水素吸蔵合金を備える第 3水素吸蔵合金装置と、 第 1水素吸蔵合金と同じ解離圧を有する第 4水素吸蔵合金を備える第 4水素吸蔵
合金装置とを有し、 第 1水素吸蔵合金装置と前記第 2水素吸蔵合金装置はポンプ ユニットにより連結された第 1系統を形成し、 第 3水素吸蔵合金装置と前記第 4 水素吸蔵合金装置は前記ポンプュニットにより連結された第 2系統を形成し、 前 記第 1および第 2系統では、 一方の水素吸蔵合金装置を加熱又は冷却し、 かつ、 前記ポンプュニッ卜を動作させることにより、 第 1水素吸蔵合金装置と前記第 2 水素吸蔵合金装置との間、 及び、 前記第 3水素吸蔵合金装置と前記第 4水素吸蔵 合金装置との間で、 互いに反対方向に水素の移送を行う。 A fourth aspect of the present invention is a heat pump, comprising: a first hydrogen storage alloy device including a first hydrogen storage alloy having a predetermined dissociation pressure; and a second hydrogen storage device having a lower dissociation pressure than the first hydrogen storage alloy. A second hydrogen storage alloy device having a storage alloy, a third hydrogen storage alloy device having a third hydrogen storage alloy having a lower dissociation pressure than the first hydrogen storage alloy, and a same dissociation pressure as the first hydrogen storage alloy Fourth hydrogen storage with fourth hydrogen storage alloy An alloy device, wherein the first hydrogen storage alloy device and the second hydrogen storage alloy device form a first system connected by a pump unit, and the third hydrogen storage alloy device and the fourth hydrogen storage alloy device A second system connected by the pump unit is formed. In the first and second systems, the first hydrogen storage alloy device is heated or cooled, and the first hydrogen storage device is operated by operating the pump unit. Transfer of hydrogen is performed in the opposite directions between the alloy device and the second hydrogen storage alloy device, and between the third hydrogen storage alloy device and the fourth hydrogen storage alloy device.
本発明の第 5の態様は、 水素圧縮装置であって、 水素吸蔵合金材料及び水素吸 着材料の共融混合物の粉末を粘性物質と混合してなる水素吸蔵合金を有し、 熱媒 体源との間で熱の授受が可能な水素吸蔵合金装置と、 水素吸蔵合金装置とポンプ を介して連通した水素貯蔵容器と、 を備え、 熱媒体源により水素吸蔵合金装置を 加熱するとともに、 ポンプを水素吸蔵合金装置から水素貯蔵容器へ水素を移送す るように動作させることにより水素貯蔵容器に圧縮して水素を収容させる。 本発明の第 6の態様は、 水素圧縮装置であって、 水素吸蔵合金を有する水素吸 蔵合金装置と、 それぞれ水素吸蔵合金装置に切り替え可能に連通された第 1圧力 容器及び第 2圧力容器と、 第 1圧力容器及び第 2圧力容器の双方に連通され、 流 体を移送可能なポンプと、 第 1圧力容器及び第 2圧力容器のそれぞれに連通した 水素貯蔵容器とを備え、 水素吸蔵合金装置を加熱して水素吸蔵合金から放出され た水素を、 第 1圧力容器及び第 2圧力容器の一方に移送し、 かつ、 第 1圧力容器 及び第 2圧力容器のうち水素が移送された一方側から他方側へ流体を移送するよ うにポンプを動作させることにより水素貯蔵容器に圧縮して水素を収容させる。 図面の簡単な説明 A fifth aspect of the present invention is a hydrogen compression apparatus, comprising: a hydrogen storage alloy obtained by mixing powder of a eutectic mixture of a hydrogen storage alloy material and a hydrogen storage material with a viscous substance; A hydrogen storage alloy device capable of exchanging heat with the hydrogen storage alloy device, and a hydrogen storage container communicating with the hydrogen storage alloy device via a pump. By operating to transfer hydrogen from the hydrogen storage alloy device to the hydrogen storage container, the hydrogen is compressed and stored in the hydrogen storage container. A sixth aspect of the present invention is a hydrogen compression apparatus, comprising: a hydrogen storage alloy apparatus having a hydrogen storage alloy; and a first pressure vessel and a second pressure vessel, each of which is switchably connected to the hydrogen storage alloy apparatus. A hydrogen storage alloy device comprising: a pump connected to both the first pressure container and the second pressure container and capable of transferring a fluid; and a hydrogen storage container connected to each of the first pressure container and the second pressure container. To transfer hydrogen released from the hydrogen storage alloy to one of the first pressure vessel and the second pressure vessel, and from one of the first pressure vessel and the second pressure vessel to which hydrogen has been transferred. By operating the pump to transfer the fluid to the other side, the hydrogen is compressed and stored in the hydrogen storage container. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1実施形態に係る水素吸蔵合金ュニットの構造を示す縦断 面図である。 FIG. 1 is a longitudinal sectional view showing the structure of the hydrogen storage alloy unit according to the first embodiment of the present invention.
図 2 Aは、 図 1の ΠΑ— IIA方向の断面図である。 FIG. 2A is a sectional view taken along the line II-IIA of FIG.
図 2 Bは、 図 1の ΠΒ— ΠΒ方向の断面図である。 FIG. 2B is a cross-sectional view taken along the line II-III of FIG.
図 3 Aは、 本発明の第 1実施形態に係る水素吸蔵合金パイプの構造を示す軸直 交断面図である。
図 3 Bは、 本発明の第 1実施形態に係る水素吸蔵合金パイプの構造を示す斜視 図である。 FIG. 3A is a cross-sectional view perpendicular to the axis showing the structure of the hydrogen storage alloy pipe according to the first embodiment of the present invention. FIG. 3B is a perspective view showing the structure of the hydrogen storage alloy pipe according to the first embodiment of the present invention.
図 4 Aは、 本発明の第 2実施形態に係るヒートボンプの概略構成図であって、 超低温生成工程を示す図である。 FIG. 4A is a schematic configuration diagram of a heat pump according to a second embodiment of the present invention, showing an ultra-low temperature generation step.
図 4 Bは、 本発明の第 2実施形態に係るヒ一トポンプの概略構成図であつて、 再生工程を示す図である。 FIG. 4B is a schematic configuration diagram of the heat pump according to the second embodiment of the present invention, showing a regeneration step.
図 5は、 本発明の第 3実施形態に係るヒートポンプの概略構成図である。 図 6 Aは、 本発明の第 4実施形態に係る水素圧縮装置の概略構成図であって、 水素貯蔵工程を示す図である。 FIG. 5 is a schematic configuration diagram of a heat pump according to a third embodiment of the present invention. FIG. 6A is a schematic configuration diagram of a hydrogen compression device according to a fourth embodiment of the present invention, and is a diagram illustrating a hydrogen storage step.
図 6 Bは、 本発明の第 4実施形態に係る水素圧縮装置の概略構成図であって、 水素圧縮工程を示す図である。 ' FIG. 6B is a schematic configuration diagram of the hydrogen compression apparatus according to the fourth embodiment of the present invention, and is a view showing a hydrogen compression step. '
図 7は、 本発明の第 5実施形態に係る水素圧縮装置の概略構成図である。 発明を実施するための最良の形態 FIG. 7 is a schematic configuration diagram of a hydrogen compression device according to a fifth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る水素吸蔵合金及び水素吸蔵合金ユニット、 並びに、 水素吸 蔵合金を用いたヒートポンプ及び水素圧縮装置の実施形態を図面を参照しつつ詳 しく説明する。 Hereinafter, embodiments of a hydrogen storage alloy and a hydrogen storage alloy unit according to the present invention, and a heat pump and a hydrogen compression device using the hydrogen storage alloy will be described in detail with reference to the drawings.
第 1実施形態 (水素吸蔵合金ュニット) First embodiment (hydrogen storage alloy unit)
第 1実施形態に係る水素吸蔵合金ュニット 1 0の全体構造について図 1から図 3を参照しつつ説明する。 The overall structure of the hydrogen storage alloy unit 10 according to the first embodiment will be described with reference to FIGS.
水素吸蔵合金ュニット 1 0は、 略円筒状の本体部 1 1と、 該本体部 1 1の両端 部を閉塞する外側に凸の端板部 1 2、 1 3と、 この端板部 1 2、 1 3の外側に溶 接され、 該端板部 1 2、 1 3との間にそれぞれ密閉された水素室 3 2、 3 3を形 成する椀状部 2 2、 2 3とを有する。 水素室 3 2、 3 3を形成する壁面としての 端板部 1 2、 1 3、 椀状部 2 2、 2 3は高圧に耐えうるように肉厚としてある。 また、 水素吸蔵合金ユニット 1 0は、 例えばチタン、 S U S、 アルミニウムなど の金属材によって形成することができる。 The hydrogen storage alloy unit 10 includes a substantially cylindrical main body 11, outwardly protruding end plates 12, 13 closing both ends of the main body 11, and end plates 12, 13. Bowl-shaped portions 22 and 23 which are welded to the outside of 13 and form sealed hydrogen chambers 32 and 33 between the end plate portions 12 and 13 respectively. The end plate portions 12 and 13 and the bowl-shaped portions 22 and 23 as wall surfaces forming the hydrogen chambers 32 and 33 are thick so as to withstand high pressure. Further, the hydrogen storage alloy unit 10 can be formed of a metal material such as titanium, SUS, and aluminum.
水素吸蔵合金ュニット 1 0の本体部 1 1には、 端板部 1 2側及び端板部 1 3側 にそれぞれノズル 1 4及び 1 5が設けられている。 ノズル 1 4及び 1 5は、 水素
吸蔵合金ュニット 1 0の外部に配置された熱媒体源 (不図示) にそれぞれ連結さ れていて、 中空本体部 1 1の内部の熱交換室 1 6と連通している。 したがって、 ノズル 1 4又は 1 5に連結された熱媒体源の温度を調整しまたは選択することに より熱交換室 1 6の雰囲気温度を調整することが可能である。熱媒体源としては、 雪や氷を含む自然外気温、 太陽熱、 地熱、 工場排熱、 ごみ焼却熱、 燃料等の燃焼 熱、 燃料電池排熱、 機器作動時の排熱などを使用することができる。 The main body 11 of the hydrogen storage alloy unit 10 is provided with nozzles 14 and 15 on the end plate 12 side and the end plate 13 side, respectively. Nozzles 14 and 15 are hydrogen They are respectively connected to heat medium sources (not shown) arranged outside the storage alloy unit 10 and communicate with the heat exchange chamber 16 inside the hollow main body 11. Therefore, it is possible to adjust the ambient temperature of the heat exchange chamber 16 by adjusting or selecting the temperature of the heat medium source connected to the nozzles 14 or 15. As a heat medium source, it is possible to use natural outside air temperature including snow and ice, solar heat, geothermal heat, factory waste heat, waste incineration heat, combustion heat of fuel, etc., fuel cell waste heat, waste heat during equipment operation it can.
また、 水素室 3 2、 3 3を構成する椀状部 2 2及び 2 3には、 該水素室 3 2、 The bowls 22 and 23 constituting the hydrogen chambers 32 and 33 have the hydrogen chambers 32 and
3 3を外部と連通させるノズル (水素ノズル) 2 4及びノズル (水素ノズル) 2 5が設けられている。 A nozzle (hydrogen nozzle) 24 and a nozzle (hydrogen nozzle) 25 for connecting 33 to the outside are provided.
熱交換室 1 6には、 同一構造を有する第 1、 第 2の水素吸蔵合金パイプ (群) ' 4 1、 4 2がハニカム状 (蜂の巣状) に配置されている。 第 1の水素吸蔵合金パ イブ 4 1は、 閉じられた一端 (放置端) 4 1 aが熱交換室 1 6内にあり、 開放さ れた他端 (固定端) 4 1 bは端板部 1 2を気密に貫通し水素室 3 2内に臨んでい る。 同様に水素吸蔵合金パイプ 4 2は、 閉じられた一端 4 2 aが熱交換室 1 6内 に配置され、 開放された他端 4 2 bが端板部 1 3を気密に貫通し水素室 3 3内に 臨んでいる。 これらの第 1、 第 2の水素吸蔵合金パイプ 4 1及び 4 2は、 それぞ れ水素室 3 2、 3 3側の端部だけが端板部 1 2、 1 3に固定されている。 このた め、 水素吸蔵合金パイプ 4 1及び 4 2が熱により膨張しても、 放置端 4 1 a及び In the heat exchange chamber 16, first and second hydrogen storage alloy pipes (group) '41, 42 having the same structure are arranged in a honeycomb shape (honeycomb shape). The first hydrogen storage alloy pipe 41 has a closed end (leaving end) 41 a in the heat exchange chamber 16 and an open other end (fixed end) 41 b is an end plate. It penetrates airtightly and faces the hydrogen chamber 32. Similarly, the hydrogen-absorbing alloy pipe 42 has a closed end 42 a disposed in the heat exchange chamber 16, and an open other end 42 b air-tightly penetrating the end plate 13 to form the hydrogen chamber 3. You are within 3. In these first and second hydrogen storage alloy pipes 41 and 42, only the ends on the side of the hydrogen chambers 32 and 33 are fixed to the end plates 12 and 13, respectively. Therefore, even if the hydrogen storage alloy pipes 41 and 42 expand due to heat, the left ends 41 a and
4 2 aが伸張可能であるため、 パイプの破損を回避することができる。 また、 こ のような構成とするとパイプ間を密接して設けることができるため、 熱交換室 1 6内に供給する熱媒体源の量を少なくすることができ、 水素吸蔵合金パイプ 4 1 及び 4 2を加熱又は冷却するときの熱媒体源切り替え時の熱のロスを最小限にす ることができる。 なお、 水素吸蔵合金パイプ 4 1及び 4 2は、 例えばチタン、 S U Sによつて形成することができる。 Since 4 2a is extensible, it is possible to avoid pipe breakage. In addition, with such a configuration, the pipes can be provided close to each other, so that the amount of the heat medium source supplied into the heat exchange chamber 16 can be reduced, and the hydrogen storage alloy pipes 41 and 4 can be provided. Heat loss at the time of switching the heat medium source when heating or cooling 2 can be minimized. The hydrogen storage alloy pipes 41 and 42 can be formed of, for example, titanium or SUS.
水素吸蔵合金パイプ 4 1及び 4 2の外周にはカーボン繊維または炭化物繊維 (例えば S i C) が巻きつけられていることが好ましい。 このように構成するこ とにより、 軽量かつ耐圧性の高い水素吸蔵合金ュニット 1 0を実現することがで さる。 It is preferable that carbon fibers or carbide fibers (for example, SiC) are wound around the hydrogen storage alloy pipes 41 and 42. With such a configuration, it is possible to realize a hydrogen storage alloy unit 10 that is lightweight and has high pressure resistance.
水素吸蔵合金パイプ 4 1、 4 2は、 ノズル 1 4又は 1 5に連結された熱媒体源
PC漏 3/06849 The hydrogen storage alloy pipes 41 and 42 are connected to the heat medium source connected to the nozzles 14 or 15 PC leak 3/06849
7 7
により熱交換室 1 6の温度が上げられ水素吸蔵温度域に達すると、 内部に配置さ れた水素吸蔵合金から水素が放出される。 放出された水素は、 開放された固定端 4 1 b又は 4 2 bから水素室 3 2又は 3 3に移送され、 水素吸蔵合金ュニット 1 0の外部に排出される。 一方、 ノズル 1 4又は 1 5に連結された熱媒体源により 又は常温下に放置することにより、 水素放出温度より高温であった熱交換室 1 6 の温度が下げられ水素放出温度に達すると、 水素吸蔵合金パイプ 4 1又は 4 2の 内部に配置された水素吸蔵合金に水素が吸蔵される。 When the temperature of the heat exchange chamber 16 rises and reaches the hydrogen storage temperature range, hydrogen is released from the hydrogen storage alloy disposed inside. The released hydrogen is transferred from the open fixed end 41b or 42b to the hydrogen chamber 32 or 33, and discharged to the outside of the hydrogen storage alloy unit 10. On the other hand, when the temperature of the heat exchange chamber 16, which was higher than the hydrogen release temperature, was lowered by the heat medium source connected to the nozzles 14 or 15 or left at room temperature, and reached the hydrogen release temperature, Hydrogen is stored in the hydrogen storage alloy disposed inside the hydrogen storage alloy pipe 41 or 42.
この水素吸蔵合金パイプ 4 1及び 4 2においては、 一方の水素吸蔵合金パイプ の水素吸蔵合金が吸蔵 (水素化) 又は放出する場合の発熱又は吸熱による発生熱 を、他方の水素吸蔵合金パ 'イブの水素吸蔵合金が受領して水素を放出又は吸蔵 (水 素化) することができる。 In the hydrogen storage alloy pipes 41 and 42, the heat generated or absorbed by the hydrogen storage alloy of one of the hydrogen storage alloy pipes when storing (hydrogenating) or releasing is used for the other hydrogen storage alloy pipe. Can receive and release or occlude (hydrogenate) hydrogen.
また、 水素吸蔵合金パイプ 4 1及び 4 2は、 互いに接するように配置してある ため、 使用する熱媒体が少なくて済む。 このため、 熱媒体を変更したときの熱交 換室 1 6内の温度の切替をすばやく行うことができる。 Further, since the hydrogen storage alloy pipes 41 and 42 are arranged so as to be in contact with each other, a small amount of heat medium is used. Therefore, it is possible to quickly switch the temperature in the heat exchange chamber 16 when the heat medium is changed.
さらに、 この水素吸蔵合金パイプ 4 1と 4 2に用いる水素吸蔵合金の解離圧を 異なるものとし、 共通の熱媒体源によって水素吸蔵合金パイプ 4 1及び 4 2を同 一温度に加熱又は冷却すると、 一方の水素吸蔵合金パイプは水素を放出するが他 方の水素吸蔵合金パイプは水素を吸蔵するという作用を実現することができる。 水素吸蔵合金パイプ (群) 4 1、 4 2は、 以上の機能を有するものである。 次 に、 水素吸蔵合金パイプ 4 1及び 4 2の好ましい実施形態を図 3について説明す る。 水素吸蔵合金パイプ 4 1と 4 2は構造が同一であるため、 ここでは水素吸蔵 合金パイプ 4 1についてのみ説明する。 もちろん、 水素吸蔵合金パイプ 4 1と 4 2の構造を異なるものとすることもできる。 Further, when the dissociation pressure of the hydrogen storage alloy used for the hydrogen storage alloy pipes 41 and 42 is made different, and the hydrogen storage alloy pipes 41 and 42 are heated or cooled to the same temperature by a common heat medium source, One of the hydrogen storage alloy pipes can release hydrogen, while the other hydrogen storage alloy pipe can store hydrogen. The hydrogen storage alloy pipes (group) 41 and 42 have the above functions. Next, a preferred embodiment of the hydrogen storage alloy pipes 41 and 42 will be described with reference to FIG. Since the hydrogen storage alloy pipes 41 and 42 have the same structure, only the hydrogen storage alloy pipe 41 will be described here. Of course, the structures of the hydrogen storage alloy pipes 41 and 42 may be different.
水素吸蔵合金パイプ 4 1は、 金属製の筒状部材 4 1 f 、 水素吸蔵合金ペースト 4 1 g、 パウンド材 4 1 c及び金属板 4 1 dを有する一様断面をなしていて、 筒 状部材 4 1 f の放置端 4 1 aが閉じられている。 金属板 4 1 dは、 筒状部材 4 1 f の径方向に渡る長さを有し、 その中心部に波形曲折部 4 1 d ' が形成されてい る。 パウンド材 4 1 cは、 この金属板 4 1 dの表裏に位置する略半円柱状をなす 多孔質部材 (水素を通すことができる部材) であり、 該金属板 4 I dの波形曲折
部 4 1 d, とパウンド材 4 1 cとの間に水素流通孔 4 1 eを構成する。 この水素 流通孔 4 1 eは水素室 3 2に開口する。 パウンド材 4 1 cとしては、 耐熱性が高 く、 かつ、 伸縮性のあるものが好ましく、 例えば発泡シリコンゴム剤を用いるこ とができる。 The hydrogen storage alloy pipe 41 has a uniform cross section having a metal tubular member 41 f, a hydrogen storage alloy paste 41 g, a pound material 41 c, and a metal plate 41 d. The left end 4 1 a of 4 1 f is closed. The metal plate 41d has a length extending in the radial direction of the cylindrical member 41f, and a corrugated bent portion 41d 'is formed at the center thereof. The pound material 41c is a substantially semi-cylindrical porous member (a member through which hydrogen can pass) located on the front and back of the metal plate 41d. A hydrogen flow hole 41e is formed between the part 41d and the pound material 41c. The hydrogen flow hole 41 e opens into the hydrogen chamber 32. As the pound material 41c, a material having high heat resistance and elasticity is preferable, and for example, a foamed silicone rubber agent can be used.
水素吸蔵合金べ一スト 4 1 gは、 このパウンド材 4 1 cと筒状部材 4 1 fの間 の空隙に充填された後、 固化される。 水素吸蔵合金材料をペースト化して装着す ることにより、水素吸蔵合金材料の微粉の飛散防止を図ることができるとともに、 速い熱伝播を実現できるため水素吸蔵合金材料内における水素化及び外部への水 素放出に要する反応時間を短くすることができる。 また、 筒状部材 4 1 ί内に収 容された水素吸蔵合金が振動によって偏ることがない。 The hydrogen storage alloy base 41 g is solidified after being filled in the gap between the pound material 41 c and the cylindrical member 41 f. By attaching the hydrogen storage alloy material in paste form, it is possible to prevent the fine particles of the hydrogen storage alloy material from being scattered, and to realize fast heat propagation, so that hydrogenation in the hydrogen storage alloy material and water The reaction time required for releasing element can be shortened. In addition, the hydrogen storage alloy contained in the cylindrical member 41 is not biased by vibration.
なお、 パウンド材 4 1 c及び金属板 4 1 dを用いずに、 筒状部材 4 1 f の内壁 に水素吸蔵合金ペースト 4 1 gを成膜し、 水素吸蔵合金ペースト 4 1 gの内部を 水素流通孔としてもよいし、 あらかじめ接着剤を内壁に塗布した筒状部材 4 1 f に水素吸蔵合金材料の粉末を装着して水素吸蔵合金ペースト 4 1 gを形成しても よい。 In addition, without using the pound material 41 c and the metal plate 41 d, a hydrogen storage alloy paste 41 g was formed on the inner wall of the cylindrical member 41 f, and the inside of the hydrogen storage alloy paste 41 g was hydrogen. The hole may be formed as a flow hole, or the hydrogen storage alloy paste may be formed by attaching a powder of the hydrogen storage alloy material to the cylindrical member 41 f having an adhesive applied to the inner wall in advance.
ここで、 水素吸蔵合金べ一スト 4 1 gは、 あらかじめ粒子径を約 2 0〜 5 0 mに調整した粉末状の水素吸蔵合金材料単体を高分子系の接着剤と混合したもの を使用するのが好ましいが、水素吸蔵合金材料と水素吸着材料との共融混合物(共 晶体) の粉体を、 接着剤などの粘性物質と混合してぺ一スト化したものを用いる こともできる。 共融混合物とすることにより、 合金重量に対して水素吸蔵重量比 率を増やすことができる。 また、 水素吸着材料は圧力の増加に伴って水素吸着量 が増加する性質を有するため、 水素吸蔵合金材料単独の場合よりも多くの水素を 取り込むことができ、 かつ、 本発明のように高圧を実現可能な水素吸蔵合金ュニ ッ卜においてはこの効果は顕著である。 Here, for the hydrogen storage alloy base 41 g, a powdered hydrogen storage alloy material whose particle diameter has been adjusted to about 20 to 50 m in advance and mixed with a polymer adhesive is used. However, it is also possible to use a powder obtained by mixing powder of a eutectic mixture (eutectic) of a hydrogen storage alloy material and a hydrogen storage material with a viscous substance such as an adhesive. By using the eutectic mixture, the weight ratio of hydrogen storage to the weight of the alloy can be increased. Further, since the hydrogen adsorbing material has the property that the amount of hydrogen adsorbed increases with an increase in pressure, it is possible to take in more hydrogen than in the case of using the hydrogen storage alloy material alone, and to apply a high pressure as in the present invention. This effect is remarkable in a hydrogen storage alloy unit that can be realized.
水素吸蔵合金材料としては、 例えば、 C a、 L a、 M g、 N i 、 T iのほか、 L a N i系の合金、 M g T i系の合金、 メカニカルァロイング法により V系の元 素を混入した共融混合物などを使用することができる。 Examples of hydrogen storage alloy materials include Ca, La, Mg, Ni, Ti, LaNi alloy, MgTi alloy, and V alloy by mechanical alloying method. For example, a eutectic mixture in which the element (1) is mixed can be used.
一方、 水素吸着材料としては、 例えば、 炭素材、 グラフアイト構造ゃァモルフ ァス構造のナノ力一ボン類、炭化物及び酸化物を使用することができる。ただし、
水素吸着材料としてナノカーボン類を用いる塲合は、 共融混合物の製造時にナノ カーボン類が水素吸蔵合金材料に溶け込んで、 水素吸蔵合金材料が炭化されてし まうため、 あらかじめナノ力一ボン微粒子に水素解離性の金属、 炭化物又は酸化 物の被膜を形成しておくことが好ましい。 この被膜の形成は、 湿式めつき、 C V D、 P V Dなどの成膜方法の中から、 ナノ力一ボン類の種類等に応じた方法を選 択して行う。 On the other hand, as the hydrogen adsorbing material, for example, a carbon material, nano-carbons having a graphite structure and a graphite structure, carbides and oxides can be used. However, Nanocarbons are used as a hydrogen-absorbing material because the nanocarbons dissolve into the hydrogen-absorbing alloy material during the production of the eutectic mixture, and the hydrogen-absorbing alloy material is carbonized. It is preferable to form a film of a hydrogen-dissociable metal, carbide or oxide in advance. This film is formed by selecting a method according to the type of nano-ribbon from the film-forming methods such as wet plating, CVD, and PVD.
このように被膜したナノカーボン類、 炭化物及び酸化物と、 水素吸蔵合金材料 との共融混合物は、 力一ボン類、 炭化物及び酸化物の周囲にある水素吸蔵合金材 料の水素解離特性によって、 気体の水素分子 (H 2) が水素吸蔵合金材料に触れ ることによってプロトン (H) に分離して水素吸着材料の微粒子の表面及び内部 の間隙に定着するため、 より多くの水素を吸蔵することができる。 The eutectic mixture of the nanocarbons, carbides and oxides thus coated and the hydrogen storage alloy material is formed by the hydrogen dissociation properties of the hydrogen storage alloy material around the carbons, carbides and oxides. To absorb more hydrogen because gaseous hydrogen molecules (H 2 ) come into contact with the hydrogen storage alloy material and separate into protons (H), which settle on the surface and inside gaps of the fine particles of the hydrogen storage material. Can be.
さらに、 上述の接着剤に代えてゴム剤を用いることもできる。 すなわち、 水素 吸蔵合金ペースト 4 1 gとして、 水素吸蔵合金材料単体、 又は、 水素吸蔵合金材 料と水素吸着材料との共融混合物の粉体を、 例えばシリコンのゴム剤と混合して ペースト化してもよい。 この場合は、 筒状部材 4 1 f に充填された水素吸蔵合金 ペースト 4 1 gは、 水素吸蔵合金パイプ 4 1を加熱することによって硬化する。 以上のように構成した水素吸蔵合金ュニット 1 0においては、 ノズル 1 4又は 1 5に連結された熱媒体源の温度を所定の温度に設定することによって、 熱交換 室 1 6の温度を調整することができる。 熱媒体源の温度を上げて熱交換室 1 6の 温度が水素吸蔵合金パイプ 4 1及び 4 2の一方または両方の水素放出温度に至る と、 水素放出が始まる。 放出された水素は、 水素吸蔵合金パイプ 4 1から放出さ れたものは水素室 3 2を経てノズル 2 4から外部へ、 水素吸蔵合金パイプ 4 2か ら放出されたものは水素室 3 3を経てノズル 2 5から外部へ流出する。 一方、 熱 媒体源の温度を下げて、 熱交換室 1 6の温度が水素吸蔵合金パイプ 4 1及び 4 2 の一方または両方の水素吸蔵温度に至ると、 水素吸蔵が始まる。 水素吸蔵合金パ イブ 4 1内、 水素室 3 2内及びノズル 2 4に連通した外部機器内の水素は徐々に 水素吸蔵合金パイプ 4 1の水素吸蔵合金に吸蔵され、水素吸蔵合金パイプ 4 2内、 水素室 3 3内及びノズル 2 5に連通した外部機器内の水素は徐々に水素吸蔵合金 パイプ 4 2の水素吸蔵合金に吸蔵される。 また、 ノズル 1 4又は 1 5に連結され
た熱媒体源の温度を 8 0 °C程度で加熱させながら熱交換室 3 2 , 3 3およびパイ プ 4 1、 4 2内をノズル 2 4、 2 5から真空引きして水素吸蔵合金の脱気を行い、 次いで、 熱媒体源を冷却の 5 °C程度に変えてノズル 2 4、 2 5から、 3 0 k g Z c m2程度で水素加圧が行えるため、 水素吸蔵合金の活性化が専角チャンバ一を 用いることなく完成後に直接行うことができる。 . Further, a rubber agent can be used instead of the above-mentioned adhesive. That is, a powder of a hydrogen storage alloy material alone or a eutectic mixture of a hydrogen storage alloy material and a hydrogen adsorption material is mixed as a hydrogen storage alloy paste 41 g as a paste, for example, by mixing with a rubber agent of silicon. Is also good. In this case, the hydrogen storage alloy paste 41 g filled in the tubular member 41 f is hardened by heating the hydrogen storage alloy pipe 41. In the hydrogen storage alloy unit 10 configured as described above, the temperature of the heat exchange chamber 16 is adjusted by setting the temperature of the heat medium source connected to the nozzles 14 or 15 to a predetermined temperature. be able to. When the temperature of the heat medium source is increased and the temperature of the heat exchange chamber 16 reaches the hydrogen release temperature of one or both of the hydrogen storage alloy pipes 41 and 42, hydrogen release starts. The hydrogen released from the hydrogen storage alloy pipe 41 passes through the hydrogen chamber 32 to the nozzle 24 to the outside, and the hydrogen released from the hydrogen storage alloy pipe 42 passes through the hydrogen chamber 33. Through the nozzle 25, it flows out. On the other hand, when the temperature of the heat medium source is lowered and the temperature of the heat exchange chamber 16 reaches the hydrogen storage temperature of one or both of the hydrogen storage alloy pipes 41 and 42, hydrogen storage starts. Hydrogen in the hydrogen storage alloy pipe 41, the hydrogen chamber 32, and the external equipment communicating with the nozzle 24 is gradually stored in the hydrogen storage alloy of the hydrogen storage alloy pipe 41, and is stored in the hydrogen storage alloy pipe 42. The hydrogen in the hydrogen chamber 33 and the external equipment communicating with the nozzle 25 is gradually stored in the hydrogen storage alloy of the hydrogen storage alloy pipe 42. Also connected to nozzles 14 or 15 The inside of the heat exchange chambers 32, 33 and pipes 41, 42 is evacuated from the nozzles 24, 25 while heating the heat medium source at about 80 ° C to remove the hydrogen storage alloy. subjected to gas, then a heating medium source from the nozzle 2 4, 2 5 in place of about 5 ° C cooling, 3 0 kg Z cm for enabling hydrogen pressure at about 2, the activation of the hydrogen storage alloy dedicated This can be done directly after completion without using a square chamber. .
また、 水素吸蔵合金パイプ 4 1及び 4 2に力一ボン繊維または炭化物繊維 (例 えば S i C ) を巻きつけると耐圧が向上するため、 水素吸蔵合金ュニット 1 0内 を高圧にすることができ、 圧力が高いほど水素吸着量が多くなる水素吸着材料を 含有する本発明の水素吸蔵合金においては水素吸蔵合金材料単独の場合よりも多 くの水素を取り込むことができる。 In addition, when pressure-resistant fibers or carbide fibers (for example, SiC) are wrapped around the hydrogen storage alloy pipes 41 and 42, the pressure resistance is improved, so that the pressure inside the hydrogen storage alloy unit 10 can be increased. However, in the hydrogen storage alloy of the present invention containing a hydrogen adsorption material in which the higher the pressure, the larger the amount of hydrogen adsorption becomes, more hydrogen can be taken in than in the case of the hydrogen storage alloy material alone.
さらに、 水素吸蔵合金ュニット 1 0は、 水素吸蔵合金パイプ 4 1及び 4 2の内 部に水素吸蔵合金や水素吸着の材料を装着せず高耐圧で軽量な水素貯蔵容器とし て水素ステージョンゃ水素自動車に用いることができる。 この場合においては、 従来のボンべ方式の水素貯蔵容器に比べ高圧水素の充填に伴なう流体摩擦による 高温発熱を熱媒体源で冷却しやすく、 高圧水素の充填時間を大幅に短縮できる。 第 2実施形態 (ヒートポンプ) Further, the hydrogen storage alloy unit 10 is a hydrogen storage tank which is a high pressure resistant and lightweight hydrogen storage container without mounting a hydrogen storage alloy or a material for hydrogen adsorption inside the hydrogen storage alloy pipes 41 and 42. Can be used for automobiles. In this case, the high-temperature heat generated by the fluid friction accompanying the filling of the high-pressure hydrogen can be easily cooled by the heat medium source as compared with the conventional cylinder-type hydrogen storage container, and the filling time of the high-pressure hydrogen can be greatly reduced. Second embodiment (heat pump)
第 2実施形態に係るヒートポンプ 5 0について図 4 Aおよび図 4 Bを参照しつ つ説明する。 The heat pump 50 according to the second embodiment will be described with reference to FIGS. 4A and 4B.
ヒートポンプ 5 0は、 水素解離圧の異なる 4つの水素吸蔵合金装置 (第 1水素 吸蔵合金装置) 6 0、 水素吸蔵合金装置 (第 3水素吸蔵合金装置) 6 1、 水素吸 蔵合金装置 (第 2水素吸蔵合金装置) 6 2及び水素吸蔵合金装置 (第 4水素吸蔵 合金装置) 6 3を有する。 水素吸蔵合金装置 6 0及び 6 3にはそれぞれ熱媒体源 7 0、 7 1、 7 2及び 7 3が接離可能に接続され、 水素吸蔵合金装置 6 1及び 6 2には共通の熱媒体源 7 1が接続されている。 さらに、 水素吸蔵合金装置 6 2と 6 3との間には、 水素吸蔵合金装置 6 3で発生した水素を水素吸蔵合金装置 6 2 に移送可能なポンプ 7 4が配置され、 水素吸蔵合金装置 6 2と 6 3とを連通して いる。 なお、 熱媒体源 7 1は、 水素吸蔵合金装置 6 1及び 6 2と、 水素吸蔵合金 装置 6 3との一方に対して選択的に接続可能である。 熱媒体源 7 0、 7 1、 7 2 としては、 雪や氷を含む自然外気温、 太陽熱、 地熱、 工場排熱、 ごみ焼却熱、 燃
料等の燃焼熱、 燃料電池排熱、 機器作動時の排熱などを使用することができる。 図 4 Aおよび図 4 Bでは簡略に表現されているが、 水素吸蔵合金装置 6 1及び 6 2は、 図 1に示す水素吸蔵合金ュニット 1 0を構成している。 すなわち、 水素 吸蔵合金装置 6 1及び 6 2はそれぞれ水素吸蔵合金ュニット 1 0における水素吸 蔵合金パイプ 4 1及び 4 2のいずれかを構成し、 それぞれノズル 2 4及びノズル 2 5によって水素吸蔵合金装置 6 0及びポンプ 7 4に連通され、 熱媒体源 7 1は ノズル 1 4及び 1 5に連結されている。 また、 水素吸蔵合金装置の数は任意に設 定可能であり、 図 1に示す水素吸蔵合金ュニッ卜 1 0を構成する水素吸蔵合金装 置の数は 2以上であってもよい。 また、 水素吸蔵合金パイプ 4 1及び 4 2の外周 にはカーボン繊維または炭化物繊維 (例えば S i C ) が巻きつけられていること が好ましい。 このように構成することにより、 耐圧性の高いヒートポンプ用水素 吸蔵合金装置を実現することができる。 The heat pump 50 has four hydrogen storage alloy devices with different hydrogen dissociation pressures (first hydrogen storage alloy device) 60, the hydrogen storage alloy device (third hydrogen storage alloy device) 61, and the hydrogen storage alloy device (second It has a hydrogen storage alloy device 62 and a hydrogen storage alloy device (fourth hydrogen storage alloy device) 63. Heat medium sources 70, 71, 72, and 73 are connected to the hydrogen storage alloy devices 60 and 63, respectively, so that they can be separated from each other. 7 1 is connected. Further, a pump 74 that can transfer hydrogen generated in the hydrogen storage alloy device 63 to the hydrogen storage alloy device 62 is disposed between the hydrogen storage alloy devices 62 and 63. 2 and 6 3 are communicated. The heat medium source 71 can be selectively connected to one of the hydrogen storage alloy devices 61 and 62 and the hydrogen storage alloy device 63. Heat medium sources 70, 71, and 72 include natural outside air temperature including snow and ice, solar heat, geothermal heat, factory waste heat, waste incineration heat, and fuel. Combustion heat of fuel, exhaust heat of fuel cells, exhaust heat during operation of equipment, etc. can be used. Although simply represented in FIGS. 4A and 4B, the hydrogen storage alloy devices 61 and 62 constitute the hydrogen storage alloy unit 10 shown in FIG. That is, the hydrogen storage alloy devices 61 and 62 constitute one of the hydrogen storage alloy pipes 41 and 42 in the hydrogen storage alloy unit 10, respectively, and the hydrogen storage alloy devices are respectively provided by the nozzles 24 and 25. The heating medium source 71 is connected to the nozzles 14 and 15. Further, the number of hydrogen storage alloy devices can be set arbitrarily, and the number of hydrogen storage alloy devices constituting the hydrogen storage alloy unit 10 shown in FIG. 1 may be two or more. Further, it is preferable that carbon fibers or carbide fibers (for example, SiC) are wound around the outer circumference of the hydrogen storage alloy pipes 41 and 42. With this configuration, it is possible to realize a hydrogen storage alloy device for a heat pump having high pressure resistance.
水素吸蔵合金装置 6 0、 6 1、 6 2及び 6 3の水素吸蔵合金の水素解離圧は、 水素吸蔵合金装置 6 0の水素吸蔵合金が最も小さく、 水素吸蔵合金装置 6 2、 水 素吸蔵合金装置 6 1の順に大きくなり、 水素吸蔵合金装置 6 3の水素吸蔵合金が 最も大きくなるように配置している。 したがって、 水素放出開始温度は、 水素吸 蔵合金装置 6 0の水素吸蔵合金が最も高く、 水素吸蔵合金装置 6 2、 水素吸蔵合 金装置 6 1の順に低くなり、 水素吸蔵合金装置 6 3の水素吸蔵合金が最も低い。 水素吸蔵合金装置 6 0、 6 1、 6 2及び 6 3に使用する水素吸蔵合金材料とし ては、 例えば、 C a、 L a、 M g、 N i、 T iのほか、 L a N i系の合金、 M g T i系の合金などが挙げられる。 この場合、 あらかじめ粒子径を約 2 0〜5 0 mに調整した粉末状の水素吸蔵合金材料単体を高分子系の接着剤と混合したもの を使用すると、 ヒステリシス特性値が最小となるためヒートポンプの場合に限つ ては望ましい。 The hydrogen dissociation pressure of the hydrogen storage alloys of the hydrogen storage alloy devices 60, 61, 62 and 63 is the smallest for the hydrogen storage alloy of the hydrogen storage alloy device 60, the hydrogen storage alloy device 62, and the hydrogen storage alloy. The hydrogen storage alloy of the hydrogen storage alloy device 63 is arranged so as to become the largest. Therefore, the hydrogen release start temperature of the hydrogen storage alloy of the hydrogen storage alloy device 60 is the highest, the temperature of the hydrogen storage alloy device 62 is lower in the order of the hydrogen storage alloy device 61, and the hydrogen storage alloy device 63 of the hydrogen storage alloy device 63 is lower. The lowest for occlusion alloys. Examples of the hydrogen storage alloy materials used in the hydrogen storage alloy devices 60, 61, 62 and 63 include, for example, La, Ni, Ti, and La Ni Alloys, and MgTi-based alloys. In this case, if a powdery hydrogen-absorbing alloy material whose particle size has been adjusted to about 20 to 50 m in advance mixed with a polymer-based adhesive is used, the hysteresis characteristic value will be minimized, so the heat pump It is desirable only in such cases.
このような水素吸蔵合金材料は、 水素解離特性によって、 気体の水素分子 (H 2) が水素吸蔵合金材料に触れるとプロトン (H) に分離して合金結晶間に貯蔵 をする。 Due to the hydrogen dissociation property, when a gaseous hydrogen molecule (H 2) comes into contact with the hydrogen storage alloy material, the hydrogen storage alloy material is separated into protons (H) and stored between the alloy crystals.
さらに、 上述の接着剤に代えてゴム剤を用いることもできる。 すなわち、 水素 吸蔵合金ペースト 4 1 gとして、 水素吸蔵合金材料の粉体を、 例えばシリコンの
ゴム剤と混合してペース卜化してもよい。 この場合は、 筒状部材 4 I f に充填さ れた水素吸蔵合金ペースト 4 1 gは、 水素吸蔵合金パイプ 4 1を加熱することに . よって硬化する。 Further, a rubber agent can be used instead of the above-mentioned adhesive. That is, as the hydrogen storage alloy paste 41 g, the powder of the hydrogen storage alloy A paste may be formed by mixing with a rubber agent. In this case, the hydrogen storage alloy paste 41 g filled in the cylindrical member 4 If is hardened by heating the hydrogen storage alloy pipe 41.
なお、 水素吸蔵合金装置 6 0及び 6 3は任意の構成をとることができるが、 例 えば、 図 3の水素吸蔵合金パイプ 4 1のようにパイプ内に水素吸蔵合金を配置し た構造をとることができる。 The hydrogen storage alloy devices 60 and 63 can have any configuration. For example, the hydrogen storage alloy devices 60 and 63 have a structure in which a hydrogen storage alloy is arranged in a pipe, such as a hydrogen storage alloy pipe 41 in FIG. be able to.
以上のように構成されたヒートポンプ 5 0においては、 水素吸蔵合金装置 6 3 から水素吸蔵合金装置 6 2へ、 及び、 水素吸蔵合金装置 6 1から水素吸蔵合金装 置 6 0へ、 それぞれ水素を移送し、 熱媒体源 7 3から熱を奪って超低温化する超 低温生成工程(図 4 A)、 並びに、 水素吸蔵合金装置 6 0から水素吸蔵合金装置 6 1へ、 及び、 水素吸蔵合金装置 6 2から水素吸蔵合金装置 6 3へ、 それぞれ水素 を移送する再生工程 (図 4 B ) からなる 1サイクルを実現することができる。 ま た、 水素吸蔵合金パイプ 4 1及び 4 2にカーボン繊維または炭化物繊維 (例えば S i C ) を巻きつけると耐圧が向上するため、 水素吸蔵合金装置 6 0、 6 1、 6 2、 6 3内を高圧にすることができ、 圧力が高いほど水素吸着量が多くなる水素 吸着材料を含有する本発明の水素吸蔵合金においては水素吸蔵合金材料単独の場 合よりも多くの水素を取り込むことができる。 In the heat pump 50 configured as described above, hydrogen is transferred from the hydrogen storage alloy device 63 to the hydrogen storage alloy device 62 and from the hydrogen storage alloy device 61 to the hydrogen storage alloy device 60. Then, the ultra-low temperature generation step (Fig. 4A), which takes heat from the heat medium source 73 to make it ultra-low temperature, and from the hydrogen storage alloy device 60 to the hydrogen storage alloy device 61, and the hydrogen storage alloy device 62 One cycle consisting of a regeneration step (Fig. 4B) for transferring hydrogen from the hydrogen storage alloy device 63 to the hydrogen storage alloy device 63 can be realized. In addition, when carbon fibers or carbide fibers (for example, SiC) are wound around the hydrogen storage alloy pipes 41 and 42, the pressure resistance is improved, so that the hydrogen storage alloy devices 60, 61, 62, 63 are required. The hydrogen storage alloy of the present invention containing a hydrogen-absorbing material, in which the higher the pressure, the higher the amount of hydrogen absorbed, can take in more hydrogen than in the case of the hydrogen-absorbing alloy material alone. .
図 4 Aに示す生成工程においては、 熱媒体源 7 0により高温の水素吸蔵合金装 置 6 0が常温まで冷却されると、 水素吸蔵合金装置 6 0の水素吸蔵合金と水素吸 蔵合金装置 6 1の水素吸蔵合金との水素解離圧の差により水素吸蔵合金装置 6 1 の水素吸蔵合金から発生した水素が水素吸蔵合金装置 6 0に移送される。 このと き水素吸蔵合金装置 6 1の水素吸蔵合金は熱媒体源 7 1から熱を奪うとともに、 水素吸蔵合金装置 6 2の水素吸蔵合金が冷却されるため、 水素吸蔵合金装置 6 2 と 6 3との水素吸蔵合金の水素解離圧の差により水素吸蔵合金装置 6 3の水素吸 蔵合金から放出された水素が水素吸蔵合金装置 6 2に移送されるとともに、 水素 吸蔵合金装置 6 3の水素吸蔵合金は熱媒体源 7 3から熱を奪う。 水素吸蔵合金装 置 6 2と 6 3の水素吸蔵合金の解離圧の差を大きくとることにより、 熱媒体源 7 3の温度をより低温にすることができる。 さらに、 ポンプ 7 4を動作させること により、 水素吸蔵合金装置 6 3から水素吸蔵合金装置 6 2へ強制的に水素を移送
させることができるため、 熱媒体源 7 3の超低温化を効率的に実現することがで きる。 In the production process shown in FIG. 4A, when the high-temperature hydrogen storage alloy device 60 is cooled to room temperature by the heat medium source 70, the hydrogen storage alloy and the hydrogen storage alloy device 6 of the hydrogen storage alloy device 60 are used. The hydrogen generated from the hydrogen storage alloy of the hydrogen storage alloy device 61 is transferred to the hydrogen storage alloy device 60 due to the difference in the hydrogen dissociation pressure with the hydrogen storage alloy 1. At this time, the hydrogen storage alloy of the hydrogen storage alloy device 61 takes away heat from the heat medium source 71 and the hydrogen storage alloy of the hydrogen storage alloy device 62 is cooled, so that the hydrogen storage alloy devices 62 and 63 The hydrogen released from the hydrogen storage alloy of the hydrogen storage alloy device 63 due to the difference in hydrogen dissociation pressure of the hydrogen storage alloy with the hydrogen storage alloy is transferred to the hydrogen storage alloy device 62 and the hydrogen storage of the hydrogen storage alloy device 63 The alloy removes heat from the heating medium source 73. By making the difference between the dissociation pressures of the hydrogen storage alloys of the hydrogen storage alloy devices 62 and 63 large, the temperature of the heat medium source 73 can be made lower. Further, by operating the pump 74, hydrogen is forcibly transferred from the hydrogen storage alloy device 63 to the hydrogen storage alloy device 62. Therefore, the ultra-low temperature of the heat medium source 73 can be efficiently realized.
図 4 Bに示す再生工程においては、 熱媒体源 7 0を高温として水素吸蔵合金装 置 6 0を加熱することにより、 水素吸蔵合金装置 6 0の水素吸蔵合金から水素を 発生させて水素吸蔵合金装置 6 0内の水素圧を高めて、 水素吸蔵合金装置 6 1へ 水素を移送する。 水素吸蔵合金装置 6 0から移送された水素を吸蔵した水素吸蔵 合金装置 6 1の水素吸蔵合金は発熱し、 水素吸蔵合金装置 6 2に熱を与える。 水 素吸蔵合金装置 6 1から与えられた熱により温度が上昇した水素吸蔵合金装置 6 2の水素吸蔵合金は水素を放出する。 水素吸蔵合金装置 6 2の水素吸蔵合金から 放出された水素は水素吸蔵合金装置 6 2と連通した水素吸蔵合金装置 6 3に移送 され、この水素を吸蔵した水素吸蔵合金装置 6 3の水素吸蔵合金は熱を排出する。 このとき、 ポンプ 7 4は動作しておらず、 水素吸蔵合金装置 6 2と水素吸蔵合金 装置 6 3とは連通状態にある。 In the regeneration step shown in FIG. 4B, the heat storage medium source 70 is heated to a high temperature to heat the hydrogen storage alloy device 60, thereby generating hydrogen from the hydrogen storage alloy of the hydrogen storage alloy device 60 to generate the hydrogen storage alloy. The hydrogen pressure in the device 60 is increased to transfer hydrogen to the hydrogen storage alloy device 61. The hydrogen storage alloy of the hydrogen storage alloy device 61 that has absorbed the hydrogen transferred from the hydrogen storage alloy device 60 generates heat and gives heat to the hydrogen storage alloy device 62. The hydrogen storage alloy of the hydrogen storage alloy device 62 whose temperature has been increased by the heat given from the hydrogen storage alloy device 61 releases hydrogen. The hydrogen released from the hydrogen storage alloy of the hydrogen storage alloy device 62 is transferred to the hydrogen storage alloy device 63 communicating with the hydrogen storage alloy device 62, and the hydrogen storage alloy of the hydrogen storage alloy device 63 that stores the hydrogen is used. Discharges heat. At this time, the pump 74 is not operating, and the hydrogen storage alloy device 62 and the hydrogen storage alloy device 63 are in communication.
再生工程においては、 水素吸蔵合金装置 6 3と熱媒体源 7 3、 並びに、 水素吸 蔵合金装置 6 1及び 6 2と熱媒体源 7 1の接続はそれぞれ解除され、 水素吸蔵合 金装置 6 3には熱媒体源 7 1が連結されている。 このような構成にすることによ つて、 水素吸蔵合金装置 6 3からの排熱を熱媒体源 7 1が受領してその温度が上 昇し、 高温となった熱媒体源 7 1を生成工程における水素吸蔵合金装置 6 1への 熱の供給源とすることができる。 また、 上述のように、 生成工程において水素吸 蔵合金装置 6 1の水素吸蔵合金量を水素吸蔵合金装置 6 2の水素吸蔵合金量より' 多くすると、 熱媒体源 7 1をより低温にすることができ、 この熱媒体源 7 1を再 生工程で使用すると、 水素吸蔵合金装置 6 3から熱媒体源 7 1への熱の授受をよ り効率的に行うことができる。 In the regeneration process, the connection between the hydrogen storage alloy device 63 and the heat medium source 73 and the connection between the hydrogen storage alloy devices 61 and 62 and the heat medium source 71 are respectively released, and the hydrogen storage alloy device 63 Is connected to a heat medium source 71. By adopting such a configuration, the heat medium source 71 receives the exhaust heat from the hydrogen storage alloy device 63 and its temperature rises to generate the heat medium source 71 at a high temperature. Can be used as a heat supply source to the hydrogen storage alloy device 61 in the above. Further, as described above, if the amount of the hydrogen storage alloy in the hydrogen storage alloy device 61 is larger than the amount of the hydrogen storage alloy in the hydrogen storage alloy device 62 in the generation step, the temperature of the heat medium source 71 becomes lower. When the heat medium source 71 is used in the regeneration step, heat can be more efficiently transferred from the hydrogen storage alloy device 63 to the heat medium source 71.
以上のように、 ヒ一トポンプ 5 0を用いることによって、 コンパクトかつ効率 的なヒートポンプを実現することができる。 さらに、 ポンプによる水素移送を併 用することによって、 熱媒体源のみでは達成が困難な超低温を容易に達成するこ とができる。 As described above, by using the heat pump 50, a compact and efficient heat pump can be realized. In addition, ultra-low temperature, which is difficult to achieve with a heat medium source alone, can be easily achieved by using hydrogen transfer by a pump.
第 3実施形態 (ヒートポンプ) Third embodiment (heat pump)
第 3実施形態に係るヒートポンプ 8 0について図 5を参照しつつ説明する。
ヒ一卜ポンプ 8 0は 2系統の水素移送路を一つのポンプュニット 9 0を介して 構成し、 極低温を実現するものである。 2系統の水素移送路とは、 ポンプュニッ 卜 9 0を介して連結された水素吸蔵合金装置 1 0 0と水素吸蔵合金装置 1 0 1を 結ぶ第 1系統と、 ポンプユニット 9 0を介して連結された水素吸蔵合金装置 1 0 2と水素吸蔵合金装置 1 0 3を結ぶ第 2系統である。 図 5では簡略に表現されて いるが、 水素吸蔵合金装置 1 0 0、 1 0 1、 1 0 2、 1 0 3は、 それぞれ図 1に 示す水素吸蔵合金ュニット 1 0のュニットを構成している。 すなわち、 水素吸蔵 合金装置 1 0 0、 1 0 1、 1 0 2及び 1 0 3は、 それぞれ、 水素吸蔵合金ュニッ ト 1 0の水素吸蔵合金パイプ 4 1及び 4 2とで構成し、 水素吸蔵合金装 Λ 1 0 1 及び 1 0 2の水素吸蔵合金も、 それぞれ、 水素吸蔵合金ュニット 1 0の水素吸蔵 合金パイプ 4 1及び 4 2とで構成されている。 なお、 水素吸蔵合金装置 1 0 0、 1 0 1、 1 0 2及び 1 0 3は、 それぞれ水素吸蔵合金ュニット 1 0以外の構成を とってもよいが、 水素吸蔵合金ュニット 1 0によって構成すると熱媒体源交換時 の熱のロスが少なくてすむ。 A heat pump 80 according to the third embodiment will be described with reference to FIG. The heat pump 80 has two systems for transferring hydrogen through a single pump unit 90 to achieve extremely low temperatures. The two hydrogen transfer paths are connected via a pump unit 90 to a first system connecting the hydrogen storage alloy device 100 and the hydrogen storage alloy device 101 connected via a pump unit 90. This is a second system connecting the hydrogen storage alloy device 102 and the hydrogen storage alloy device 103. Although simply represented in FIG. 5, the hydrogen storage alloy devices 100, 101, 102, and 103 each constitute a unit of the hydrogen storage alloy unit 10 shown in FIG. . That is, the hydrogen storage alloy devices 100, 101, 102, and 103 are respectively composed of the hydrogen storage alloy pipes 41, 42 of the hydrogen storage alloy unit 10, and the hydrogen storage alloy The hydrogen storage alloys of the devices 101 and 102 are also composed of the hydrogen storage alloy pipes 41 and 42 of the hydrogen storage alloy unit 10 respectively. The hydrogen storage alloy devices 100, 101, 102, and 103 may each have a configuration other than the hydrogen storage alloy unit 10, but if they are configured by the hydrogen storage alloy unit 10, the heat medium source Less heat loss during replacement.
水素吸蔵合金装置 1 0 0、 1 0 1、 1 0 2及び 1 0 3の水素吸蔵合金は、 水素 吸蔵合金装置 (第 1水素吸蔵合金装置) 1 0 0及び水素吸蔵合金装置 (第 4水素 吸蔵合金装置) 1 0 3が同一種の水素吸蔵合金を有し、 かつ、 水素吸蔵合金装置 (第 2水素吸蔵合金装置) 1 0 1及び水素吸蔵合金装置(第 3水素吸蔵合金装置) 1 0 2が同一種の水素吸蔵合金を有している。 これらの水素吸蔵合金の水素解離 圧は、 水素吸蔵合金装置 1 0 1及び 1 0 2の水素吸蔵合金より、 水素吸蔵合金装 置 1 0 0及び 1 0 3の水素吸蔵合金の方が高く、 それぞれ目的とする集熱温度に あわせた特性の水素吸蔵合を装着している。 Hydrogen storage alloy devices 100, 101, 102 and 103 consist of a hydrogen storage alloy device (first hydrogen storage alloy device) 100 and a hydrogen storage alloy device (fourth hydrogen storage device). Alloy device) 103 has the same kind of hydrogen storage alloy, and hydrogen storage alloy device (second hydrogen storage alloy device) 101 and hydrogen storage alloy device (third hydrogen storage alloy device) 102 Have the same type of hydrogen storage alloy. The hydrogen dissociation pressure of these hydrogen storage alloys is higher in the hydrogen storage alloy devices 100 and 103 than in the hydrogen storage alloy devices 101 and 102, respectively. Equipped with a hydrogen storage alloy with characteristics that match the target heat collection temperature.
ポンプユニット 9 0は、 ポンプ 9 1、 切替弁 9 2、 9 3、 9 4、 9 5、 一方向 弁 9 6、 9 7を有する。 切替弁 9 2及び 9 3は、 水素吸蔵合金装置 1 0 0に連結 されている。 ポンプ 9 1の下流には、 ポンプ 9 1から水素吸蔵合金装置 1 0 1へ の流れは許容し、 水素吸蔵合金装置 1 0 1からの流れは遮る一方向弁 9 6が設け られている。 一方、 切替弁 9 4及び 9 5は、 水素吸蔵合金装置 1 0 3に連結され ている。 ポンプ 9 1の下流には、 ポンプ 9 1から水素吸蔵合金装置 1 0 2への流 れは許容し、 水素吸蔵合金装置 1 0 2からの流れは遮る一方向弁 9 7が設けられ
ている。 The pump unit 90 has a pump 91, switching valves 92, 93, 94, 95, and one-way valves 96, 97. The switching valves 92 and 93 are connected to the hydrogen storage alloy device 100. Downstream of the pump 91, there is provided a one-way valve 96 that allows the flow from the pump 91 to the hydrogen storage alloy device 101 and blocks the flow from the hydrogen storage alloy device 101. On the other hand, the switching valves 94 and 95 are connected to the hydrogen storage alloy device 103. A one-way valve 97 is provided downstream of the pump 91 to allow the flow from the pump 91 to the hydrogen storage alloy device 102 and block the flow from the hydrogen storage alloy device 102. ing.
以上のように構成されたヒ一トポンプ 8 0の第 1系統の生成行程においては、 切替弁 9 2を閉じ、 切替弁 9 3及び一方向弁 9 6を開いた状態で、 高温の水素吸 蔵合金装置 1 0 1を常温で冷却する。 すると、 水素吸蔵合金装置 1 0 1と 1 0 0 の水素吸蔵合金の解離圧の差により、 水素吸蔵合金装置 1 0 0の水素吸蔵合金か ら水素が放出され、 水素吸蔵合金装置 1 0 1へ移送される。 このときポンプ 9 1 を動作させると、 水素吸蔵合金装置 1 0 0から水素吸蔵合金装置 1 0 1への水素 移送が効率的に行われる。 さらに、 ポンプ 9 1を用いて水素を強制的に移送する ことによって水素吸蔵合金装置 1 0 0の水素吸蔵合金は水素吸蔵合金装置 1 0 0 に連結された熱媒体源 1 0 5からより多くの熱を奪うことができるため、 この熱 媒体源を極低温に導くことができる。 In the generation process of the first system of the heat pump 80 configured as described above, the switching valve 92 is closed, the switching valve 93 and the one-way valve 96 are opened, and high-temperature hydrogen storage is performed. The alloy apparatus 101 is cooled at room temperature. Then, due to the difference in the dissociation pressure of the hydrogen storage alloy between the hydrogen storage alloy devices 101 and 100, hydrogen is released from the hydrogen storage alloy of the hydrogen storage alloy device 100, and the hydrogen storage alloy device 101 is moved to the hydrogen storage alloy device 101. Be transported. At this time, when the pump 91 is operated, the transfer of hydrogen from the hydrogen storage alloy device 100 to the hydrogen storage alloy device 101 is efficiently performed. Further, by forcibly transferring hydrogen by using the pump 91, the hydrogen storage alloy of the hydrogen storage alloy device 100 is supplied with more heat from the heat medium source 105 connected to the hydrogen storage alloy device 100. Since heat can be removed, this heat medium source can be brought to extremely low temperatures.
また、 このときの第 2系統では、 切替弁 9 5を開き, 切替弁 9 4及び一方向弁 9 7を閉じた状態で、 第 1系統と逆に水素吸蔵合金装置 1 0 2から水素が放出さ れ、 水素吸蔵合金装置 1 0 3へ移送され再生行程が行われる。 At this time, in the second system, the switching valve 95 is opened, and the switching valve 94 and the one-way valve 97 are closed. In the state opposite to the first system, hydrogen is released from the hydrogen storage alloy device 102. Then, it is transferred to the hydrogen storage alloy device 103 and the regeneration process is performed.
このときの冷却の熱媒体源 1 0 6、 1 0 8としては、 雪や氷を含む自然外気温 を使用し、 加熱の熱媒体源 1 0 7としては、 太陽熱、 地熱、 工場排熱、 ごみ焼却 熱, 燃料等の燃焼熱, 燃料電池排熱、 機械作動時の排熱などを使用することがで さる。 At this time, natural outside air temperature including snow and ice is used as the heat medium source 106 and 108 for cooling, and the heat medium source 107 for heating is solar heat, geothermal, factory exhaust heat, and garbage. It is possible to use the heat of incineration, the heat of combustion of fuel, the exhaust heat of the fuel cell, and the exhaust heat during machine operation.
ヒートポンプ 8 0においては、 第 1系統では水素吸蔵合金装置 1 0 0から水素 吸蔵合金装置 1 0 1へ、 第 2系統では水素吸蔵合金装置 1 0 2から水素吸蔵合金 装置 1 0 3へそれぞれ水素が移送される。 このように移送された水素は、 切替弁 9 2〜 9 5、 一方向弁 9 6及び 9 7を切り替えることにより、 もとの水素吸蔵合 金装置にもどす逆の行程ができる。 In the heat pump 80, hydrogen is transferred from the hydrogen storage alloy device 100 to the hydrogen storage alloy device 101 in the first system, and from the hydrogen storage alloy device 102 to the hydrogen storage alloy device 103 in the second system. Be transported. By switching the transfer valves 92 to 95 and the one-way valves 96 and 97, the hydrogen transferred in this way can be returned to the original hydrogen storage alloy device in the reverse process.
すなわち逆の行程として第 1系統においては、 切替弁 9 3及び一方向弁 9 6を 閉じて、 切替弁 9 2を開いた状態で、 水素吸蔵合金装置 1 0 1に接続された熱媒 体源 1 0 6の温度を上昇させることにより、 水素吸蔵合金装置 1 0 1の水素吸蔵 合金から水素を放出させて、 水素吸蔵合金装置 1 0 1の水素吸蔵合金よりも水素 解離圧の大きな水素吸蔵合金装置 1 0 0へ水素を移送して再生行程を行う。 一方、 第 2系統においては、 切替弁 9 4及び一方向弁 9 7を開いて、 切替弁 9
„〜 That is, as the reverse process, in the first system, with the switching valve 93 and the one-way valve 96 closed and the switching valve 92 opened, the heat medium source connected to the hydrogen storage alloy device 101 is opened. By raising the temperature of 106, hydrogen is released from the hydrogen storage alloy of the hydrogen storage alloy device 101, and the hydrogen storage alloy has a larger hydrogen dissociation pressure than the hydrogen storage alloy of the hydrogen storage alloy device 101. The regeneration process is performed by transferring hydrogen to the apparatus 100. On the other hand, in the second system, the switching valve 94 and the one-way valve 97 are opened, and the switching valve 9 „~
PCT/JP03/06849 PCT / JP03 / 06849
16 16
5を閉じた状態で、 ポンプ 9 1を動作させて水素を水素吸蔵合金装置 1 0 3から 水素吸蔵合金装置 1 0 2へ移送して生成行程を行う。 In a state where 5 is closed, the pump 91 is operated to transfer hydrogen from the hydrogen storage alloy device 103 to the hydrogen storage alloy device 102 to perform the generation process.
このときの冷却の熱媒体源 1 0 5、 1 0 7としては、 雪や氷を含む自然外気温 を使用し、 加熱の熱媒体源 1 0 6としては、 太陽熱、 地熱、 工場排熱、 ごみ焼却 熱, 燃料等の燃焼熱, 燃料電池排熱、 機械作動時の排熱などを使用することがで さる。 At this time, the heat medium sources 105 and 107 for cooling use the natural outside air temperature including snow and ice, and the heat medium sources 106 for heating include solar heat, geothermal heat, factory exhaust heat, and garbage. It is possible to use the heat of incineration, the heat of combustion of fuel, the exhaust heat of the fuel cell, and the exhaust heat during machine operation.
以上のように構成することにより、 熱媒体源が途絶えることなく、 極低温の熱 媒体源を生成し、 ヒートポンプ 8 0を再生する工程を繰り返すことができる。 さ らに、 第 1系統及び第 2系統のいずれかによつてポンプ 9 1が連続的に駆動でき るため、 ポンプの断続的な駆動に起因する不具合を防止することができる。 With the configuration described above, the step of generating a cryogenic heat medium source and regenerating the heat pump 80 can be repeated without interruption of the heat medium source. Furthermore, since the pump 91 can be continuously driven by either the first system or the second system, it is possible to prevent problems caused by intermittent driving of the pump.
第 4実施形態 (水素圧縮装置) Fourth embodiment (hydrogen compression device)
第 4実施形態に係る水素圧縮装置 1 1 0について、 図 6 Aおよび図 6 Bを参照 しつつ説明する。 A hydrogen compressor 110 according to the fourth embodiment will be described with reference to FIGS. 6A and 6B.
水素圧縮装置 1 1 0は、 圧縮した水素を水素貯蔵容器 1 2 5に貯蔵する装置で あって、 水素精製、 改質などを目的とした低圧の水素貯蔵容器 1 2 0、 高圧貯蔵 のための水素貯蔵容器 1 2 5、水素吸蔵合金装置 1 2 1、冷却の熱媒体源 1 2 2、 加熱の熱媒体源 1 2 4及びポンプ 1 2 3を有する。 The hydrogen compression device 110 stores compressed hydrogen in a hydrogen storage container 125, and is a low-pressure hydrogen storage container 120 for hydrogen purification, reforming, etc., for high-pressure storage. It has a hydrogen storage container 125, a hydrogen storage alloy device 121, a heat medium source 122 for cooling, a heat medium source 124 for heating, and a pump 123.
水素吸蔵合金装置 1 2 1は、 任意の構成をとることができるが、 図 1の水素吸 蔵合金ユニット 1 0を用いることもできる。 この場合は、 水素吸蔵合金パイプ 4 1及び 4 2に同一の水素解離圧の水素吸蔵合金を装着することが好ましい。 水素 吸蔵合金の装着はペースト状の水素吸蔵合金を水素吸蔵合金パイプ 4 1及び 4 2 に充填し、 その後固化させることにより行う。 The hydrogen storage alloy device 122 can have any configuration, but the hydrogen storage alloy unit 10 shown in FIG. 1 can also be used. In this case, it is preferable to attach the hydrogen storage alloy having the same hydrogen dissociation pressure to the hydrogen storage alloy pipes 41 and 42. The hydrogen storage alloy is attached by filling the hydrogen storage alloy in paste form into the hydrogen storage alloy pipes 41 and 42 and then solidifying the same.
このように構成された水素圧縮装置 1 1 0は、 水素吸蔵合金装置 1 2 1に水素 を貯蔵する水素貯蔵工程 (図 6 A) と、 水素貯蔵容器 1 2 5に水素を圧縮貯蔵す る水素圧縮工程 (図 6 B ) からなるサイクルを実現可能である。 The hydrogen compression device 110 configured as described above has a hydrogen storage process (FIG. 6A) in which hydrogen is stored in the hydrogen storage alloy device 121, and a hydrogen storage process in which hydrogen is compressed and stored in the hydrogen storage container 125. A cycle consisting of the compression process (Fig. 6B) is feasible.
水素貯蔵工程においては、 熱媒体源 1 2 2により水素吸蔵合金装置 1 2 1は常 温で冷却される。 すると、 水素吸蔵合金装置 1 2 1内の水素吸蔵合金は水素貯蔵 容器 1 2 0から内に存在する水素を吸蔵する。 In the hydrogen storage step, the hydrogen storage alloy device 121 is cooled at room temperature by the heat medium source 122. Then, the hydrogen storage alloy in the hydrogen storage alloy device 121 stores hydrogen existing in the hydrogen storage container 120.
一方、 水素圧縮工程においては、 熱媒体源 1 2 4は高温に維持されており、 こ
PC漏編 49 On the other hand, in the hydrogen compression process, the heat medium source 124 is maintained at a high temperature. PC leakage 49
17 17
れに連結された水素吸蔵合金装置 1 2 1の温度が上昇する。 水素吸蔵合金装置 1 2 1の温度が、 水素吸蔵合金装置 1 2 1の水素吸蔵合金の水素放出開始温度に至 ると水素が放出される。 水素貯蔵容器 1 2 5とポンプ 1 2 3との間に設けた弁は 開放されており、 放出された水素は水素貯蔵容器 1 2 5に貯蔵される。 この工程 では、 水素吸蔵合金装置 1 2 1側を入口、 水素貯蔵容器 1 2 5側を出口とするポ ンプ 1 2 3が動作しており、 強制的に水素吸蔵合金装置 1 2 1の水素吸蔵合金で 放出された水素が水素貯蔵容器 1 2 5に貯蔵されるため、 高圧に圧縮した状態で 水素貯蔵容器 1 2 5に水素を貯蔵することができる。 The temperature of the hydrogen storage alloy device 1 2 1 connected thereto rises. When the temperature of the hydrogen storage alloy device 121 reaches the hydrogen release start temperature of the hydrogen storage alloy of the hydrogen storage alloy device 121, hydrogen is released. The valve provided between the hydrogen storage container 125 and the pump 123 is open, and the released hydrogen is stored in the hydrogen storage container 125. In this process, the pump 123 with the hydrogen storage alloy device 121 as the inlet and the hydrogen storage container 125 side as the outlet is operating, and the hydrogen storage alloy device 121 is forced to store hydrogen. Since the hydrogen released by the alloy is stored in the hydrogen storage container 125, the hydrogen can be stored in the hydrogen storage container 125 while being compressed to a high pressure.
例えば、 6 0〜 9 0 °C程度の排熱との熱交換により熱媒体源 1 2 4を加熱し、 水素吸蔵合金装置 1 2 1の水素吸蔵合金の水素放出圧を 1 0〜2 0 k g / c m2 程度に高め、ポンプ 1 2 3の吸入側(水素吸蔵合金装置 1 2 1側)を与圧すると、 ポンプ 1 2 3の出口側圧力が容易に高圧となる。 For example, the heat medium source 124 is heated by heat exchange with waste heat of about 60 to 90 ° C, and the hydrogen release pressure of the hydrogen storage alloy of the hydrogen storage alloy device 121 is 10 to 20 kg. / cm 2 and pressurize the suction side of the pump 123 (the hydrogen storage alloy device 121 side), the outlet side pressure of the pump 123 easily becomes high.
第 5実施形態 (水素圧縮装置) Fifth embodiment (hydrogen compression device)
第 5実施形態に係る水素圧縮装置 1 3 0について図 7を参照しつつ説明する。 水素圧縮装置 1 3 0は、 圧縮した水素を水素貯蔵容器 1 4 0に貯蔵する装置であ つて、 水素貯蔵容器 1 4 0、 水素吸蔵合金装置 1 4 1、 圧力容器 1 4 2、 1 4 3 及びポンプ 1 4 4を有する。 A hydrogen compressor 130 according to a fifth embodiment will be described with reference to FIG. The hydrogen compression device 140 is a device that stores compressed hydrogen in the hydrogen storage container 140, and includes a hydrogen storage container 140, a hydrogen storage alloy device 141, and a pressure container 144, 144. And a pump 144.
水素吸蔵合金装置 1 4 1は、 水素吸蔵合金装置 1 4 1から外部への流れのみを 許容する逆止弁 1 5 0、 逆止弁 1 5 0から分岐し逆止弁 1 5 0から圧力容器 1 4 2への流れのみを許容する逆止弁 1 5 2、 及び、 逆止弁 1 5 0から分岐し逆止弁 1 5 0から圧力容器 1 4 3への流れのみを許容する逆止弁 1 5 3を介して、 圧力 容器 1 4 2及び 1 4 3に連結されている。 The hydrogen storage alloy device 14 1 is a check valve 15 0 that allows only the flow from the hydrogen storage alloy device 14 1 to the outside, and branches from the check valve 15 0 and the pressure vessel from the check valve 1 50. Check valve 1 5 2 that allows only flow to 1 4 2 and check valve that branches from check valve 1 50 and allows only flow from check valve 1 50 to pressure vessel 14 3 It is connected to the pressure vessels 14 2 and 14 3 via 15 3.
圧力容器 1 4 2及び 1 4 3は、 それぞれ、 圧力容器 1 4 2及び 1 4 3から水素 貯蔵容器 1 4 0への流れのみを許容する逆止弁 1 5 4及び 1 5 5を介して水素貯 蔵容器 1 4 0に連結されている。 逆止弁 1 5 4及び 1 5 5と、 水素貯蔵容器 1 4 0との間には切替弁 1 5 6が配置されている。 さらに、 圧力容器 1 4 2と 1 4 3 との間には双方向搬送が可能なポンプ 1 4 4が配置してある。 このような配置に より、 水素吸蔵合金装置 1 4 1の水素吸蔵合金から放出された水素を圧力容器 1 4 2及び 1 4 3のいずれか一方に選択的に搬送させることができる。
„〜™ The pressure vessels 14 2 and 14 4 are supplied with hydrogen via check valves 15 4 and 15 5, respectively, which allow only the flow from pressure vessels 14 2 and 14 3 to the hydrogen storage vessel 140. It is connected to storage container 140. A switching valve 156 is arranged between the check valves 154 and 155 and the hydrogen storage container 140. Further, a pump 144 capable of bi-directional conveyance is arranged between the pressure vessels 144 and 144. With such an arrangement, the hydrogen released from the hydrogen storage alloy of the hydrogen storage alloy device 141 can be selectively conveyed to one of the pressure vessels 144 and 144. „~ ™
PCT/JP03/06849 PCT / JP03 / 06849
18 18
水素吸蔵合金装置 1 4 1は任意の構成をとることができるが、 図 1の水素吸蔵 合金ユニット 1 0を用いることができる。 この場合は、 水素吸蔵合金パイプ 4 1 及び 4 2に同一の水素解離圧の水素吸蔵合金を充填装着する。 ノズル 1 4及び 1 5には熱媒体源 1 4 5を連結させ、 水素吸蔵合金パイプ 4 1及び 4 2の水素吸蔵 合金が充填された水素吸蔵合金パイプの開放端は、 水素室及びノズルを介して逆 止弁 1 5 0に連結される。熱媒体源としては、雪や氷を含む自然外気温、太陽熱、 地熱、 工場排熱、 ごみ焼却熱、 燃料等の燃焼熱、 燃料電池排熱、 機器作動時の排 熱などを使用することができる。 The hydrogen storage alloy device 14 1 can have any configuration, but the hydrogen storage alloy unit 10 in FIG. 1 can be used. In this case, the hydrogen storage alloy pipes 41 and 42 are filled with a hydrogen storage alloy having the same hydrogen dissociation pressure. The heat medium source 144 is connected to the nozzles 14 and 15, and the open ends of the hydrogen storage alloy pipes filled with the hydrogen storage alloy of the hydrogen storage alloy pipes 41 and 42 pass through the hydrogen chamber and the nozzle. Connected to the check valve 150. As the heat medium source, it is possible to use natural outside air temperature including snow and ice, solar heat, geothermal heat, factory exhaust heat, waste incineration heat, combustion heat of fuel, fuel cell exhaust heat, exhaust heat during equipment operation, etc. it can.
圧力容器 1 4 2及び 1 4 3は、 それぞれ、 作動流体 1 6 0が収容された密閉容 器からなる液面ピストンを構成している。 作動流体としては、 例えば水を使用す ることができる。 水を使う場合は、 純水、 蒸留水であることが望ましい。 圧力容 器 1 4 2と 1 4 3とがポンプ 1 4 4を介して連通されているため、 逆止弁 1 5 2 を開いて逆止弁 1 5 3を閉じれば水素吸蔵合金装置 1 4 1の水素吸蔵合金から放 出された水素は圧力容器 1 4 2に流入してその中の作動流体 1 6 0を押し下げて、 その作動流体 1 6 0は圧力容器 1 4 3に流入し、 圧力容器 1 4 3内の作動流体 1 6 0の上側に存在した水素は水素貯蔵容器 1 4 0に貯蔵される。 逆に、 逆止弁 1 5 3を開いて逆止弁 1 5 2を閉じれば水素吸蔵合金装置 1 4 1の水素吸蔵合金か ら放出された水素は圧力容器 1 4 3に流入してその中の作動流体 1 6 0を押し下 げて、 その作動流体 1 6 0は圧力容器 1 4 2に流入し、 圧力容器 1 4 2内の作動 流体 1 6 0の上側に存在した水素は水素貯蔵容器 1 4 0に貯蔵される。 Each of the pressure vessels 142 and 144 constitutes a liquid level piston composed of a closed vessel containing a working fluid 160. As the working fluid, for example, water can be used. When using water, it is desirable to use pure water or distilled water. Since the pressure vessels 14 2 and 14 3 are connected via the pump 14 4, if the check valve 15 2 is opened and the check valve 15 3 is closed, the hydrogen storage alloy device 1 4 1 The hydrogen released from the hydrogen storage alloy flows into the pressure vessel 14 2 and pushes down the working fluid 16 0 therein, and the working fluid 16 0 flows into the pressure vessel 14 3, The hydrogen present above the working fluid 160 in 144 is stored in the hydrogen storage container 140. Conversely, if the check valve 15 3 is opened and the check valve 15 2 is closed, hydrogen released from the hydrogen storage alloy of the hydrogen storage alloy device 14 1 flows into the pressure vessel 14 4 The working fluid 160 is pushed down, the working fluid 160 flows into the pressure vessel 142, and the hydrogen existing above the working fluid 160 in the pressure vessel 142 is converted into a hydrogen storage vessel. Stored at 140.
つづいて、 本実施形態における水素圧縮貯蔵の工程について説明する。 Next, a description will be given of a hydrogen compression storage process according to the present embodiment.
第 1工程においては、 水素吸蔵合金装置 1 4 1の水素吸蔵合金から放出された 水素を圧力容器 1 4 2 (水素導入側圧力容器、 第 1圧力容器) に流入させて、 圧 力容器 1 4 3 (圧縮側圧力容器、 第 2圧力容器) 内の水素を水素貯蔵容器 1 4 0 に貯蔵する。 具体的には、 逆止弁 1 5 0、 1 5 3、 1 5 4、 切替弁 1 5 6を開い て、 逆止弁 1 5 5、 1 5 2を閉じた状態で、 連結された熱媒体源 1 4 5により水 素吸蔵合金装置 1 4 1を加熱すると、 その水素吸蔵合金から放出された水素は、 丸記号で囲まれた符号 (1 ) → ( 2 ) → ( 3 ) → ( 4 ) の経路を経て水素貯蔵容 器 1 4 0に貯蔵される。 このとき、 ポンプ 1 4 4を駆動して作動流体を圧送する
PC漏細 49 In the first step, the hydrogen released from the hydrogen storage alloy of the hydrogen storage alloy device 141 flows into the pressure vessel 144 (the pressure vessel on the hydrogen introduction side, the first pressure vessel). The hydrogen in 3 (compression side pressure vessel, 2nd pressure vessel) is stored in hydrogen storage vessel 140. Specifically, with the check valves 15 0, 15 3, 15 4 and the switching valve 15 6 open, the check valves 15 5 and 15 When the hydrogen storage alloy device 1 4 1 is heated by the source 1 4 5, the hydrogen released from the hydrogen storage alloy is converted into a symbol (1) → (2) → (3) → (4) Is stored in the hydrogen storage container 140 via the route of FIG. At this time, pump 1 4 4 is driven to pump working fluid PC leak 49
19 19
ことにより圧力容器 1 4 2の液面ピストンが上昇して内部の水素を圧縮し、 高圧 縮状態で水素貯蔵容器 1 4 0に水素を貯蔵することができる。熱媒体源としては、 冷却の熱媒体源 1 4 6には、 雪や氷を含む自然外気温を使用し、 加熱の熱媒体源 1 4 5には、 太陽熱、 地熱、 工場排熱、 ごみ焼却熱、 燃料等の燃焼熱、 燃料電池 排熱、 機器作動時の排熱などを使用することができる。 As a result, the liquid level piston of the pressure vessel 142 rises to compress the internal hydrogen, and hydrogen can be stored in the hydrogen storage vessel 140 in a high-pressure compressed state. As the heat medium source, use the natural outside air temperature including snow and ice for the heat medium source for cooling, and use the solar heat, geothermal, factory exhaust heat, and waste incineration for the heat medium source for heating. Heat, combustion heat of fuel, etc., fuel cell exhaust heat, exhaust heat during equipment operation, etc. can be used.
第 2工程においては、 水素吸蔵合金装置 1 4 1の水素吸蔵合金から放出された 水素を圧力容器 1 4 3 (水素導入側圧力容器)に流入させて、圧力容器 1 4 2 (圧 縮側圧力容器) 内の水素を水素貯蔵容器 1 4 0に貯蔵する。 具体的には、 逆止弁 1 5 0、 1 5 2、 1 5 5、 切替弁 1 5 6を開いて、 逆止弁 1 5 3、 1 5 4を閉じ た状態で、 連結された熱媒体源 1 4 5により水素吸蔵合金装置 1 4 1を加熱する と、その水素吸蔵合金から放出された水素は、丸記号で囲まれた符号(1 )→ ( 5 → ( 6 ) → ( 7 ) → ( 8 ) → ( 9 ) の経路を経て水素貯蔵容器 1 4 0に貯蔵され る。 このとき、 圧力容器 1 4 2から圧力容器 1 4 3へポンプ 1 4 4を駆動して作 動流体を圧送することにより、 圧力容器 1 4 3の液面ピストンが上昇して内部の 水素を圧縮し、高圧縮状態で水素貯蔵容器 1 4 0に水素を貯蔵することができる。 以上の第 1工程及び第 2工程を交互に行うことにより、. 水素貯蔵容器 1 4 0に 高圧に圧縮した水素を貯蔵することができる。 例えば、 6ひ〜 9 0 °C程度の排熱 との熱交換により水素吸蔵合金装置 1 4 1を加熱し、 水素吸蔵合金装置 1 4 1の 水素吸蔵合金の水素放出圧を 1 0〜 2 0 k g Z c m2程度に高めて与圧すること により、 圧力容器 1 4 2及び圧力容器 1 4 3のうち水素導入側圧力容器内は、 体 積が一旦 (一次圧縮) 縮小されて導入できるため、 ポンプ 1 4 4は常圧の体積か ら超高圧の体積まで縮小することなく容易に水素を水素貯蔵容器 1 4 0内に圧縮 (二次圧縮) して移送され、 従来装置に比べ要する時間も短時間となる。 In the second step, the hydrogen released from the hydrogen storage alloy of the hydrogen storage alloy device 141 flows into the pressure vessel 144 (pressure vessel on the hydrogen introduction side), and the pressure vessel 144 (pressure on the compression side) The hydrogen in the container is stored in the hydrogen storage container 140. Specifically, with the check valves 15 0, 15 2 and 15 5 and the switching valve 15 6 open, and with the check valves 15 3 and 15 4 closed, the connected heat medium When the hydrogen storage alloy device 1 4 1 is heated by the source 1 4 5, the hydrogen released from the hydrogen storage alloy is converted into a symbol (1) → (5 → (6) → (7) → It is stored in the hydrogen storage container 140 via the route of (8) → (9) At this time, the working fluid is pumped from the pressure container 144 to the pressure container 144 by driving the pump 144. By doing so, the liquid level piston of the pressure vessel 144 rises to compress the hydrogen inside, and the hydrogen can be stored in the hydrogen storage vessel 140 in a highly compressed state. By alternately performing the two steps, it is possible to store high-pressure compressed hydrogen in the hydrogen storage container 140. For example, hydrogen storage and storage can be performed by heat exchange with waste heat of about 6 to 90 ° C. Device 1 4 1 is heated, by pressurizing the hydrogen release pressure of a hydrogen storage alloy apparatus 1 4 1 of the hydrogen storage alloy is increased to 1 0-2 about 0 kg Z cm 2, the pressure vessel 1 4 2 and the pressure vessel Of the 144, the volume inside the hydrogen inlet side pressure vessel can be once reduced (primary compression) and introduced, so the pump 144 can easily be reduced from a normal pressure volume to an ultra-high pressure volume. Hydrogen is compressed and transferred (secondary compression) into the hydrogen storage container 140, and the time required is shorter than that of conventional equipment.
本発明について上記実施形態を参照しつつ説明したが、 本発明は上記実施形態 に限定されるものではなく、 改良の目的または本発明の思想の範囲内において改 良または変更が可能である。 産業上の利用の可能性 Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, and can be improved or changed within the purpose of improvement or the scope of the present invention. Industrial applicability
本発明によれば、 水素吸蔵合金ユニットは、 熱媒体源が流通する熱交換室と、
„ According to the present invention, the hydrogen storage alloy unit comprises: a heat exchange chamber through which a heat medium source flows; „
PC〜T/JP03/06849 PC ~ T / JP03 / 06849
20 20
前記熱交換室の両側に形成された一対の水素室と、 前記一対の水素室内にそれ ぞれ一端部が臨み、 他端部が自由状態で熱交換室内に延び、 前記一対の水素室側 にそれぞれ一端部が固定された対をなす水素吸蔵合金パイプ群とを備え、 前記対 をなす水素吸蔵合金パイプ群を構成する各水素吸蔵合金パイプは、 その内部に水 素吸蔵合金を有していて、 前記熱交換室内側の自由端部は閉じており、 前記水素 室内側の端部に水素流通孔が開口しているので、 装置をコンパクトにでき、 水素 吸蔵合金の加熱と冷却の切り替え時の熱のロスが少なく、 水素吸蔵合金と熱媒体 源との熱の授受が瞬時にでき、 水素吸蔵合金の水素化時の膨張により容器が破損 するおそれを低減させるという効果を有する。
A pair of hydrogen chambers formed on both sides of the heat exchange chamber, and one end respectively facing the pair of hydrogen chambers, and the other end extending into the heat exchange chamber in a free state; A pair of hydrogen-absorbing alloy pipes each having a fixed end, and each of the hydrogen-absorbing alloy pipes constituting the pair of hydrogen-absorbing alloy pipes has a hydrogen-absorbing alloy therein. Since the free end on the heat exchange chamber side is closed and the hydrogen circulation hole is open on the end on the hydrogen chamber side, the apparatus can be made compact, and the switching between heating and cooling of the hydrogen storage alloy can be performed. The loss of heat is small, heat can be transferred instantaneously between the hydrogen storage alloy and the heat medium source, and the effect of reducing the possibility of damage to the container due to expansion of the hydrogen storage alloy during hydrogenation is obtained.
Claims
1 . 水素吸蔵合金であって、 1. A hydrogen storage alloy,
水素吸蔵合金材料及び水素吸着材料の共融混合物の粉末を、 粘性物質と混合し てペースト化する。 The powder of the eutectic mixture of the hydrogen storage alloy material and the hydrogen storage material is mixed with a viscous substance to form a paste.
2 . 水素吸蔵合金ユニットであって、 2. A hydrogen storage alloy unit,
熱媒体源が流通する熱交換室と、 A heat exchange chamber through which a heat medium source flows,
前記熱交換室の両側に形成された一対の水素室と、 A pair of hydrogen chambers formed on both sides of the heat exchange chamber,
前記一対の水素室内にそれぞれ一端部が臨み、 他端部が自由状態で熱交換室内 に延び、 前記一対の水素室側にそれぞれ一端部が固定された対をなす水素吸蔵合 金パイプ群とを備え、 A pair of hydrogen storage alloy pipes, one end of which faces the pair of hydrogen chambers, the other end extends into the heat exchange chamber in a free state, and the pair of hydrogen storage alloy pipes each having one end fixed to the pair of hydrogen chambers. Prepared,
前記対をなす水素吸蔵合金パイプ群を構成する各水素吸蔵合金パイプは、 その 内部に水素吸蔵合金を有していて、 前記熱交換室内側の自由端部は閉じており、 前記水素室内側の端部に水素流通孔が開口している。 Each of the hydrogen storage alloy pipes forming the pair of hydrogen storage alloy pipes has a hydrogen storage alloy therein, and a free end on the heat exchange chamber side is closed. A hydrogen flow hole is open at the end.
3 . 請求項 2記載の水素吸蔵合金ユニットであって、 3. The hydrogen storage alloy unit according to claim 2, wherein
前記対をなす水素吸蔵合金パイプは、 ハニカム状に配置される。 ' The pair of hydrogen storage alloy pipes is arranged in a honeycomb shape. '
4 . 請求項 2記載の水素吸蔵合金ユニットであって、 4. The hydrogen storage alloy unit according to claim 2, wherein
前記対をなす水素吸蔵合金パイプ内の水素吸蔵合金は、 それぞれ解離圧が異な る。 The hydrogen storage alloys in the pair of hydrogen storage alloy pipes have different dissociation pressures.
5 . 請求項 2記載の水素吸蔵合金ユニットであって、 5. The hydrogen storage alloy unit according to claim 2, wherein
前記対をなす水素吸蔵合金パイプは、 それぞれ、 中心部の前記水素流通孔を有 する多孔質材料からなるパウンド材と、 The pair of hydrogen storage alloy pipes are respectively a pound material made of a porous material having the hydrogen circulation hole at the center,
前記パウンド材と外殻パイプとの間にペースト状で装着した後に固化させた水 素吸蔵合金ペース卜とを備える。
A hydrogen storage alloy paste that is solidified after being mounted in a paste state between the pound material and the outer shell pipe.
6 . 請求項 2記載の水素吸蔵合金ユニットであって、 6. The hydrogen storage alloy unit according to claim 2, wherein
前記水素吸蔵合金パイプの外周には、 力一ボン繊維または炭化物繊維が巻きつ けられる。 A carbon fiber or a carbide fiber is wound around the outer periphery of the hydrogen storage alloy pipe.
7 . ヒートポンプであって、 7. A heat pump,
所定の解離圧を有する第 1水素吸蔵合金を備える第 1水素吸蔵合金装置と、 前記第 1水素吸蔵合金より高い解離圧を有する第 2水素吸蔵合金を備える第 2 水素吸蔵合金装置と、 A first hydrogen storage alloy device including a first hydrogen storage alloy having a predetermined dissociation pressure, a second hydrogen storage alloy device including a second hydrogen storage alloy having a higher dissociation pressure than the first hydrogen storage alloy,
前記第 2水素吸蔵合金より高い解離圧を有する第 3水素吸蔵合金を備える第 3 水素吸蔵合金装置と、 A third hydrogen storage alloy device comprising a third hydrogen storage alloy having a higher dissociation pressure than the second hydrogen storage alloy,
前記第 3水素吸蔵合金より高い解離圧を有する第 4水素吸蔵合金を備える第 4 水素吸蔵合金装置とを有し、 A fourth hydrogen storage alloy device including a fourth hydrogen storage alloy having a higher dissociation pressure than the third hydrogen storage alloy,
前記第 2水素吸蔵合金装置と前記第 3水素吸蔵合金装置は一つのュニットを形 成し、 The second hydrogen storage alloy device and the third hydrogen storage alloy device form one unit,
前記ュニットは、 The unit is
前記第 2水素吸蔵合金を有する第 1水素吸蔵合金パイプ群と、 A first hydrogen storage alloy pipe group having the second hydrogen storage alloy,
前記第 1水素吸蔵合金パイプの一端が固定される第 1水素室と、 A first hydrogen chamber to which one end of the first hydrogen storage alloy pipe is fixed,
前記第 3水素吸蔵合金を有する第 2水素吸蔵合金パイプ群と、 A second hydrogen storage alloy pipe group having the third hydrogen storage alloy,
前記第 2水素吸蔵合金パイプの一端が固定される第 2水素室とを備え、 前記第 2水素吸蔵合金パイプの他端及び前記第 3水素吸蔵合金パイプの他端は 共通の熱交換室に配置され、 A second hydrogen chamber to which one end of the second hydrogen storage alloy pipe is fixed, and the other end of the second hydrogen storage alloy pipe and the other end of the third hydrogen storage alloy pipe are arranged in a common heat exchange chamber. And
前記第 1水素吸蔵合金装置は、 前記第 2水素吸蔵合金装置及び前記第 3水素吸 蔵合金装置のうちの一方と連通し、 The first hydrogen storage alloy device communicates with one of the second hydrogen storage alloy device and the third hydrogen storage alloy device,
前記第 4水素吸蔵合金装置は、 前記第 2水素吸蔵合金装置及び前記第 3水素吸 蔵合金装置のうちの他方と連通し、 The fourth hydrogen storage alloy device communicates with the other of the second hydrogen storage alloy device and the third hydrogen storage alloy device,
前記第 1水素吸蔵合金装置及び前記第 4水素吸蔵合金装置は、 前記第 1から第 The first hydrogen storage alloy device and the fourth hydrogen storage alloy device may include the first to fourth hydrogen storage alloy devices.
4の水素吸蔵合金装置のいずれかを加熱又は冷却することにより、 それぞれ前記 ュニッ卜へ水素を移送させる。
By heating or cooling any one of the hydrogen storage alloy devices of No. 4, hydrogen is transferred to the respective units.
8 . 請求項 7記載のヒートポンプであって、 8. The heat pump according to claim 7, wherein
前記第 2水素吸蔵合金装置と前記第 4水素吸蔵合金装置とは、 前記第 4水素吸 蔵合金装置から前記第 2水素吸蔵合金装置へ水素を移送可能なポンプを介して連 通される。 The second hydrogen storage alloy device and the fourth hydrogen storage alloy device are connected via a pump capable of transferring hydrogen from the fourth hydrogen storage alloy device to the second hydrogen storage alloy device.
9 . 請求項 7記載のヒートポンプであって、 9. The heat pump according to claim 7, wherein
前記水素吸蔵合金パイプの外周には、 カーボン繊維または炭化物繊維が巻きつ けられる。 A carbon fiber or a carbide fiber is wound around the outer periphery of the hydrogen storage alloy pipe.
1 0 . ヒー卜ポンプであって、 10. Heat pump,
所定の解離圧を有する第 1水素吸蔵合金を備える第 1水素吸蔵合金装置と、 前記第 1水素吸蔵合金より低い解離圧を有する第 2水素吸蔵合金を備える第 2 水素吸蔵合金装置と、 A first hydrogen storage alloy device including a first hydrogen storage alloy having a predetermined dissociation pressure, a second hydrogen storage alloy device including a second hydrogen storage alloy having a lower dissociation pressure than the first hydrogen storage alloy,
前記第 1水素吸蔵合金より低い解離圧を有する第 3水素吸蔵合金を備える第 3 水素吸蔵合金装置と、 A third hydrogen storage alloy device comprising a third hydrogen storage alloy having a lower dissociation pressure than the first hydrogen storage alloy,
前記第 1水素吸蔵合金と同じ解離圧を有する第 4水素吸蔵合金を備える第 4水 素吸蔵合金装置とを有し、 . A fourth hydrogen storage alloy device comprising a fourth hydrogen storage alloy having the same dissociation pressure as the first hydrogen storage alloy;
前記第 1水素吸蔵合金装置と前記第 2水素吸蔵合金装置は、 ポンプュニットに より連結された第 1系統を形成し、 The first hydrogen storage alloy device and the second hydrogen storage alloy device form a first system connected by a pump unit,
前記第 3水素吸蔵合金装置と前記第 4水素吸蔵合金装置は、 前記ポンプュニッ トにより連結された第 2系統を形成し、 The third hydrogen storage alloy device and the fourth hydrogen storage alloy device form a second system connected by the pump unit,
前記第 1および第 2系統では、 一方の水素吸蔵合金装置を加熱又は冷却し、 か つ、 前記ポンプユニットを動作させることにより、 前記第 1水素吸蔵合金装置と 前記第 2水素吸蔵合金装置との間、 及び、 前記第 3水素吸蔵合金装置と前記第 4 水素吸蔵合金装置との間で、 互いに反対方向に水素の移送を行う。 In the first and second systems, one of the hydrogen storage alloy devices is heated or cooled, and the pump unit is operated, so that the first hydrogen storage alloy device and the second hydrogen storage alloy device are connected to each other. And transferring hydrogen in opposite directions between the third hydrogen storage alloy device and the fourth hydrogen storage alloy device.
1 1 . 水素圧縮装置であって、 1 1. A hydrogen compressor,
水素吸蔵合金材料及び水素吸着材料の共融混合物の粉末を粘性物質と混合して なる水素吸蔵合金を有し、
熱媒体源との間で熱の授受が可能な水素吸蔵合金装置と、 A hydrogen storage alloy made by mixing a powder of a eutectic mixture of a hydrogen storage alloy material and a hydrogen storage material with a viscous substance; A hydrogen storage alloy device capable of exchanging heat with a heat medium source,
前記水素吸蔵合金装置とポンプを介して連通した水素貯蔵容器とを備え、 前記熱媒体源により前記水素吸蔵合金装置を加熱するとともに、 前記ポンプを 前記水素吸蔵合金装置から前記水素貯蔵容器へ水素を移送するように動作させる ことにより前記水素貯蔵容器に圧縮して水素を収容させる。 A hydrogen storage container communicating with the hydrogen storage alloy device via a pump, wherein the heat storage medium is used to heat the hydrogen storage alloy device, and the pump is configured to supply hydrogen from the hydrogen storage alloy device to the hydrogen storage container. By operating to transfer, the hydrogen storage container is compressed to contain hydrogen.
1 2 . 水素圧縮装置であって、 1 2. A hydrogen compressor,
水素吸蔵合金を有する水素吸蔵合金装置と、 A hydrogen storage alloy device having a hydrogen storage alloy,
それぞれ前記水素吸蔵合金装置に切り替え可能に連通された第 1圧力容器及び 第 2圧力容器と、 A first pressure vessel and a second pressure vessel, each of which is switchably connected to the hydrogen storage alloy device,
前記第 1圧力容器及び前記第 2圧力容器の双方に連通され、 流体を移送可能な ポンプと、 A pump connected to both the first pressure vessel and the second pressure vessel and capable of transferring a fluid;
前記第 1圧力容器及び前記第 2圧力容器のそれぞれに連通した水素貯蔵容器と を備え、 A hydrogen storage container communicating with each of the first pressure container and the second pressure container,
前記水素吸蔵合金装置を加熱して前記水素吸蔵合金から放出された水素を、 前 記第 1圧力容器及び前記第 2圧力容器の一方に移送し、 かつ、 前記第 1圧力容器 及び前記第 2圧力容器のうち水素が移送された一方側から他方側へ流体を移送す るように前記ポンプを動作させることにより前記水素貯蔵容器に圧縮して水素を 収容させる。
Transferring the hydrogen released from the hydrogen storage alloy by heating the hydrogen storage alloy device to one of the first pressure vessel and the second pressure vessel, and the first pressure vessel and the second pressure The pump is operated to transfer the fluid from one side of the container to which hydrogen has been transferred to the other side, so that the hydrogen is compressed and stored in the hydrogen storage container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/671,445 US20040231823A1 (en) | 2002-06-12 | 2003-09-29 | Hydrogen storage alloy, hydrogen storage alloy unit and heat pump and hydrogen compression apparatus that utilize the hydrogen storage alloy |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002206239 | 2002-06-12 | ||
JP2002-206239 | 2002-06-12 | ||
JP2002-316836 | 2002-09-26 | ||
JP2002316836 | 2002-09-26 | ||
JP2002-332888 | 2002-10-11 | ||
JP2002332888 | 2002-10-11 | ||
JP2002322536 | 2002-11-06 | ||
JP2002-322536 | 2002-11-06 | ||
JP2003-119701 | 2003-04-24 | ||
JP2003119701A JP2004205197A (en) | 2002-06-12 | 2003-04-24 | Hydrogen storage alloy, hydrogen storage alloy unit, and heat pump and hydrogen compressor using hydrogen storage alloy |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/671,445 Continuation US20040231823A1 (en) | 2002-06-12 | 2003-09-29 | Hydrogen storage alloy, hydrogen storage alloy unit and heat pump and hydrogen compression apparatus that utilize the hydrogen storage alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003106899A1 true WO2003106899A1 (en) | 2003-12-24 |
Family
ID=29741107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/006849 WO2003106899A1 (en) | 2002-01-10 | 2003-05-30 | Hydrogen absorbing alloy, hydrogen absorbing alloy unit, heat pump using hydrogen absorbing alloy, and hydrogen compressing device |
Country Status (3)
Country | Link |
---|---|
US (1) | US20040231823A1 (en) |
JP (1) | JP2004205197A (en) |
WO (1) | WO2003106899A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8372184B2 (en) * | 2005-04-22 | 2013-02-12 | Societe Bic | Composite hydrogen storage material and methods related thereto |
AU2005336050B2 (en) * | 2005-08-31 | 2011-01-06 | Coldway | Thermochemical reactor for a cooling and/or heating apparatus |
US7563305B2 (en) * | 2006-06-23 | 2009-07-21 | Angstrom Power Incorporated | Fluid enclosure and methods related thereto |
US8372561B2 (en) * | 2007-03-21 | 2013-02-12 | Societe Bic | Composite fluid storage unit with internal fluid distribution feature |
JP5498188B2 (en) * | 2010-02-08 | 2014-05-21 | 株式会社神戸製鋼所 | Container for hydrogen separation and purification |
US20130092561A1 (en) * | 2011-10-18 | 2013-04-18 | Jörg Wellnitz | Hydrogen Storage System |
US20150211805A1 (en) * | 2014-01-29 | 2015-07-30 | Kunshan Jue-Chung Electronics Co., Ltd. | Thermostat module |
CN105587995A (en) * | 2015-12-22 | 2016-05-18 | 重庆市高新技术产业开发区潞翔能源技术有限公司 | Device for peak-regulation adsorption storage and controllable release of biogas |
US10267458B2 (en) * | 2017-09-26 | 2019-04-23 | Hystorsys AS | Hydrogen storage and release arrangement |
CN110542015B (en) * | 2019-07-29 | 2021-07-30 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | Enhanced heat exchange alloy hydrogen storage tank |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62258996A (en) * | 1986-04-30 | 1987-11-11 | Takuma Sogo Kenkyusho:Kk | Heat exchanger |
US4859427A (en) * | 1987-02-27 | 1989-08-22 | Japan Atomic Energy Research Institute | Active metal bed |
JPH01305273A (en) * | 1988-06-03 | 1989-12-08 | Seijiro Suda | Metal hydride heat pump |
JPH04232202A (en) * | 1990-12-28 | 1992-08-20 | Sharp Corp | Manufacture of hydrogen occluding alloy material |
JPH07243717A (en) * | 1994-03-01 | 1995-09-19 | Sanki Eng Co Ltd | Hydrogen absorbing alloy heat pump |
JPH1081501A (en) * | 1996-09-05 | 1998-03-31 | Japan Steel Works Ltd:The | Hydrogen occlusion and discharge, and device therefor |
JPH10194701A (en) * | 1996-12-27 | 1998-07-28 | Daido Steel Co Ltd | Absorption and release of hydrogen and vessel for storing hydrogen |
JP2000045926A (en) * | 1998-07-31 | 2000-02-15 | Japan Steel Works Ltd:The | Hydraulic power generation |
JP2000281302A (en) * | 1999-03-26 | 2000-10-10 | Japan Steel Works Ltd:The | Heat transfer accelerating material for gas adsorption/ desorption reaction material and gas adsorption/ desorption reaction material excellent in heat transfer property |
JP2002005539A (en) * | 2000-06-22 | 2002-01-09 | Futaba Corp | Heat pump apparatus |
US20020020299A1 (en) * | 2000-06-09 | 2002-02-21 | Japan Steel Works, Ltd. | Hydrogen storage and release apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61134593A (en) * | 1984-11-30 | 1986-06-21 | Agency Of Ind Science & Technol | Heat exchange device using hydrogen occlusion alloy |
-
2003
- 2003-04-24 JP JP2003119701A patent/JP2004205197A/en not_active Withdrawn
- 2003-05-30 WO PCT/JP2003/006849 patent/WO2003106899A1/en active Application Filing
- 2003-09-29 US US10/671,445 patent/US20040231823A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62258996A (en) * | 1986-04-30 | 1987-11-11 | Takuma Sogo Kenkyusho:Kk | Heat exchanger |
US4859427A (en) * | 1987-02-27 | 1989-08-22 | Japan Atomic Energy Research Institute | Active metal bed |
JPH01305273A (en) * | 1988-06-03 | 1989-12-08 | Seijiro Suda | Metal hydride heat pump |
JPH04232202A (en) * | 1990-12-28 | 1992-08-20 | Sharp Corp | Manufacture of hydrogen occluding alloy material |
JPH07243717A (en) * | 1994-03-01 | 1995-09-19 | Sanki Eng Co Ltd | Hydrogen absorbing alloy heat pump |
JPH1081501A (en) * | 1996-09-05 | 1998-03-31 | Japan Steel Works Ltd:The | Hydrogen occlusion and discharge, and device therefor |
JPH10194701A (en) * | 1996-12-27 | 1998-07-28 | Daido Steel Co Ltd | Absorption and release of hydrogen and vessel for storing hydrogen |
JP2000045926A (en) * | 1998-07-31 | 2000-02-15 | Japan Steel Works Ltd:The | Hydraulic power generation |
JP2000281302A (en) * | 1999-03-26 | 2000-10-10 | Japan Steel Works Ltd:The | Heat transfer accelerating material for gas adsorption/ desorption reaction material and gas adsorption/ desorption reaction material excellent in heat transfer property |
US20020020299A1 (en) * | 2000-06-09 | 2002-02-21 | Japan Steel Works, Ltd. | Hydrogen storage and release apparatus |
JP2002005539A (en) * | 2000-06-22 | 2002-01-09 | Futaba Corp | Heat pump apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2004205197A (en) | 2004-07-22 |
US20040231823A1 (en) | 2004-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8539781B2 (en) | Component for solar adsorption refrigeration system and method of making such component | |
US6834508B2 (en) | Hydrogen storage and supply system | |
WO2003106899A1 (en) | Hydrogen absorbing alloy, hydrogen absorbing alloy unit, heat pump using hydrogen absorbing alloy, and hydrogen compressing device | |
CN101413624B (en) | Hydrogen storing apparatus of metal hydrides and manufacturing method thereof | |
US6318453B1 (en) | Hydrogen cooled hydrogen storage unit having maximized cooling efficiency | |
JPH0444603B2 (en) | ||
NL8302781A (en) | METHOD AND APPARATUS FOR PREPARING IMPROVED POROUS COMPACT METAL HYDRIDE PARTICLES | |
US7094276B2 (en) | Hydrogen storage material and hydrogen storage apparatus | |
RU81568U1 (en) | HYDROGEN EXTERNAL SURFACE METAL HYDROGEN CARTRIDGE | |
US20040079090A1 (en) | Hydrogen storage alloy unit, thermoelectric conversion apparatus, and cooling, heating and freezing apparatus | |
JP2007218317A (en) | Cryogenic liquid/gas hydrogen storage tank | |
JPH11513476A (en) | Cooling method and cooling device | |
JP3032998B2 (en) | Hydrogen storage alloy holding container | |
JPH11248097A (en) | Vessel for hydrogen storage alloy and manufacture of vessel | |
RU220568U1 (en) | Reusable low pressure metal hydride hydrogen accumulator | |
JP2007146872A (en) | Low temperature hydrogen storage system | |
CN115893314B (en) | Aluminum water hydrogen production device and energy storage system | |
CN101413625B (en) | Hydrogen storing machine and manufacturing method thereof | |
JP2002005539A (en) | Heat pump apparatus | |
JPH0650498A (en) | Hydrogen storing and emitting device | |
JPS6044699A (en) | Hydrogen storing container | |
JPH07280492A (en) | Heat exchanger using hydrogen absorbing alloy | |
WO2002068882A1 (en) | Device for thermoelectric transduction, air condition and refrigeration, using hydrogen occluding alloy unit | |
EP1242770A1 (en) | Modular valved hydride hydrogen storage system | |
CN117730225A (en) | Hydrogen storage-compression system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 10671445 Country of ref document: US |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |