JPH02259374A - Cooling apparatus using metal hydride - Google Patents

Cooling apparatus using metal hydride

Info

Publication number
JPH02259374A
JPH02259374A JP7801689A JP7801689A JPH02259374A JP H02259374 A JPH02259374 A JP H02259374A JP 7801689 A JP7801689 A JP 7801689A JP 7801689 A JP7801689 A JP 7801689A JP H02259374 A JPH02259374 A JP H02259374A
Authority
JP
Japan
Prior art keywords
heat
container
hydrogen
metal hydride
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7801689A
Other languages
Japanese (ja)
Inventor
Naoki Ko
直樹 広
Masato Osumi
大隅 正人
Masakazu Morozu
諸頭 昌和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7801689A priority Critical patent/JPH02259374A/en
Publication of JPH02259374A publication Critical patent/JPH02259374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To reduce the capacity of a freezing system using metal hydride for enabling the refrigerating system to work by air-cooling, by a method wherein containers, where first and second metal hydrides are contained respectively, are connected to each other through a hydrogen ON-OFF valve, and fans for a heat radiator and a heat absorber, heating of heat recovery unit, and the hydrogen ON-OFF valve are controlled unitarily. CONSTITUTION:A heat radiator 6 consisting of a gravity type heat pipe 7, and a fan 9 is installed above a first container 1 where a first metal hydride M1H is contained, and connected to the first container 1 so that heat exchange takes place. A heat absorber 10 consisting of a gravity type heat pipe 15 and a fan 13 is installed under the first container 1, and connected to the first container 1 so that heat exchange takes place. On the other hand, a container 2, where a second metal hydride M2H having a hydrogen pressure-temperature equilibrium characteristic different form that of the first metal hydride M1H is contained, is installed on a heat source side of waste gas, etc. A radiator consisting of a gravity type heat pipe 15 and a fan 17 is installed above the second container 2, and a heat recovery unit 18 consisting of a gravity type heat pipe 19 is installed under the second container 2. The containers 1 and 2 are connected to each other by a hydrogen pipe 4 provided with a hydrogen ON-OFF valve 5, to transfer the hydrogen, and the cooling operation cycle is carried out with the regeneration performed by heat absorption action and heating.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は金属水素化物を利用した冷却装置に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a cooling device using metal hydrides.

(ロ)従来の技術 一般に冷凍装置の代表的製品である冷蔵庫、冷凍原は実
公昭62−21894号公報で示されるように、コンプ
レッサーを用いた膨張式蒸発器による冷却方式が主であ
る。また、これら膨張式の蒸発器を用いない特殊な冷却
装置として、今日、例えば特公昭64−4111号公報
で示す如く、金属水素化物が水素を放出するときの吸熱
反応によって部屋を冷房する冷却システムが提案されて
いる。
(b) Prior Art In general, refrigerators and freezers, which are typical products of refrigeration equipment, mainly use a cooling system using an expansion evaporator using a compressor, as shown in Japanese Utility Model Publication No. 62-21894. In addition, as a special cooling device that does not use these expansion type evaporators, there is currently a cooling system that cools a room by an endothermic reaction when a metal hydride releases hydrogen, as shown in Japanese Patent Publication No. 64-4111. is proposed.

(ハ)発明が解決しようとする課題 しかるに、実公昭62−21894号公報に示す従来の
冷却方式では、コンブ1ノツサーやファン等の断続音が
発生し、この騒音が就寝中に不快感を与える欠点がある
(c) Problems to be Solved by the Invention However, in the conventional cooling system shown in Utility Model Publication No. 62-21894, intermittent noise from the kelp nozzle and fan is generated, and this noise causes discomfort while sleeping. There are drawbacks.

又、特公昭63−4111号公報に示す金属水素化物を
利用した冷凍システムは、大量の冷熱エネルギーを取得
するもので、装置が大型化している。従って、熱交換の
円滑、かつ効率的な動作システムを推進するには、水冷
式のシステムを必要とし、そのため冷却水源の離係、お
よび冷却塔の設置を行い、更に、これら冷却水源、冷却
塔と冷却水ポンプとの間の冷却水配管が必要となる。よ
って。
Furthermore, the refrigeration system using metal hydrides disclosed in Japanese Patent Publication No. 63-4111 obtains a large amount of cold energy, resulting in large-sized equipment. Therefore, in order to promote a smooth and efficient operating system for heat exchange, a water-cooled system is required, which requires the separation of cooling water sources and the installation of cooling towers. Cooling water piping is required between the pump and the cooling water pump. Therefore.

本発明は金属水素化物を利用した冷凍システムを小容量
化し、空冷化による作動を可能とし、小型で使用勝手に
優れ、冷却室に容易に配設でき、かつこの冷却室と熱供
給部とが長距離に亘っても簡単な配管でシステムを構築
できる金属水素化物利用の冷却装置を提供することを目
的とする。
The present invention reduces the capacity of a refrigeration system using metal hydrides, enables air-cooled operation, is compact and easy to use, can be easily installed in a cooling room, and is connected to the cooling room and a heat supply section. The purpose of the present invention is to provide a cooling device using metal hydride that can be constructed with simple piping even over long distances.

(ニ)課題を解決するための手段 本発明の金属水素化物利用の冷却装置は、被冷却空間内
に配設された重力式ヒートパイプとファンから成る吸熱
器と、この吸熱器の上部に配設された第1の金属水素化
物の収容器と、第1−の金属水素化物の収容器より上部
被冷却空間外に配設された重力式ヒートパイプとファン
から成る放熱器と、被冷却空間と離れた屋外に配設され
た重力式ヒートパイプからなる熱回収部と、この熱回収
部より上部に配設され、第1の金属水素化物と水素圧力
−温度平衡特性の異なる第2の金属水素化物を収納した
収容器と、この収容器より上部屋外に配設された重力式
ヒートパイプとファンからなる放熱器とを備え、上記吸
熱器と放熱器を上記第1の金属水素化物の収容器と熱交
換的に接続し、第1の金属水素化物の収容器と第2の金
属水素化物の収容器の間を水素開閉弁を介して連通し、
放熱器のファン、吸熱器のファン熱回収部の加熱、及び
水素開閉弁を一元的に制御する制御手段を設けたもので
ある。
(d) Means for Solving the Problems The cooling device using metal hydrides of the present invention includes a heat absorber consisting of a gravity heat pipe and a fan disposed in a space to be cooled, and a heat absorber disposed above the heat absorber. a radiator consisting of a gravity heat pipe and a fan disposed outside the space to be cooled above the first container for metal hydride; and a space to be cooled. a heat recovery section consisting of a gravity heat pipe arranged outdoors away from the heat recovery section; and a second metal disposed above the heat recovery section and having hydrogen pressure-temperature equilibrium characteristics different from those of the first metal hydride. A container containing a hydride, and a heat radiator consisting of a gravity heat pipe and a fan installed outdoors above the container, the heat absorber and the heat radiator being connected to the first metal hydride. connected to the container in a heat exchange manner, and communicating between the first metal hydride container and the second metal hydride container via a hydrogen on-off valve;
A control means is provided for centrally controlling the fan of the heat radiator, the heating of the fan heat recovery section of the heat absorber, and the hydrogen on-off valve.

(ホ)作 用 第1の金属水素化物(以下−0Hと称す)を収納してい
る収容器と、第2の金属水素化物(以下阿2))と称す
)を収納している収容器とを結ぶ水素配管の水素開閉弁
を閉じたまま、一方例えば水素と吸蔵しているM21]
を廃ガス等の熱源により熱回収部を加熱し、高圧化し、
水素を放出させて行く。
(e) Action A container housing the first metal hydride (hereinafter referred to as -0H) and a container housing the second metal hydride (hereinafter referred to as A2)). While the hydrogen on-off valve of the hydrogen pipe connecting the hydrogen piping is closed, for example, M21 which is occluding hydrogen]
The heat recovery section is heated using a heat source such as waste gas, and the pressure is increased.
It releases hydrogen.

これは反対に水素を吸蔵していないM、Hは放熱器のフ
ァンを回すことで常温に保持する。このような状態で水
素開閉弁を開放すると、高圧のM21]側から111側
に水素が移動し、M、H側で吸蔵されていく。そして水
素放出に伴う吸熱作用でM2R側は低温、低圧化の傾向
を示すが、廃ガス等により、熱回収部を加熱し、熱媒体
を介して重力式ヒートパイプにより、1(2Hが加熱さ
れ高温、高圧状態を保持する。又、この際、M2H上部
の放熱器のファンは停止させ、この部分での放熱を押え
る。一方、HよH側では水素吸蔵に伴う発熱作用で高温
、高圧化の傾向を示すが、重力式ヒートパイプにより上
部の放熱器のファンを回すことにより、放熱される。
On the contrary, M and H, which do not absorb hydrogen, are kept at room temperature by running the fan of the radiator. When the hydrogen on-off valve is opened in this state, hydrogen moves from the high pressure M21] side to the 111 side and is stored on the M and H sides. The M2R side tends to be lower in temperature and pressure due to the endothermic action accompanying hydrogen release, but the heat recovery section is heated by waste gas, etc., and 1 (2H The high temperature and high pressure state is maintained.Also, at this time, the fan of the radiator above the M2H is stopped to suppress heat radiation in this part.On the other hand, on the H side, the high temperature and high pressure occur due to the heat generation effect due to hydrogen absorption. However, the heat is radiated by turning the fan of the upper radiator using a gravity heat pipe.

又、この時被冷却空間内にある吸熱器のファンは停止さ
せる。ここで重力式ヒートパイプは一方向の熱移動しか
ないために吸熱器への熱移動はない。このようにしてM
、H側は低温低圧状態を保持され、M、H側がM、H側
より高い圧力勾配を維持してM、l(側で水素を吸蔵さ
せる。このようなM21(側で吸熱、M、H側で発熱の
状態がある程度進んだ時に、水素開閉弁を閉成し、廃ガ
スの供給を止める。そして、M、H側の高温状態は、M
2H上部の放熱器のファンを回すことで、常温に戻され
る。従って1.N□H側は水素と吸蔵して低温高圧状態
にあり、M2R側は水素を放出して常温低圧状態にある
Also, at this time, the fan of the heat absorber in the space to be cooled is stopped. Here, since the gravity heat pipe transfers heat in only one direction, there is no heat transfer to the heat absorber. In this way M
, H sides are maintained at a low temperature and low pressure state, and the M, H side maintains a higher pressure gradient than the M, H side to absorb hydrogen on the M, l( side. When the state of heat generation has progressed to a certain extent on the M and H sides, the hydrogen on-off valve is closed and the supply of waste gas is stopped.Then, the high temperature state on the M and H sides is
By turning the fan on the radiator at the top of the 2H, the temperature is returned to room temperature. Therefore 1. The N□H side absorbs hydrogen and is in a low-temperature, high-pressure state, while the M2R side releases hydrogen and is in a normal-temperature, low-pressure state.

次に、水素開閉弁を開けると、水素を吸蔵しているM、
Hから水素が放出され、M2R側に水素配管を通して移
動する。町Hは吸熱的に水素を放出するので、 M2O
側では冷凍熱が発生し、その結果、吸熱器のファンを回
すことで効率的な吸熱が行なわれ、被冷却空間が冷却が
成される。又、M1H上部の放熱器のファンは停止させ
る。この時、この放熱器には重力ヒートパイプの構造上
熱の移動はない。
Next, when the hydrogen on-off valve is opened, M, which is storing hydrogen,
Hydrogen is released from H and moves to the M2R side through hydrogen piping. Since Town H emits hydrogen endothermically, M2O
Refrigeration heat is generated on the side, and as a result, efficient heat absorption is performed by rotating the fan of the heat absorber, and the space to be cooled is cooled. Also, stop the fan of the radiator above M1H. At this time, there is no heat transfer to this radiator due to the structure of the gravity heat pipe.

斯るサイクルを繰り返すことにより、被冷却空間の温度
を冷却温度に下げることとなる。
By repeating this cycle, the temperature of the space to be cooled is lowered to the cooling temperature.

(へ)実施例 以下、本発明の実施例を図面に基づいて説明する。(f) Example Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の冷却装置に用いられる2種類の金属水
素化物における水素圧力−温度平衡特性図を示し、第2
図は第1図の特性を持つ金属水素化物を使用して構成し
た冷却装置の構造図、第3図は各金属水素化物を収納す
る収納容器単体の構造図、第4図はこれら単体収納容器
を集合化した金属水素化物収容器の全体構成図を示す。
Figure 1 shows hydrogen pressure-temperature equilibrium characteristic diagrams for two types of metal hydrides used in the cooling device of the present invention;
Figure 1 is a structural diagram of a cooling device constructed using metal hydrides with the characteristics shown in Figure 1. Figure 3 is a structural diagram of individual storage containers that store each metal hydride. Figure 4 is a diagram of these individual storage containers. The overall configuration of a metal hydride container is shown.

先ず第2図に基づいて説明すると、1は第1図でIに示
す水素圧力−温度平衡特性を有するM、Ni、系の第1
の金属水素化物M1Hを収蔵した第1の収容器で、被冷
却空間である冷却室3の上部外面に設置される。2は同
様に■に示す水素圧力−温度平衡特性を有するり、N、
s系の第2の金属水素化物M、+1を収蔵した第2の収
容器にして、廃ガス等の熱供給源側に設置される。4は
前記収容器1と収容器2との間を接続する水素配管にし
て、途中に水素開閉弁5が設けられており、これら収容
器1,2の距離は、水素配管4の太くすることで100
m以上離しても充分に水素の往還が可能である。冷却室
3 (l’lllの収容器1には、それより上部に配置
された放熱器6が水を作動液としたウィックなしの重力
式ヒートパイプ7により熱交換的に接続され、放熱器6
はこの重力式ヒートパイプ7に放熱フィン8゜8・・・
を付設した周知の構造であると共に、このフィン8,8
・・・との熱交換を効果的に成すファン9を具備する。
First, to explain based on FIG. 2, 1 is the first element of the M, Ni, system having the hydrogen pressure-temperature equilibrium characteristics shown as I in FIG.
The first container contains the metal hydride M1H, and is installed on the upper outer surface of the cooling chamber 3, which is the space to be cooled. 2 similarly has the hydrogen pressure-temperature equilibrium characteristics shown in ■, N,
A second container containing the second s-based metal hydride M,+1 is installed on the side of a heat supply source such as waste gas. 4 is a hydrogen pipe connecting between the containers 1 and 2, and a hydrogen on-off valve 5 is provided in the middle, and the distance between these containers 1 and 2 is determined by making the hydrogen pipe 4 thicker. 100
Even if the distance is more than m, sufficient hydrogen can be exchanged. A radiator 6 disposed above the container 1 of the cooling chamber 3 (l'llll) is connected in a heat exchange manner by a gravity type heat pipe 7 without a wick using water as a working fluid.
This gravity type heat pipe 7 has heat dissipation fins 8゜8...
This fin 8, 8 has a well-known structure with
It is equipped with a fan 9 that effectively exchanges heat with...

また、冷却室3内には、その上方に吸熱器10が配設さ
れ、収容器1とはメタノールを作動液としたウィックな
しの重力式ヒートパイプ11により熱交換的に接続され
ている。この吸熱器10もこの重力式ヒートパイプ11
に放熱フィン12゜12・・・を付設した周知の構造で
あると共に、このフィン12.12・・・の熱交換を効
果的に成すファン13を具備する。一方、熱供給源側の
収容器2にもそれより上部′に配置した放熱器14が水
を作動液とするウィックなしの重力式ヒートパイプ15
により熱交換的に接続されている。放熱器14は、この
重力式ヒートパイプ15に放熱フィン16.16・・・
を付設した周知の構造であると共に、このフィン16.
16・・・どの熱交換を効果的に成すファン17を具備
する。そして、収容器2の下部には熱回収部18が配設
され廃ガスが送り込まれるようになっている。この熱回
収部18と収容器2とは、内部に水を作動液として入れ
であるウィックなしの重力式ヒートパイプ19により、
熱交換的に接続され、廃ガスの熱は重力式ヒートパイプ
19に付設した多数のフィン20゜20・・・にて伝熱
される周知の構成である。上記各放熱器6,14のファ
ン9,17と上記吸熱W110のファン13及び水素開
閉弁5、そして廃ガスの導入を一元的に制御するために
マイクロコンピュータ等を用いた制御装置21が適宜設
けられている。
A heat absorber 10 is disposed above the cooling chamber 3, and is connected to the container 1 for heat exchange through a wickless gravity heat pipe 11 using methanol as a working fluid. This heat absorber 10 also has this gravity heat pipe 11.
It has a well-known structure in which heat dissipation fins 12, 12, etc. are attached to the fins 12, 12, and is equipped with a fan 13 that effectively exchanges heat between the fins 12, 12, and so on. On the other hand, in the container 2 on the heat supply source side, there is also a radiator 14 disposed above it, a gravity heat pipe 15 without a wick that uses water as a working fluid.
are connected for heat exchange. The radiator 14 includes radiation fins 16, 16, . . . on the gravity heat pipe 15.
This fin 16.
16... Equipped with a fan 17 that effectively performs heat exchange. A heat recovery section 18 is disposed at the bottom of the container 2, and waste gas is fed into the heat recovery section 18. The heat recovery unit 18 and the container 2 are connected to each other by a gravity type heat pipe 19 without a wick, which contains water as a working fluid.
This is a well-known configuration in which the heat exchanger is connected for heat exchange, and the heat of the waste gas is transferred through a large number of fins 20, 20, . . . attached to the gravity heat pipe 19. A control device 21 using a microcomputer or the like is appropriately provided to centrally control the fans 9, 17 of the heat radiators 6, 14, the fan 13 of the heat absorber W110, the hydrogen on-off valve 5, and the introduction of waste gas. It is being

ところで、各金属水素化物M、H,M2Rを収納する各
収容器1,2の構造は第3図及び第4図のようになって
いる。即ち、第4図に示すものを仮に冷却室3側に設置
されている収容器1とすると、それは筒状の収納容器1
a、 la・・・を多数、集合化して構成で各個々の収
納容器1a、]、a・・・に、水素が水素配管4より分
岐させた多孔質の金属管からなる分岐管4aにより導入
され、また、放熱器6、吸熱器10とは重力式ヒートパ
イプを用いた個々の熱媒管7a、 lla・・・を通し
て、中の熱媒液が収納容器1a。
Incidentally, the structures of the containers 1 and 2 that house the metal hydrides M, H, and M2R are as shown in FIGS. 3 and 4. That is, if the container 1 shown in FIG.
Hydrogen is introduced into each individual storage container 1a, ], a... by a branch pipe 4a made of a porous metal pipe branched from a hydrogen pipe 4. Furthermore, the heat medium liquid inside the heat radiator 6 and the heat absorber 10 is transferred to the storage container 1a through individual heat medium pipes 7a, lla, etc. using gravity heat pipes.

1a・・・内を熱交換的に通流し、それぞれの収納容器
la、 la・・・で吸熱、発熱反応を起こして、それ
らの冷熱エネルギーを収集利用するようになっている。
1a... is circulated in a heat exchange manner, and endothermic and exothermic reactions occur in each storage container la, la..., and the cold energy is collected and utilized.

そして、個々の収納容器1aの内部構造は第3図に示す
如くである。放熱器6に通じる熱媒管7aと、吸熱器1
0に通ずる熱媒管11aが2本、所要間隔を保って並行
して配置されており、その上方にもう−本則の管、即ち
水素の通る水素分岐管4aが設けられている。この水素
分岐管4aは収納容器1内では、水素ガスが自由に出入
し得るように多孔質の金属管よりなっている。そして、
この容管4a。
The internal structure of each storage container 1a is as shown in FIG. The heat medium pipe 7a leading to the heat radiator 6 and the heat absorber 1
Two heat medium pipes 11a leading to hydrogen are arranged in parallel with a required spacing, and above them is provided a main pipe, that is, a hydrogen branch pipe 4a through which hydrogen passes. The hydrogen branch pipe 4a is made of a porous metal pipe so that hydrogen gas can freely enter and exit the storage container 1. and,
This container 4a.

7a、 llaに共通して、多数の熱交換用のフィン2
2゜22・・・が直交して取付固定されている。そして
、これらフィン22.22・・・の間に第1の金属水素
化物町[(が充填されており、これ耐熱、耐圧性の収納
容器1aに収納して、吸熱、発熱作用を行う1モジュー
ルIAを形成している。従って、金属水素化物量、■と
水素との反応に基づく発熱、吸熱の反応熱はこのフィン
22.22・・・を介して熱媒管7a、 lla内のメ
タノール、あるいは水である熱媒と熱交換される。この
1モジュールIAの径は5〜10国となっている。同様
に熱供給源に設置される収容器2も同一構成であって、
各モジュール同士は水素配管4を通して水素が往来する
ことは言う迄もない。このように多数のモジュールIA
を組み合わせて、水素の放出、吸蔵に伴う可逆的な吸熱
、発熱の熱エネルギーを取り出せる熱交換器を形成して
いる。
Common to 7a and lla, a large number of heat exchange fins 2
2゜22... are installed and fixed perpendicularly. A first metal hydride is filled between these fins 22, 22, and is housed in a heat-resistant and pressure-resistant storage container 1a, which is a module that performs heat absorption and heat generation. Therefore, the amount of metal hydride, the heat of exothermic and endothermic reactions based on the reaction between hydrogen and hydrogen are transferred to the methanol in the heat medium pipes 7a and lla through these fins 22, 22... Alternatively, heat is exchanged with a heat medium such as water.The diameter of one module IA is 5 to 10 mm.Similarly, the container 2 installed at the heat supply source has the same configuration,
Needless to say, hydrogen flows between the modules through the hydrogen piping 4. Thus a large number of modules IA
In combination, they form a heat exchanger that can extract the thermal energy of hydrogen release, reversible heat absorption associated with hydrogen storage, and heat generation.

以上の構成において、次にこの制御動作を説明する。第
1の金属水素化物量、[1に予め水素を吸蔵させ、第2
の金属水素化物M2)1からは水素を放出し尽くした状
態としてあれば、水素開閉弁5を開放することにより、
収容器1,2間では収容器1側が低温高圧、収容器2側
が常温低圧であるので、収容器1側では水素を放出して
、この水素は両数容器1,2間の水素圧力差により収容
器2側に水素配管4を通して移動し、第2の金属水素化
物M741に吸蔵される。即ち、この状態では第1図で
、第1の金属水素化物MiHはa点に示す低温高圧の平
衡特性状態にあり、一方、第2の金属水素化物M2Hは
b点に示す常温低圧の平衡特性状態にある。
In the above configuration, this control operation will be explained next. The amount of the first metal hydride, [1 is made to absorb hydrogen in advance, and the second amount of metal hydride is
When all hydrogen has been released from the metal hydride M2) 1, by opening the hydrogen shut-off valve 5,
Between the containers 1 and 2, the container 1 side is at low temperature and high pressure, and the container 2 side is at room temperature and low pressure, so hydrogen is released from the container 1 side, and this hydrogen is released due to the hydrogen pressure difference between the containers 1 and 2. It moves to the container 2 side through the hydrogen pipe 4 and is occluded in the second metal hydride M741. That is, in this state, in FIG. 1, the first metal hydride MiH is in the low-temperature, high-pressure equilibrium state shown at point a, while the second metal hydride M2H is in the room-temperature, low-pressure equilibrium state shown at point b. in a state.

従ってこの平衡特性点a、b間の水素圧力差に基づいて
水素は第1の収容器1側より、第2の収容器2側に移動
することとなる。この収容器1側では、その中のN工I
(が水素を放出して吸熱反応を起こす。よってこの吸熱
作用を利用すべく、吸熱器10側のファン13を回転さ
せ、効率良く吸熱器10で冷却室3内の熱を吸収し、冷
却を行う。
Therefore, based on the hydrogen pressure difference between the equilibrium characteristic points a and b, hydrogen moves from the first container 1 side to the second container 2 side. On this container 1 side,
(releases hydrogen and causes an endothermic reaction. Therefore, in order to utilize this endothermic action, the fan 13 on the heat absorber 10 side is rotated to efficiently absorb the heat in the cooling chamber 3 with the heat absorber 10 and cool it. conduct.

一方、水素配管4を通して移動してくる水素と吸蔵反応
を起こす第2の収容器2側では発熱をするので、放熱器
14のファン17を回し、この発生熱を放熱する。この
時、収容器1側で吸熱器10との間の熱交換は重力式ヒ
ートパイプ11を用いて行っており、従って一方向の移
動しか行なわないと言うこの重力式ヒートパイプ11の
特性上、放熱器6と収容器1との熱の移動はない。
On the other hand, since heat is generated on the side of the second container 2 which causes an occlusion reaction with the hydrogen moving through the hydrogen pipe 4, the fan 17 of the radiator 14 is rotated to radiate this generated heat. At this time, heat exchange with the heat absorber 10 on the side of the container 1 is performed using the gravity heat pipe 11. Therefore, due to the characteristic of this gravity heat pipe 11 that only moves in one direction, There is no transfer of heat between the radiator 6 and the container 1.

このような吸熱、放熱状態がある程度進んだ時に、制御
装置21により、ファン13.17の回転を停止させ、
水素開閉弁5を閉成させる。次に、水素開閉弁5を閉じ
たままの状態で、廃ガスを熱回収部17に送り込み、第
2の収容器2側を加熱し高温高圧させる。すると、水素
を吸蔵している第2の金属水素化物M21(は第1図の
0点に示す高温高圧の状態に変化し、水素を放出させて
いく。又、水素を放出し尽くしている第1の収納容器1
側の金属水素化物M111は放熱器6のファン9を回す
ことで、効率的に放熱を行ない常温に保持され、第1図
のd点に示す常温低圧の状態にある。ここで水素開閉弁
5を開くと、収容器1,2間では0点とd点との水素圧
力差があるため、高圧のM211側から水素を放出し、
この水素は水素配管4を通して低圧のに、H側へと移動
し、M、H側で吸蔵されていく。この時、阿211側で
は水素放出に伴う吸熱反応によって低温、低圧化の傾向
となるが高温状態を廃ガスによる加熱で維持し、一方N
□1(側では水素を吸蔵して発熱するが、放熱器6のフ
ァン9を回して放熱し、低温、低圧状態が保持される。
When such heat absorption and heat dissipation state has progressed to a certain extent, the control device 21 stops the rotation of the fans 13 and 17,
The hydrogen on-off valve 5 is closed. Next, with the hydrogen on-off valve 5 kept closed, the waste gas is sent to the heat recovery section 17, and the second container 2 side is heated to a high temperature and high pressure. Then, the second metal hydride M21 (which stores hydrogen) changes to the high temperature and high pressure state shown at point 0 in Figure 1, and releases hydrogen. 1 storage container 1
By rotating the fan 9 of the radiator 6, the metal hydride M111 on the side efficiently radiates heat and is maintained at room temperature, and is in the state of room temperature and low pressure shown at point d in FIG. When the hydrogen on-off valve 5 is opened here, since there is a hydrogen pressure difference between the 0 point and the d point between the containers 1 and 2, hydrogen is released from the high pressure M211 side.
This hydrogen moves to the H side through the hydrogen pipe 4 under low pressure, and is occluded on the M and H sides. At this time, on the A211 side, the temperature and pressure tend to decrease due to the endothermic reaction accompanying hydrogen release, but the high temperature state is maintained by heating with waste gas, while the N
On the □1 side, hydrogen is absorbed and heat is generated, but the heat is radiated by rotating the fan 9 of the radiator 6, and a low temperature and low pressure state is maintained.

即ち、0点とd点間の圧力勾配が維持されて門、)]側
で水素を安定して吸蔵し続ける。この時、重力式ヒート
パイプ7が一方向の熱の移動しか行なわないことを利用
しているために、吸熱器10と収容器1との熱の移動は
ない。
That is, the pressure gradient between the 0 point and the d point is maintained, and hydrogen continues to be stored stably on the gate ()] side. At this time, since the fact that the gravity heat pipe 7 transfers heat in only one direction is utilized, there is no transfer of heat between the heat absorber 10 and the container 1.

このような吸熱、放熱状態がある程度進んだときに、フ
ァン9と廃ガスを止め水素開閉弁5は閉成される。これ
が1サイクルである。
When such heat absorption and heat dissipation state has progressed to a certain extent, the fan 9 and the waste gas are stopped and the hydrogen shutoff valve 5 is closed. This is one cycle.

斯るサイクルを繰り返す中で、熱の移動は重力式ヒート
パイプを用いたために極めて速やかに行なわれ、動作サ
イクルも時間短縮できるので冷却室9は一り0℃〜−2
0℃程度の低温に維持される。
While repeating such a cycle, the heat transfer is extremely rapid due to the use of gravity heat pipes, and the operation cycle time can be shortened, so that the cooling chamber 9 can be heated between 0°C and -2°C.
It is maintained at a low temperature of about 0°C.

又、収容器1,2を構成する各収納容器単体の構造は第
3,4図のようにすることで熱交換は容易に行なわれ、
高さも10〜30(2mに押えられるために、冷却室へ
の配設も容易であり、収容器1,2間は、水素移動等の
径を太くすれば100m以上離すことも可能である。
In addition, heat exchange can be easily performed by making the structure of each storage container that constitutes containers 1 and 2 as shown in Figs. 3 and 4.
Since the height is limited to 10 to 30 m (2 m), it is easy to install it in a cooling room, and if the diameter of the containers 1 and 2 is made thicker for hydrogen transfer, etc., it is possible to separate them by 100 m or more.

又、重力式ヒートパイプの熱の移動が一方向しかないこ
とを利用し、ファンのON、 OFF制御だけで十分な
る熱交換作用を簡単に制御できる。
Furthermore, by taking advantage of the fact that heat transfer in the gravity heat pipe is only unidirectional, the heat exchange action can be easily controlled by simply controlling the ON/OFF of the fan.

(ト)発明の効果 以上のように本発明によれば、第1の金属水素化物Mi
Hを収蔵した収容器の上方に重力式ヒートパイプとファ
ンからなる放熱器を熱交換的に接続して設置し、下方に
重力式ヒートパイプとファンからなる吸熱器を被冷却空
間内に熱交換的に接続して配置し、一方、第1の金属水
素化物と水素圧力−温度平衡特性の異なる第2の金属水
素化物M2Hを収蔵した収容器を廃ガス等の熱供給部側
に設け、この収容器に対して夫々熱交換的に接続され、
その上部位置に重力式ヒートパイプとファンからなる放
熱器を、その下部位置に重力式ヒートパイプなら熱回収
部を設けて、これら収容器間は水素開閉弁を備える水素
配管で連通し、両収納容器間を水素移動させて、M2O
側での吸熱作用を冷却に利用し、M2O側の加熱により
再生する動作サイクルを行う冷却装置である。従って、
被冷却側と熱供給部とは、径を太くする等の手段で水素
の輸送中の圧力損失を押えて、相当長距雅に、離れてい
ても水素配管接続可能となる。よって、廃ガス等の有効
利用が一層図れる。
(g) Effects of the invention As described above, according to the invention, the first metal hydride Mi
A radiator consisting of a gravity heat pipe and a fan is connected and installed above the container housing H, and a heat absorber consisting of a gravity heat pipe and a fan is installed below to exchange heat within the space to be cooled. On the other hand, a container containing a second metal hydride M2H having different hydrogen pressure-temperature equilibrium characteristics from the first metal hydride is provided on the side of the heat supply section for waste gas, etc. each connected to the container in a heat exchange manner,
A radiator consisting of a gravity heat pipe and a fan is installed in the upper position, and a heat recovery unit is installed in the lower position of the gravity heat pipe.These containers are connected by a hydrogen pipe equipped with a hydrogen on-off valve, and both storage containers are connected. By transferring hydrogen between containers, M2O
This is a cooling device that performs an operation cycle in which heat absorption on the M2O side is used for cooling and regeneration is performed by heating the M2O side. Therefore,
The side to be cooled and the heat supply section can be connected to the hydrogen piping over a considerable distance even if they are separated by suppressing pressure loss during transportation of hydrogen by increasing the diameter or other means. Therefore, more effective use of waste gas, etc. can be achieved.

また、各収容器との熱交換は重力式ヒートパイプの放熱
器、吸熱器を用いているので、熱の一方向の移動しか必
然的に行なわず、熱媒の流通制御用の弁を殆んど不必要
とし、配管構成が簡易化されると共に、熱交換を水冷式
ではなく空冷式で作動できるようになっているので、冷
却水源あるいは冷却塔、そして冷却水ポンプ、及び熱媒
ポンプが不要となり、小型化した空冷式の金属水素化物
を利用した冷却装置を提供できる。
In addition, since heat exchange with each container uses a gravity heat pipe heat radiator and heat absorber, heat is inevitably transferred in only one direction, and most valves for controlling the flow of heat medium are not required. This simplifies the piping configuration and allows heat exchange to be performed using an air-cooled system rather than a water-cooled system, eliminating the need for a cooling water source or cooling tower, cooling water pump, or heat transfer pump. Therefore, it is possible to provide a compact air-cooled cooling device using metal hydride.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の冷却装置に用いられる2種類の金属水
素化物の水素圧力−温度平衡特性図、第2図は本発明の
冷却装置の構成図、第3図は金属水素化物を収蔵する収
納容器単体の構造を示し、(a)図は外観正面図、(b
)図は収納容器内に配される水素管、熱媒管にフィンを
付設している熱交換体の正面図、(c)図はその側面図
、第4図は収納容器単体を集合化して構成されている収
容器とその関連部分との関係構成図である。 1.2・・・収容器、1a・・・収納容器単体、3・・
・被冷却空間(冷却室)、4・・・水素配管、5・・・
水素開閉弁、6,14・・・放熱器、7.11.15.
19・・・重力式ヒートパイプ、9 、13.17・・
・ファン10・・・吸熱器、18・・・熱回収部、21
・・・制御手段、22・・・フィン。 第1区
Fig. 1 is a hydrogen pressure-temperature equilibrium characteristic diagram of two types of metal hydrides used in the cooling device of the present invention, Fig. 2 is a block diagram of the cooling device of the present invention, and Fig. 3 is a diagram showing the storage of metal hydrides. The structure of a single storage container is shown, (a) is an external front view, (b)
) is a front view of a heat exchanger with fins attached to the hydrogen pipes and heat medium pipes arranged in the storage container, (c) is a side view, and Figure 4 shows the storage container itself assembled. FIG. 2 is a diagram showing the relationship between the constructed container and its related parts. 1.2... Container, 1a... Single storage container, 3...
・Cooled space (cooling room), 4...Hydrogen piping, 5...
Hydrogen on/off valve, 6, 14... radiator, 7.11.15.
19...Gravity heat pipe, 9, 13.17...
・Fan 10... Heat absorber, 18... Heat recovery section, 21
...control means, 22...fin. Ward 1

Claims (2)

【特許請求の範囲】[Claims] (1)被冷却空間に配設された重力式ヒートパイプとフ
ァンから成る吸熱器と、この吸熱器の上部に配設された
第1の金属水素化物の収容器と、第1の金属水素化物の
収容器より上部被冷却空間外に配設された重力式ヒート
パイプとファンから成る放熱器と、被冷却空間と離れた
屋外に配設された重力式ヒートパイプからなる熱回収部
とこの熱回収部より上部に配設され上記第1の金属水素
化物と水素圧力−温度平衡特性の異なる第2の金属水素
化物の収容器と第2の金属水素化物の収容器より上部屋
外に配設された重力式ヒートパイプとファンからなる放
熱器とを備え、上記の吸熱器と放熱器を上記第1の金属
水素化物の収容器に熱交換的に接続し、上記第2の金属
水素化物の収容器に熱回収部と放熱器を熱交換的に接続
し、第1の金属水素化物の収容器と第2の金属水素化物
の収容器との間を水素開閉弁を介して連通すると共に、
放熱器のファン、吸熱器のファン、熱回収部の加熱、水
素開閉弁を一元的に制御する制御手段を設けたことを特
徴とする金属水素化物利用の冷却装置。
(1) A heat absorber consisting of a gravity heat pipe and a fan disposed in a space to be cooled, a first metal hydride container disposed above the heat absorber, and a first metal hydride A radiator consisting of a gravity heat pipe and a fan is placed above the container outside the space to be cooled, and a heat recovery section consisting of a gravity heat pipe is placed outdoors away from the space to be cooled. a second metal hydride container disposed above the recovery section and having different hydrogen pressure-temperature equilibrium characteristics from the first metal hydride; and a second metal hydride container disposed outdoors above the second metal hydride container. a gravity type heat pipe and a heat radiator consisting of a fan, the heat absorber and the heat radiator are connected to the first metal hydride container in a heat exchange manner, and the second metal hydride container is A heat recovery unit and a radiator are connected to the container in a heat exchange manner, and the first metal hydride container and the second metal hydride container are communicated via a hydrogen on-off valve,
A cooling device using a metal hydride, characterized by being provided with a control means for centrally controlling a radiator fan, a heat absorber fan, heating of a heat recovery section, and a hydrogen on-off valve.
(2)2本の熱媒管と1本の水素配管に多数のフィンを
固設すると共に、これらフィン間に金属水素化物を充填
して、これを耐熱、耐圧性の収納容器に収納して熱交換
をなす1モジュールを形成し、これを多数配列し、上記
熱媒管の一本は上部のフィンを備えた放熱器に、他方の
一本は下部の吸熱器又は熱回収部に接続して、熱交換器
を構成したことを特徴とする請求項1記載の金属水素化
物利用の冷却装置。
(2) A large number of fins are fixedly installed on two heat medium pipes and one hydrogen pipe, and metal hydride is filled between these fins, and this is stored in a heat-resistant and pressure-resistant storage container. One module for heat exchange is formed, and a large number of these are arranged, one of the heat medium pipes is connected to a radiator with fins at the top, and the other one is connected to a heat absorber or a heat recovery section at the bottom. 2. The cooling device using a metal hydride according to claim 1, further comprising a heat exchanger.
JP7801689A 1989-03-31 1989-03-31 Cooling apparatus using metal hydride Pending JPH02259374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7801689A JPH02259374A (en) 1989-03-31 1989-03-31 Cooling apparatus using metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7801689A JPH02259374A (en) 1989-03-31 1989-03-31 Cooling apparatus using metal hydride

Publications (1)

Publication Number Publication Date
JPH02259374A true JPH02259374A (en) 1990-10-22

Family

ID=13650000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7801689A Pending JPH02259374A (en) 1989-03-31 1989-03-31 Cooling apparatus using metal hydride

Country Status (1)

Country Link
JP (1) JPH02259374A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347828A (en) * 1993-03-23 1994-09-20 United Technologies Corporation Organic hydride/metal hydride heat pump
KR100406978B1 (en) * 2001-05-10 2003-11-28 한국과학기술원 Metal Hydride Heat Pump System for Cooling And Refrigerating Operating with both Waste Heat Source And Electric Hydrogen Vacuum Pump And Method Thereof
WO2014105545A1 (en) * 2012-12-27 2014-07-03 Intel Corporation Method and apparatus for cooling devices using phase change materials
CN108800370A (en) * 2017-04-26 2018-11-13 青岛海尔空调器有限总公司 Air conditioner and its control method
CN113138376A (en) * 2021-05-21 2021-07-20 中国科学院长春光学精密机械与物理研究所 Device for automatically correcting thermo-optic of laser radar

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347828A (en) * 1993-03-23 1994-09-20 United Technologies Corporation Organic hydride/metal hydride heat pump
KR100406978B1 (en) * 2001-05-10 2003-11-28 한국과학기술원 Metal Hydride Heat Pump System for Cooling And Refrigerating Operating with both Waste Heat Source And Electric Hydrogen Vacuum Pump And Method Thereof
WO2014105545A1 (en) * 2012-12-27 2014-07-03 Intel Corporation Method and apparatus for cooling devices using phase change materials
US9285845B2 (en) 2012-12-27 2016-03-15 Intel Corporation Method and apparatus for cooling devices using phase change materials
US9845975B2 (en) 2012-12-27 2017-12-19 Intel Corporation Method and apparatus for cooling devices using phase change materials
CN108800370A (en) * 2017-04-26 2018-11-13 青岛海尔空调器有限总公司 Air conditioner and its control method
CN113138376A (en) * 2021-05-21 2021-07-20 中国科学院长春光学精密机械与物理研究所 Device for automatically correcting thermo-optic of laser radar
CN113138376B (en) * 2021-05-21 2023-09-22 中国科学院长春光学精密机械与物理研究所 Device for thermo-optical automatic correction of laser radar

Similar Documents

Publication Publication Date Title
US4523635A (en) Metal hydride heat pump system
JP2664506B2 (en) Cooling and / or heating device by solid-gas reaction
US5507158A (en) Device for indirect production of cold for refrigerating machine
JPH02259374A (en) Cooling apparatus using metal hydride
US5445217A (en) Device for the production of cold and/or heat by solid-gas reaction
JPH02259375A (en) Cooling apparatus using metal hydride
JP3316859B2 (en) Chemical heat storage system
JP2627332B2 (en) Cooling room equipment
JP3813340B2 (en) Heat utilization system using hydrogen storage alloy
JP3133442B2 (en) Heat driven cold heat generation method and apparatus using metal hydride
JP2703360B2 (en) Heat-driven chiller using metal hydride
JP3355116B2 (en) Heat utilization system using hydrogen storage alloy
JPS61134551A (en) Metallic hydride heat pump device
JPH0774710B2 (en) Refrigerating and cooling system by combining Peltier element and hydrogen storage alloy
JPH06194077A (en) Heat-exchanging device
JPH073250Y2 (en) Hydrogen storage / desorption heat exchanger
JPH0399170A (en) Cooling device utilizing metal hydride
JPH04165271A (en) Cold-heat generating system
JPH11294888A (en) Heat harnessing system utilizing alloy for storing hydrogen
JPH03105172A (en) Cooling device utilizing metal hydride
JPS6329184B2 (en)
JP2002031377A (en) Ice storage method and ice storage apparatus using cold sensible heat
JPH05157398A (en) Heat-driven method and apparatus for generating cold heat utilizing metal hydride
JP2005104087A (en) Heat storage type mold cooling system
JP2000320923A (en) Heat utilization system utilizing hydrogen occluding alloy