JPS60140068A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS60140068A
JPS60140068A JP25203483A JP25203483A JPS60140068A JP S60140068 A JPS60140068 A JP S60140068A JP 25203483 A JP25203483 A JP 25203483A JP 25203483 A JP25203483 A JP 25203483A JP S60140068 A JPS60140068 A JP S60140068A
Authority
JP
Japan
Prior art keywords
hydrogen
reaction vessel
flow pipe
metal hydride
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25203483A
Other languages
Japanese (ja)
Other versions
JPH0220911B2 (en
Inventor
克彦 山路
西崎 倫義
河合 重征
泰詩 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP25203483A priority Critical patent/JPS60140068A/en
Publication of JPS60140068A publication Critical patent/JPS60140068A/en
Publication of JPH0220911B2 publication Critical patent/JPH0220911B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (技術分野) 本発明は金属水素化物を用いるヒートポンプ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a heat pump device using metal hydrides.

(従来技術) ある種の金属や合金が発熱的に水素を吸蔵して金属水素
化物を形成し、また、この金属水素化物が可逆的に吸熱
的に水素を放出することが知られており、近年、このよ
うな金属水素化物の特性を利用したヒートポンプ装置が
種々提案されている。
(Prior Art) It is known that certain metals and alloys absorb hydrogen exothermically to form metal hydrides, and that these metal hydrides reversibly and endothermically release hydrogen. In recent years, various heat pump devices have been proposed that utilize the characteristics of such metal hydrides.

このようなヒートポンプ装置の多くは、原理的には、例
えば特公昭55−35616号公報に記載されているよ
うに、水素平衡分解圧の異なる金属水素化物をそれぞれ
反応容器をなす一対の熱交換器に充填すると共に、これ
ら反応容器を水素流通管で接続して作動対を構成し、各
反応容器内の金属水素化物を一定時間にわたって所定の
温度の熱媒にて加熱又は冷却することにより、作動対の
一方の反応容器内の金属水素化物から吸熱的に水素を放
出させ、この水素を水素流通管を経て他方の反応容器に
導き、この反応容器内の金属水素化物に発熱的に吸蔵さ
せる反応を交互に行ない、このようにして、金属水素化
物の水素の吸蔵又は放出に伴う発熱又は吸熱反応を利用
して、所定の温度の温熱又は冷熱を出力として取り出し
ている。
Most of these heat pump devices, in principle, use a pair of heat exchangers each forming a reaction vessel to handle metal hydrides having different hydrogen equilibrium decomposition pressures, as described in Japanese Patent Publication No. 55-35616, for example. These reaction vessels are connected with a hydrogen flow pipe to form a working pair, and the metal hydride in each reaction vessel is heated or cooled with a heating medium at a predetermined temperature for a certain period of time. A reaction in which hydrogen is endothermically released from a metal hydride in one reaction vessel of the pair, introduced into the other reaction vessel via a hydrogen flow pipe, and exothermically absorbed into the metal hydride in this reaction vessel. In this way, heat or cold at a predetermined temperature is extracted as output by utilizing the exothermic or endothermic reaction associated with absorption or release of hydrogen in the metal hydride.

第1図は上記のようなヒートポンプ装置の作動を示すサ
イクル線図の一例であって、第1番目の金属水素化物M
HI(以下、同様に表わす。)を所定の温度の熱媒にて
高温THに加熱すると共に(点A)、MH2を所定の温
度の熱媒にて中温TMに保持して(点B)、MHIとM
H2の水素平衡分解圧に差圧を生ぜしめ、MHIから吸
熱的に水素を放出させ、この水素をMH2に発熱的に吸
蔵させ、次いで、MHIを中温TMに保持すると共に(
点F) 、MH2を所定の温度TLとして(点E)、M
H2とMHIとの間に水素平衡分解圧の差圧を生ぜしめ
、M口2から水素を放出させ、この水素をMHIに吸蔵
させ、ここにMH2の吸熱反応を利用して温度TLの冷
熱出力を得るものである。この後、MHIを再び高1T
Hに加熱し、MH2を中温TMに保持すれば、サイクル
が完了する。
FIG. 1 is an example of a cycle diagram showing the operation of the heat pump device as described above, in which the first metal hydride M
HI (hereinafter similarly expressed) is heated to high temperature TH with a heating medium at a predetermined temperature (point A), and MH2 is maintained at medium temperature TM with a heating medium at a predetermined temperature (point B), MHI and M
A pressure difference is created in the hydrogen equilibrium decomposition pressure of H2, hydrogen is endothermically released from MHI, this hydrogen is exothermically occluded in MH2, and then MHI is maintained at a mesotemperature TM and (
Point F), MH2 as a predetermined temperature TL (point E), M
A pressure difference of hydrogen equilibrium decomposition pressure is generated between H2 and MHI, hydrogen is released from M port 2, this hydrogen is stored in MHI, and the endothermic reaction of MH2 is utilized to generate a cold output at a temperature TL. This is what you get. After this, set the MHI to high 1T again.
Heating to H and holding MH2 at medium temperature TM completes the cycle.

尚、各反応容器内の金属水素化物を上記のように交互に
加熱冷却する代わりに、反応容器内に水素を加圧供給し
て水素を吸蔵させ、次いで、反応容器内を減圧して水素
を放出させ、このような水素の吸蔵放出を各反応容器に
交互に行なわせて、温熱又は冷熱出力を得ることも、例
えば、特開昭51−82942号公報に記載されている
ように、既によく知られている。
In addition, instead of heating and cooling the metal hydride in each reaction vessel alternately as described above, hydrogen is supplied under pressure into the reaction vessel to absorb hydrogen, and then the pressure inside the reaction vessel is reduced to absorb hydrogen. It is also possible to obtain hot or cold output by alternately storing and desorbing hydrogen in each reaction vessel, as described in JP-A-51-82942, for example. Are known.

このような従来のヒートポンプ装置においては、金属水
素化物の水素の吸蔵放出に伴う反応容器間の水素移動は
、例えば、上記した特開昭51−82942号公報に記
載されているように、通常、電磁弁により規制される。
In such conventional heat pump devices, hydrogen transfer between reaction vessels due to absorption and desorption of hydrogen by metal hydrides is usually carried out as described in, for example, the above-mentioned Japanese Patent Application Laid-Open No. 51-82942. Regulated by a solenoid valve.

従って、従来の典型的な2ボンベ型のヒートポンプ装置
は、第2図に示すように、MHIを充填した第1の反応
容器11とMH2を充填した第2の反応容器12を第1
の水素流通管13及び第2の水素流通管14にて接続し
、各水素流通管には開閉制御可能な制御弁15及び16
を取り付けると共に、第1の水素流通管13にはMHI
からMH2への水素移動のみを、また、第2の水素流通
管14にはMH2からMHIへの水素移動のみを許す逆
止弁17及び18を取り付けて構成され、反応のサイク
ルに応じて上記制御弁を開閉して容器間での水素移動を
制御している。
Therefore, in a typical conventional two-cylinder heat pump device, as shown in FIG.
A hydrogen flow pipe 13 and a second hydrogen flow pipe 14 are connected to each other, and each hydrogen flow pipe is equipped with control valves 15 and 16 that can be opened and closed.
At the same time, an MHI is attached to the first hydrogen flow pipe 13.
The second hydrogen flow pipe 14 is equipped with check valves 17 and 18 that allow only hydrogen transfer from MH2 to MHI, and the above control is performed according to the reaction cycle. The hydrogen transfer between containers is controlled by opening and closing valves.

上記した制御弁としては、従来より小型、簡単であり、
また、安価であることから電磁弁が広く用いられている
が、しかし、よく知られているように、通常の電磁弁は
、一般に管路における一方への流体の流れを開閉制御す
る機能を有するにすぎず、従って、逆方向への流れを遮
断するには逆止弁を付設することが必要である。従って
、上記したような簡単な所謂2ポンベ型のヒートポンプ
装置においても、各反応容器内の金属水素化物の反応に
応じて、容器間の水素移動を規制するには、各水素流通
管に電磁弁と逆止弁とを各1個ずつ必要とするから、実
用的な3ポンベ型又はそれ以上の多ボンベ型ヒートポン
プ装置においては、各反応容器間の水素移動を規制する
ために必要な電磁弁及び逆止弁の数が極めて多くなり、
装置構成が複雑化し、また、装置の信頼性が著しく乏し
くなるうえに、弁からの水素洩れの危険、性が増す。他
方、高級な制御弁、例えば電動弁を用いれば、故障や水
素洩れの危険性はある程度は解消されても、制御系が複
雑化すると共に、装置が高価となる。
The above-mentioned control valve is smaller and simpler than conventional ones,
In addition, solenoid valves are widely used because they are inexpensive, but as is well known, ordinary solenoid valves generally have the function of controlling the opening and closing of fluid flow to one side of a pipe. Therefore, it is necessary to install a check valve to block the flow in the opposite direction. Therefore, even in the simple so-called two-pump type heat pump device described above, it is necessary to install a solenoid valve in each hydrogen flow pipe in order to regulate the hydrogen transfer between the containers according to the reaction of the metal hydride in each reaction container. Therefore, in a practical 3-cylinder heat pump system or more, a solenoid valve and a check valve are required to regulate the hydrogen transfer between each reaction vessel. The number of check valves has become extremely large,
The device configuration becomes complicated, the reliability of the device becomes extremely poor, and the risk and likelihood of hydrogen leaking from the valve increases. On the other hand, if a high-grade control valve, such as an electric valve, is used, the risk of failure or hydrogen leakage may be eliminated to some extent, but the control system will be complicated and the device will be expensive.

(発明の目的) 本発明は従来のヒートポンプ装置における上記した問題
を解決するためになされたものであって、装置に含まれ
る弁の数を少なくして、簡単な装置構成でありながら、
信軌性の高いヒートポンプ装置を提供することを目的と
する。
(Object of the Invention) The present invention has been made to solve the above-mentioned problems in conventional heat pump devices, and has a simple device configuration by reducing the number of valves included in the device.
The purpose is to provide a heat pump device with high reliability.

(発明の要旨) 本発明のヒートポンプ装置は、水素平衡分解圧が相互に
異なるn種(n≧3)の金属水素化物をそれぞれ充填し
たn個の反応容器を、第(m+l)番目(1≦m≦n)
の反応容器内の金属水素化物の水素平衡分解圧が第m番
目の反応容器内の金属水素化物よりも大きくなるように
それぞれ水素流通管にて接続すると共に、第n番目の反
応容器と第1番目の反応容器とを水素流通管にて接続し
てなるヒートポンプ装置において、 (al この各水素流通管に第m番目の反応容器から第
(m+1)番目の反応容器方向にのみ水素の流通を許す
逆止弁を設けて、第(m+1)番目の反応容器から第m
番目の反応容器への水素の移動を禁止すると共に、 (bl 第n番目の反応容器と第1番目の反応容器を接
続する水素流通管と、第1番目の反応容器と第2番目の
反応容器とを接続する水素流通管との少なくともいずれ
か一方に開閉制御可能な制御弁を設け、 (C1逐次、第m番目の反応容器の金属水素化物から水
素を放出させ、この水素を逆止弁を経て第(m+1)番
目の反応容器に導いて、この容器内の金属水素化物に吸
蔵させ、このようにして、第n番目の反応容器の金属水
素化物から水素を放出させ、この水素を水素流通管を経
て第1番目の反応容器に導き、この容器内の金属水素化
物に吸蔵させ、第n番目の反応容器から冷熱を得、又は
第1番目の反応容器から温熱を得るようにしたことを特
徴とする。
(Summary of the Invention) The heat pump device of the present invention is characterized in that the (m+l)-th (1≦1)th (m+l) m≦n)
The hydrogen equilibrium decomposition pressure of the metal hydride in the m-th reaction vessel is higher than that of the metal hydride in the m-th reaction vessel, and the n-th reaction vessel and the first In a heat pump device which is connected to a th reaction vessel through a hydrogen flow pipe, (al) Hydrogen is allowed to flow through each hydrogen flow pipe only in the direction from the mth reaction vessel to the (m+1)th reaction vessel. A check valve is provided, and the mth reaction vessel is
Prohibiting the movement of hydrogen to the nth reaction vessel, and (bl) a hydrogen flow pipe connecting the nth reaction vessel and the first reaction vessel; A control valve capable of opening and closing is provided on at least one side of the hydrogen flow pipe connecting the The hydrogen is then introduced into the (m+1)th reaction vessel and absorbed into the metal hydride in this vessel. In this way, hydrogen is released from the metal hydride in the nth reaction vessel, and this hydrogen is introduced into the hydrogen flow. It was introduced into the first reaction vessel through a tube, and was absorbed by the metal hydride in this vessel, so that cold heat was obtained from the n-th reaction vessel, or warm heat was obtained from the first reaction vessel. Features.

(発明の構成) 以下に図面に基づいて本発明のヒートポンプ装置を説明
する。尚、以下において、前記したように、第m番目の
金属水素化物はMHmで表わされ、図面においては工で
表わされ、また、これに隣接して水素流通管で接続され
ているMH(m+1)は、装置の作動温度領域において
MHmよりも高い水素平衡分解圧を有するように選ばれ
る。
(Structure of the Invention) The heat pump device of the present invention will be described below based on the drawings. In the following, as mentioned above, the m-th metal hydride is represented by MHm, and in the drawings it is represented by . m+1) is chosen to have a higher hydrogen equilibrium decomposition pressure than MHm in the operating temperature range of the device.

第3図は冷熱出力を得るために好適である本発明の3ボ
ンベ型ヒートポンプ装置の一実施例を示す。
FIG. 3 shows an embodiment of the three-cylinder heat pump device of the present invention, which is suitable for obtaining cold output.

MHIを充填した第1の反応容器21と、MH2を充填
した第2の反応容器22とは、前者から後者方向にのみ
水素移動を許す逆止弁24を備えた水素流通管25にて
接続され、同様に、第2の反応容器22とMH3を充填
した第3の反応容器23も、前者から後者への水素移動
のみを許す逆止弁26を備えた水素流通管27にて接続
され、更に第3の反応容器23と第1の反応容器21と
は制御弁、例えば、電磁弁28を備えた水素流通管29
にて接続されている。
The first reaction vessel 21 filled with MHI and the second reaction vessel 22 filled with MH2 are connected by a hydrogen flow pipe 25 equipped with a check valve 24 that allows hydrogen to move only from the former to the latter direction. Similarly, the second reaction vessel 22 and the third reaction vessel 23 filled with MH3 are also connected by a hydrogen flow pipe 27 equipped with a check valve 26 that only allows hydrogen to move from the former to the latter. The third reaction vessel 23 and the first reaction vessel 21 are connected to a hydrogen flow pipe 29 equipped with a control valve, for example, a solenoid valve 28.
It is connected at

この装置の作動を第4図に示すサイクル線図に基づいて
説明する。先ず、第1の反応容器21と第3の反応容器
23とを接続する水素流通管29上に設けられた電磁弁
28を閉状態におき、第1の反応容器21内のMHIを
所定の高温THに加熱しく点A)、第2の反応容器22
内のMH2を所定の中温に保つと共に(点B) 、MH
3の水素平衡分解圧をMH2のそれよりも高く保つため
に、例えば、第3の反応容器23内のMH3をも中温T
Mに保つことにより(点D)、MHIとMH2との間に
水素平衡分解圧に差圧が生じて、MHIは水素を吸熱的
に放出し、この水素は水素流通管25を逆止弁24を経
て第2の反応容器に送入され、MH2がこの水素を発熱
的に吸蔵する。この反応において、上記したように、M
H3は中温に保持されており、従って、MH2よりも水
素平衡分解圧が高く保たれているので、MH2からMH
3方向への水素移動は起こらない。また、電磁弁28が
閉じられているので、この間、MH3の温度にかかわら
ずに、MHIからMH3への水素移動は起こらない。こ
のAからBへの水素移動が終了した後に、MHIは中温
TMに冷却される(点0 F)。
The operation of this device will be explained based on the cycle diagram shown in FIG. First, the solenoid valve 28 provided on the hydrogen flow pipe 29 connecting the first reaction vessel 21 and the third reaction vessel 23 is closed, and the MHI in the first reaction vessel 21 is heated to a predetermined high temperature. TH point A), second reaction vessel 22
While maintaining the MH2 within the specified medium temperature (point B), the MH
In order to maintain the hydrogen equilibrium decomposition pressure of MH3 higher than that of MH2, for example, MH3 in the third reaction vessel 23 is also heated to a medium temperature T.
By maintaining the pressure at M (point D), a pressure difference is generated between MHI and MH2 in the hydrogen equilibrium decomposition pressure, and MHI releases hydrogen endothermically, and this hydrogen passes through the hydrogen flow pipe 25 to the check valve 24. MH2 exothermically absorbs this hydrogen. In this reaction, as mentioned above, M
Since H3 is kept at an intermediate temperature and therefore the hydrogen equilibrium decomposition pressure is kept higher than that of MH2, MH2 to MH
Hydrogen transfer in three directions does not occur. Furthermore, since the solenoid valve 28 is closed, no hydrogen transfer from MHI to MH3 occurs during this time, regardless of the temperature of MH3. After this hydrogen transfer from A to B is completed, the MHI is cooled to intermediate temperature TM (point 0 F).

このAからBへの水素移動の終了後、第2の反応容器2
2内のMH2を高温THに加熱しく点C)、上記したよ
うに中温TMに保たれているMH3(点D)との間に水
素平衡分解圧の差圧を生せしめると、MH2は水素を吸
熱的に放出し、この水素は水素流通管27を逆止弁2G
を経て第3の反応容器に導かれ、この水素をMH3が吸
熱的に吸蔵する。この水素移動の間も上記電磁弁28は
閉じられているので、MH3からMHIへの水素移動は
起こらない。
After completing this hydrogen transfer from A to B, the second reaction vessel 2
When MH2 in 2 is heated to a high temperature TH (point C) and a hydrogen equilibrium decomposition pressure difference is created between MH3 (point D), which is kept at a medium temperature TM as described above, MH2 decomposes hydrogen. The hydrogen is released endothermically, and this hydrogen passes through the hydrogen flow pipe 27 through the check valve 2G.
The hydrogen is introduced into the third reaction vessel through the hydrogen gas, and the hydrogen is endothermically occluded by MH3. Since the electromagnetic valve 28 is closed during this hydrogen transfer, hydrogen transfer from MH3 to MHI does not occur.

このCからDへの水素移動反応の終了後、電磁弁28を
開くと、前記したようにMHIは中温TMに保たれてい
るので(点F) 、MH3とMHIとの間に水素平衡分
解圧の差圧が生じて、MH3は低温TLで水素を吸熱的
に放出しく点E)、この水素流通管29を電磁弁28を
経て第1の反応容器に導かれ、ここでMHIがこの水素
を発熱的に吸蔵する(点F)。
After this hydrogen transfer reaction from C to D is completed, when the solenoid valve 28 is opened, as mentioned above, since MHI is maintained at the intermediate temperature TM (point F), the hydrogen equilibrium decomposition pressure is created between MH3 and MHI. A pressure difference of 2 is generated, and MH3 endothermically releases hydrogen at low temperature TL (point E). This hydrogen flow pipe 29 is led to the first reaction vessel via a solenoid valve 28, where MHI absorbs this hydrogen. occludes exothermically (point F).

次いで、MHIを温度THに、MH2及びMHI1 3をそれぞれ温度TMに戻すことにより、サイクルが完
了する。
The cycle is then completed by returning MHI to temperature TH and MH2 and MHI13 to temperature TM.

従って、上記ヒートポンプ装置は、高温THの熱源を用
いて、低温TLの冷熱を出力として得るものであり、例
えば、冷房に利用することができるが、従来の2ボンベ
型装置であればA −B −E’−Fのサイクルである
のに対して、上記本発明の装置によれば、A−B−+C
−+D→E−+Fのサイクルを行なわせるので、より低
温の冷熱出力を得ることができる。
Therefore, the above heat pump device uses a high temperature TH heat source to obtain low temperature TL cold heat as output, and can be used for air conditioning, for example, but in the case of a conventional two-cylinder type device, A-B -E'-F cycle, whereas according to the apparatus of the present invention, A-B-+C
Since the cycle of -+D→E-+F is performed, a cold output at a lower temperature can be obtained.

第5図は上記の3ボンベ型に代えてn個のボンベからな
る多ボンベ型ヒートポンプ装置を示し、第m番目の反応
容器と第(m+1)番目の反応容器とが前者から後者の
反応容器方向への水素移動のみを許す逆止弁31を備え
た水素流通管32にて接続されており、第n番目の反応
容器と第1番目の反応容器とが電磁弁33を備えた水素
流通管34にて接続されている。
FIG. 5 shows a multi-cylinder heat pump device consisting of n cylinders instead of the three-cylinder type described above, and the m-th reaction vessel and the (m+1)-th reaction vessel are arranged in the direction from the former to the latter reaction vessel. The n-th reaction vessel and the first reaction vessel are connected by a hydrogen circulation pipe 32 equipped with a check valve 31 that only allows hydrogen transfer to the hydrogen flow pipe 34 equipped with a solenoid valve 33. It is connected at

このような多ボンベ型ヒートポンプ装置の作動も前記し
たところと同様であり、第6図のサイク2 ル線図に示すように、水素はMHIから、これよりも高
い水素平衡分解圧を有する次段の金属水素化物に逐次に
移動され、MH(n−1)からMHnへの水素移動が行
なわれた後、このM HnからMHIに水素移動が行な
われて、サイクルが完了し、MHnの水素吸蔵反応から
冷熱出力を得るものである。尚、用いる金属水素化物を
多段に構成するほど、このようにより低温の冷熱出力を
得ることができる。
The operation of such a multi-cylinder heat pump device is similar to that described above, and as shown in the cycle diagram of Fig. 6, hydrogen is transferred from the MHI to the next stage having a higher hydrogen equilibrium decomposition pressure. After hydrogen transfer from MH(n-1) to MHn, hydrogen transfer from MHn to MHI completes the cycle, and hydrogen storage in MHn is completed. Cold output is obtained from the reaction. Incidentally, the more stages the metal hydride is used, the lower the temperature of the cold output can be obtained.

第7図は温熱出力を得るために好適である本発明の3ボ
ンベ型ヒートポンプ装置の一実施例を示す。MHIを充
填した第1の反応容器41と、MH2を充填した第2の
反応容器42とが前者から後者への水素移動のみを許す
逆止弁44と電磁弁45を備えた水素流通管46にて接
続され、同様に第2の反応容器42とMH3を充填した
第3の反応容器43とが、前者から後者への水素移動の
みを許す逆止弁47を備えた水素流通管48にて接続さ
れていると共に、第3の反応容器と第1の反応容器とが
弁をもたない水素流通管49にて接3 続されている。
FIG. 7 shows an embodiment of the three-cylinder heat pump device of the present invention, which is suitable for obtaining thermal output. A first reaction vessel 41 filled with MHI and a second reaction vessel 42 filled with MH2 are connected to a hydrogen flow pipe 46 equipped with a check valve 44 and a solenoid valve 45 that only allow hydrogen movement from the former to the latter. Similarly, the second reaction vessel 42 and the third reaction vessel 43 filled with MH3 are connected by a hydrogen flow pipe 48 equipped with a check valve 47 that only allows hydrogen to move from the former to the latter. At the same time, the third reaction vessel and the first reaction vessel are connected by a hydrogen flow pipe 49 without a valve.

この装置の作動は、第8図に示すザイクル線図に示すよ
うに、先ず、上記電磁弁45を開状態におき、MHIを
所定の中温TMに加熱しく点A)、MH2とMH3とを
所定の低温TLに保っとくそれぞれ点B及び点D)、M
HIとMH2との間の水素平衡分解圧の差圧によって、
MHIは水素を吸熱的に放出し、この水素は水素流通管
46を電磁弁45及び逆止弁44を経て、第2の反応容
器42に導かれ、MH2がこの水素を発熱的に吸蔵する
。この反応の間、上記したように、MH3も低温TLに
保たれており、従って、MH2よりも水素平衡分解圧が
高く保たれているので、MH2からMH3への水素移動
は起こらない。また、この間、MH3はMHIよりも水
素平衡分解圧が高く、且つ、水素の放出後の状態にある
ので、MH3とMHIとは弁をもたない水素流通管49
にて接続されているが、この水素流通管を経て水素移動
が起こることはない。この反応の終了後、MHIは高温
THに加熱される。
The operation of this device is as shown in the Seikle diagram shown in FIG. points B and D) and M, respectively.
Due to the difference in hydrogen equilibrium decomposition pressure between HI and MH2,
MHI emits hydrogen endothermically, and this hydrogen is led to second reaction vessel 42 through hydrogen flow pipe 46 through electromagnetic valve 45 and check valve 44, and MH2 absorbs this hydrogen exothermically. During this reaction, as mentioned above, MH3 is also kept at a low temperature TL and therefore the hydrogen equilibrium decomposition pressure is kept higher than that of MH2, so no hydrogen transfer from MH2 to MH3 occurs. Also, during this period, MH3 has a higher hydrogen equilibrium decomposition pressure than MHI and is in a state after hydrogen has been released, so MH3 and MHI are connected to the hydrogen flow pipe 49 without a valve.
However, no hydrogen transfer occurs through this hydrogen flow pipe. After completion of this reaction, the MHI is heated to high temperature TH.

4 この人からBへの水素移動の終了後、MH2を中温TM
に加熱しく点C)、上記したように低温T Lに保たれ
ているMH3(点D)との間に水素平衡分解圧に差圧を
生ぜしめると、MH2は水素を吸熱的に放出し、この水
素は水素流通管48を逆止弁47を経て第3の反応容器
に導かれ、ここでこの水素をMH3が吸熱的に吸蔵する
。このCからDへの水素移動の間、MHIの温度にかか
わらず、水素流通管44上の逆止弁44によって、MH
2からMHIへの水素移動は阻止される。また、MHI
はMH3よりも高温の温度T)(に保たれており、水素
平衡分解圧がMH3よりも高く保たれているので、MH
3からMHIへの水素移動も起こらない。
4 After the hydrogen transfer from this person to B is completed, MH2 is heated to medium temperature TM.
When a pressure difference is created in the hydrogen equilibrium decomposition pressure between MH3 (point D) kept at low temperature T L as described above, MH2 releases hydrogen endothermically, This hydrogen is led to the third reaction vessel through the hydrogen flow pipe 48 and the check valve 47, where the hydrogen is endothermically occluded by MH3. During this hydrogen transfer from C to D, regardless of the temperature of MHI, the check valve 44 on the hydrogen flow pipe 44
Hydrogen transfer from 2 to MHI is blocked. Also, MHI
is kept at a temperature T) (higher than that of MH3, and the hydrogen equilibrium decomposition pressure is kept higher than that of MH3, so MH
Hydrogen transfer from 3 to MHI also does not occur.

この反応の終了後、電磁弁45を閉じ、MH3を中温T
Mに加熱し、MH3と水素放出後の温度T HのMHI
との間に水素平衡分解圧に差圧を生せしめると、MH3
は水素を吸熱的に放出し、水素流通管49を経てMHI
に供給されて、MHIがこの水素を発熱的に吸蔵する。
After this reaction is completed, the solenoid valve 45 is closed and MH3 is heated to a medium temperature T.
MHI at temperature T H after heating to M and releasing MH3 and hydrogen.
When a pressure difference is created in the hydrogen equilibrium decomposition pressure between MH3 and
releases hydrogen endothermically and passes through the hydrogen flow pipe 49 to the MHI.
MHI absorbs this hydrogen exothermically.

この間、MH35 からMHIへの水素移動は逆止弁47によって禁止され
、また、電磁弁45が閉じているので、MHIからMH
2への水素移動は起こらない。この後、MHIを温度T
Mに戻し、MH2とMH3とを温度TLに戻せばサイク
ルが完了する。
During this time, hydrogen transfer from MH35 to MHI is prohibited by check valve 47, and since solenoid valve 45 is closed, hydrogen transfer from MHI to MH
No hydrogen transfer to 2 occurs. After this, change the MHI to the temperature T
The cycle is completed by returning MH2 and MH3 to temperature TL.

従って、上記したヒートポンプ装置によれば、中温の熱
媒を駆動熱源として、所定温度THの温熱を出力として
得ることができるが、特に、従来の2ボンベ型ヒートポ
ンプ装置の場合には、C→D−+E’→Fのサイクルを
行なうのに対して、上記本発明の装置によれば、A→B
→C→D→E→Fのサイクルを行なうので、より高温の
温熱出力を得ることができる。
Therefore, according to the heat pump device described above, thermal heat at a predetermined temperature TH can be obtained as an output using a medium-temperature heat medium as a driving heat source, but in particular, in the case of a conventional two-cylinder heat pump device, C→D -+E'→F cycle, whereas according to the apparatus of the present invention, A→B
Since the cycle of →C→D→E→F is performed, a higher temperature thermal output can be obtained.

第9図は上記の3ボンベ型に代えてn個のボンベからな
る多ボンベ型ヒートポンプ装置を示し、第(m−1)番
目の反応容器と第m番目の反応容器とが前者から後者の
反応容器方向への水素の流れを許す逆止弁51を備えた
水素流通管52にて接続され、第n番目の反応容器と第
1番目の反応容器とが、弁をもたない水素流通管53に
て接続6 さていると共に、第1番目と第2番目の反応容器とは、
上記逆止弁44に加えて電磁弁45を備えた水素流通管
46で接続されている。
FIG. 9 shows a multi-cylinder heat pump device consisting of n cylinders instead of the three-cylinder type described above, and the (m-1)th reaction vessel and the m-th reaction vessel are used for the reaction from the former to the latter. The n-th reaction container and the first reaction container are connected by a hydrogen flow pipe 52 equipped with a check valve 51 that allows hydrogen to flow in the direction of the container, and a hydrogen flow pipe 53 having no valve is connected to the n-th reaction container and the first reaction container. At the same time as connecting 6, the first and second reaction vessels are
In addition to the above-mentioned check valve 44, a hydrogen flow pipe 46 equipped with an electromagnetic valve 45 is connected.

このような多ボンベ型ヒートポンプ装置の作動も前記し
たところと同様であり、第10図のサイクル線図に示す
ように、水素はMHIから水素平衡分解圧がより高い金
属水素化物に逐次移動され、MH(n−1)からMl(
nへの水素移動が行なわれた後、このM HnからMH
Iに水素移動が行なわれて、サイクルが完了する。
The operation of such a multi-cylinder heat pump device is similar to that described above, and as shown in the cycle diagram of FIG. 10, hydrogen is sequentially transferred from MHI to metal hydride with higher hydrogen equilibrium decomposition pressure, From MH(n-1) to Ml(
After hydrogen transfer to n, from this M Hn to M H
Hydrogen transfer to I completes the cycle.

(発明の効果) 以上のように、本発明のヒートポンプ装置においては、
所定の作動温度領域で相互に水素平衡分解圧の異なる金
属水素化物を、その水素平衡分解圧が順次高くなるよう
に接続し、第1番目の反応容器の金属水素化物から水素
を放出させ、この水素を逐次、水素平衡分解圧のより高
い次段の金属水素化物に最終的に最終段の反応容器から
第1番目の反応容器に水素を移動させるようにしたので
、2ボンベ型ヒートポンプ装置に比べて、より低温7 又は高温の出力を得ることができ、また、装置に含まれ
る弁数を金属水素化物の反応の特性を利用して最小限に
抑えたので、装置構成を簡単化し、装置を低度とし得る
うえに、装置の信頼性も格段に改善される。また、水素
洩れの危険も大幅に減縮される。
(Effect of the invention) As described above, in the heat pump device of the present invention,
Metal hydrides having different hydrogen equilibrium decomposition pressures in a predetermined operating temperature range are connected in such a way that their hydrogen equilibrium decomposition pressures increase in sequence, and hydrogen is released from the metal hydride in the first reaction vessel. Hydrogen is sequentially transferred to the metal hydride in the next stage where the hydrogen equilibrium decomposition pressure is higher, and finally from the final stage reaction vessel to the first reaction vessel, so compared to a two-cylinder heat pump system, In addition, the number of valves included in the device was minimized by taking advantage of the characteristics of metal hydride reactions, which simplified the device configuration and made it easier to operate the device. In addition to being able to reduce the damage, the reliability of the device is also significantly improved. Also, the risk of hydrogen leakage is greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の2ボンベ型ヒートポンプ装置の作動を説
明するためのサイクル線図、第2図は2ボンベ型ヒート
ポンプ装置の典型例を示す装置構成図、第3図は本発明
のヒートポンプ装置の一実施例を示す装置構成図、第4
図は第3図の装置の作動を説明するだめのサイクル線図
、第5図は第3図に対応する多ボンベ型型ヒートポンプ
装置を示す装置構成図、第6図はその作動を示すサイク
ル線図、第7図は本発明のヒートポンプ装置の別の一実
施例を示す装置構成図、第8図は第7図の装置の作動を
説明するためのサイクル線図、第9図は第6図に対応す
る多ボンベ型ヒートポンプ装置を示す装置構成図、第1
0図はその作動を示す8 サイクル線図である。 21.22.23・・・反応容器、24.26・・・逆
止弁、25.27.29・・・水素流通管、28・・・
電磁弁、31・・・逆止弁、32.34・・・水素流通
管、33・・・電磁弁、41.42.43・・・反応容
器、44.47・・・逆止弁、45・・・電磁弁、48
.49・・・水素流通管、51.54・・・逆止弁、5
2.53・・・水素流通管、55・・・電磁弁。 特許出願人 積水化学工業株式会社 代表者藤沼基利 9 第1図 HTMTL 1/T 第2図 ボア dη
Fig. 1 is a cycle diagram for explaining the operation of a conventional two-cylinder heat pump device, Fig. 2 is a device configuration diagram showing a typical example of a two-cylinder heat pump device, and Fig. 3 is a diagram of a heat pump device of the present invention. Device configuration diagram showing one embodiment, No. 4
The figure is a cycle diagram explaining the operation of the device in Figure 3, Figure 5 is a device configuration diagram showing a multi-cylinder heat pump device corresponding to Figure 3, and Figure 6 is a cycle diagram showing its operation. 7 is a device configuration diagram showing another embodiment of the heat pump device of the present invention, FIG. 8 is a cycle diagram for explaining the operation of the device shown in FIG. 7, and FIG. 9 is a diagram similar to that shown in FIG. 6. Device configuration diagram showing a multi-cylinder heat pump device corresponding to
Figure 0 is an 8-cycle diagram showing its operation. 21.22.23...Reaction container, 24.26...Check valve, 25.27.29...Hydrogen flow pipe, 28...
Solenoid valve, 31... Check valve, 32.34... Hydrogen flow pipe, 33... Solenoid valve, 41.42.43... Reaction vessel, 44.47... Check valve, 45 ...Solenoid valve, 48
.. 49...Hydrogen flow pipe, 51.54...Check valve, 5
2.53... Hydrogen flow pipe, 55... Solenoid valve. Patent applicant Sekisui Chemical Co., Ltd. Representative Mototoshi Fujinuma 9 Figure 1 HTMTL 1/T Figure 2 Bore dη

Claims (1)

【特許請求の範囲】[Claims] (1)水素平衡分解圧が相互に異なるn種(n≧3)の
金属水素化物をそれぞれ充填したn個の反応容器を、第
(m+1)番目(1≦m≦n)の反応容器内の金属水素
化物の水素平衡分解圧が第m番目の反応容器内の金属水
素化物よりも大きくなるようにそれぞれ水素流通管にて
接続すると共に、第n番目の反応容器と第1番目の反応
容器とを水素流通管にて接続してなるヒートポンプ装置
において、 (a) この各水素流通管に第m番目の反応容器から第
(m+1)番目の反応容器方向にのみ水素の流通を許す
逆止弁を設けて、第(m+1)番目の反応容器から第m
番目の反応容器への水素の移動を禁止すると共に、 [b) 第n番目の反応容器と第1番目の反応容器を接
続する水素流通管と、第1番目の反応容器と第2番目の
反応容器とを接続する水素流通管との少なくともいずれ
か一方に開閉制御可能な制御弁を設け、 (C1逐次、第m番目の反応容器の金属水素化物から水
素を放出させ、この水素を逆止弁を経て第(m+1)番
目の反応容器に導いて、この容器内の金属水素化物に吸
蔵させ、このようにして、第n番目の反応容器の金属水
素化物から水素を放出させ、この水素を水素流通管を経
て第1番目の反応容器に導き、この容器内の金属水素化
物に吸蔵させ、第n番目の反応容器から冷熱を得、又は
第1番目の反応容器から温熱を得るようにしたことを特
徴とするヒートポンプ装置。
(1) N reaction vessels each filled with n types (n≧3) of metal hydrides having different hydrogen equilibrium decomposition pressures are placed in the (m+1)th (1≦m≦n) reaction vessel. The n-th reaction vessel and the first reaction vessel are connected by hydrogen flow pipes so that the hydrogen equilibrium decomposition pressure of the metal hydride is higher than that of the metal hydride in the m-th reaction vessel. (a) Each hydrogen flow pipe is provided with a check valve that allows hydrogen to flow only from the mth reaction vessel to the (m+1)th reaction vessel. from the (m+1)th reaction vessel to the mth
[b] A hydrogen flow pipe connecting the nth reaction vessel and the first reaction vessel, and a hydrogen flow pipe connecting the first reaction vessel and the second reaction vessel; A control valve that can be opened and closed is provided on at least one side of the hydrogen flow pipe connecting the container, and hydrogen is released from the metal hydride in the m-th reaction container in C1 sequence, and this hydrogen is passed through the check valve. is introduced into the (m+1)th reaction vessel through which it is absorbed into the metal hydride in this vessel. In this way, hydrogen is released from the metal hydride in the nth reaction vessel, and this hydrogen is converted into hydrogen. It is led to the first reaction vessel via a flow pipe, is absorbed by the metal hydride in this vessel, and cold heat is obtained from the n-th reaction vessel, or warm heat is obtained from the first reaction vessel. A heat pump device featuring:
JP25203483A 1983-12-27 1983-12-27 Heat pump device Granted JPS60140068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25203483A JPS60140068A (en) 1983-12-27 1983-12-27 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25203483A JPS60140068A (en) 1983-12-27 1983-12-27 Heat pump device

Publications (2)

Publication Number Publication Date
JPS60140068A true JPS60140068A (en) 1985-07-24
JPH0220911B2 JPH0220911B2 (en) 1990-05-11

Family

ID=17231655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25203483A Granted JPS60140068A (en) 1983-12-27 1983-12-27 Heat pump device

Country Status (1)

Country Link
JP (1) JPS60140068A (en)

Also Published As

Publication number Publication date
JPH0220911B2 (en) 1990-05-11

Similar Documents

Publication Publication Date Title
EP0168062B1 (en) Metal hydride heat pump assembly
US4185979A (en) Apparatus and method for transferring heat to and from a bed of metal hydrides
JPS60140068A (en) Heat pump device
JPS60140066A (en) Heat pump device
JPS60140067A (en) Heat pump device
RU2131987C1 (en) Hear-transfer apparatus using stirling-cycle principle
US5445217A (en) Device for the production of cold and/or heat by solid-gas reaction
JPH02130360A (en) Cooling and heating apparatus utilizing metal hydride
JP2000121197A (en) Heat pump and operation thereof
JP2642830B2 (en) Cooling device
JPS6329182B2 (en)
JP2643235B2 (en) Metal hydride heating and cooling equipment
JPS638394B2 (en)
JP2580402B2 (en) Heat utilization system
JPS6037395B2 (en) Portable heating or cooling device
JPS6183847A (en) Intermittent operation type heat pump device
JPH0429949B2 (en)
JPH04165271A (en) Cold-heat generating system
JPS63143466A (en) Heat pump utilizing metallic hydride and control method thereof
JPH03105172A (en) Cooling device utilizing metal hydride
JPH0399169A (en) Thermal driving type cold heat device utilizing metallic hydride
JPS5943720B2 (en) Heat storage and heat extraction method
JPS61285356A (en) Metallic hydride utilizing air-conditioning hot-water supplydevice
JPS6017670A (en) Metallic hydrogenated substance heat pump device
JPS62116872A (en) Metallic hydride heat pump device