JPS62275028A - Ferromagnetic iron oxide powder containing cobalt and its production - Google Patents

Ferromagnetic iron oxide powder containing cobalt and its production

Info

Publication number
JPS62275028A
JPS62275028A JP62010328A JP1032887A JPS62275028A JP S62275028 A JPS62275028 A JP S62275028A JP 62010328 A JP62010328 A JP 62010328A JP 1032887 A JP1032887 A JP 1032887A JP S62275028 A JPS62275028 A JP S62275028A
Authority
JP
Japan
Prior art keywords
iron oxide
magnetic
powder
cobalt
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62010328A
Other languages
Japanese (ja)
Other versions
JPH089486B2 (en
Inventor
Tatsuo Ishikawa
石川 達雄
Kazutaka Fujii
藤井 一孝
Kenichi Sasaki
謙一 佐々木
Mitsuo Suzuki
鈴木 光郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP62010328A priority Critical patent/JPH089486B2/en
Publication of JPS62275028A publication Critical patent/JPS62275028A/en
Publication of JPH089486B2 publication Critical patent/JPH089486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the titled powder excellent in dispersion properties in an organic binder by using a spray dryer in the drying process after coating Co compd. in case of producing ferromagnetic ion oxide powder contg. Co by coating Co compd. on the surfaces of magnetic iron oxide particles. CONSTITUTION:Magnetic iron oxide is treated in an aq. medium with Co salt or Co salt and the other metallic salt and alkali and thereby a metallic compd. contg. Co is coated on the surfaces of magnetic iron oxide particles. Ferromag netic iron oxide powder contg. Co is produced by filtering and water-washing it or furthermore heating or drying it. The following ferromagnetic iron oxide powder contg. Co is obtained by performing the drying of this case by means of a spray dryer. It is spherical powder having 5-200mum diameter wherein fine particles of ferromagnetic iron oxide contg. Co having >=30m<2>/g specific surface area measured by a BET method are converged, has <=35 degrees angle of repose of powdery material, is excellent in dispersion properties in an organic binder, and has excellent characteristics as a magnetic recording material.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の技術分野] 本発明は、磁気記録媒体の記録材料として有用な特(こ
有機バイングー中における分散性を改善したフノクルト
含有強磁性酸化鉄粉末及びその製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field of the Invention] The present invention provides a ferromagnetic oxidized material useful as a recording material for a magnetic recording medium (a ferromagnetic oxidized material having improved dispersibility in an organic binder). This invention relates to iron powder and its manufacturing method.

〔発明の技術的背景とその問題点1 フバルト含有強磁性酸化鉄は、高保磁力を有し、これを
磁気記録媒体の記録素子として使用すると高密度記録が
可能で、高周波領域における感度が優れて(するなどの
特徴をもっているため、ビデオ用などの磁気記録分野で
さ力)ん(こ利用されている。
[Technical background of the invention and its problems 1 Huvart-containing ferromagnetic iron oxide has a high coercive force, and when used as a recording element of a magnetic recording medium, high-density recording is possible and it has excellent sensitivity in the high frequency region. It is used in the field of magnetic recording, such as for video, because it has characteristics such as .

最近の傾向として、ビデオテープなどの磁気記録媒体の
高級品指向に伴い記録素子としてのコバルト含有強磁性
酸化鉄をよI)微粒子化していく方向に進みつつあるが
、従来の製造方法により得られた微粒子磁性粉末は、微
粒子化していくことにより各種有機バイングーと混練し
て磁性塗料を調製する際にパイングーに均一に分散され
にくくなり、また、磁気記録媒体の特性面におし・でも
微粒子化の効果が引外出せないという問題が発生してり
する。
As a recent trend, with the trend towards high-quality magnetic recording media such as video tapes, the cobalt-containing ferromagnetic iron oxide used as the recording element is becoming increasingly finer. As the fine particle magnetic powder becomes finer, it becomes difficult to disperse it uniformly into the paint when mixed with various organic binders to prepare magnetic paints, and it also becomes difficult to disperse the fine particles evenly in the paint when mixed with various organic binders. There may be a problem that the effect cannot be extracted.

また一方、最近の磁気記録媒体の製法におり1ては、高
保磁力の磁性粉末を高充填・高配向させることや磁性粉
末の均一な分散により磁気記録媒体の表面に高度な平滑
性を付与することが優れた磁気特性を得る上で重要なこ
とであるが、そのためには磁性塗料調製時に磁性粉末を
破壊することなく一次粒子近く主で分散させることが必
要である。ところが、従来の製造方法で得られた磁性粉
末は、−大粒子が凝集して凝集塊を形成しやすいため、
磁性塗料調製時に一次粒子近く主で分散させることが困
難であった。
On the other hand, in the recent manufacturing method of magnetic recording media, firstly, a high degree of smoothness is imparted to the surface of the magnetic recording medium by highly filling and highly oriented magnetic powder with high coercive force, and by uniformly dispersing the magnetic powder. This is important in obtaining excellent magnetic properties, and for this purpose, it is necessary to disperse the magnetic powder close to the primary particles without destroying the magnetic powder during the preparation of the magnetic paint. However, magnetic powders obtained by conventional manufacturing methods tend to have large particles that aggregate to form agglomerates.
When preparing magnetic paint, it was difficult to disperse mainly near the primary particles.

これらの問題点を解決するために種々の提案が既になさ
れている。例えば、磁性塗料調製前に磁性粉末の粒子表
面をバインダーとなじみのよい界面活性剤などで被覆す
る方法(特公昭53−19120、特開昭54−372
97、特開昭53・141196、特開昭54−823
54、特開昭54−85397)や、磁性塗料調製時に
分散剤として界面活性剤を添加する方法(特開昭55−
151068、特開昭55・151069)、或は磁性
塗料調製時に機械的分散手段を用いて凝集塊をほぐす方
法(特開昭50−22297、特開昭55−15721
6、特開昭56・10903)が試みられてきた。
Various proposals have already been made to solve these problems. For example, before preparing magnetic paint, the surface of magnetic powder particles is coated with a surfactant that is compatible with the binder (Japanese Patent Publication No. 53-19120, Japanese Patent Application Laid-Open No. 54-372).
97, JP-A-53-141196, JP-A-54-823
54, JP-A-54-85397) and a method of adding a surfactant as a dispersant during the preparation of magnetic paint (JP-A-55-85397).
151068, JP-A-55-151069), or a method of loosening agglomerates using mechanical dispersion means during the preparation of magnetic paint (JP-A-50-22297, JP-A-55-15721)
6, Japanese Unexamined Patent Publication No. 10903 (1983)) have been attempted.

しかしながら、これらの従来方法によっても、界面活性
剤の樹脂選択性の問題で効果がなかったり、磁気テープ
の強度低下やブリーディング、粉落ち(テープの摩耗に
より磁性粉が剥離してくる現象)などがあるとか、機械
的分散の程度によっては再凝集するという欠点がある。
However, even these conventional methods are ineffective due to problems with the resin selectivity of the surfactant, and problems such as decreased strength of the magnetic tape, bleeding, and powder dropout (a phenomenon in which magnetic powder peels off due to wear of the tape) occur. However, depending on the degree of mechanical dispersion, reaggregation may occur.

特に磁性粉末を微粒子化する程、これ等の欠点が目立っ
てくるため分散性の改良を者しく困難なものにしている
In particular, as the magnetic powder is made into finer particles, these defects become more noticeable, making it extremely difficult to improve the dispersibility.

磁性酸化鉄の粒子表面にコバルト化合物を被着してコバ
ルト含有強磁性酸化鉄を製造するプロセスにおいて、コ
バルト化合物を被着した後の乾燥工程に用いられる乾燥
機は、一般に通気流箱型乾燥機、流動型乾燥機、回転型
通気乾燥機などであるが、これ主で分散性を高めるため
に乾燥工程を工夫した提案はなかった。
In the process of manufacturing cobalt-containing ferromagnetic iron oxide by depositing a cobalt compound on the surface of magnetic iron oxide particles, the dryer used in the drying process after depositing the cobalt compound is generally an air-flow box dryer. , fluidized type dryers, rotary type ventilation dryers, etc., but these are the main methods, and there have been no proposals for devising the drying process to improve dispersibility.

[発明の目的] 本発明の目的は前記従来技術の問題点を解消し、有機バ
インダー中における分散性の優れた、記録材料として有
用なコバルト含有強磁性酸化鉄粉末及びその製造方法を
提供することにある。
[Object of the Invention] An object of the present invention is to solve the problems of the prior art described above, and to provide a cobalt-containing ferromagnetic iron oxide powder useful as a recording material, which has excellent dispersibility in an organic binder, and a method for producing the same. It is in.

[発明の概要1 本発明者達は、前記目的を達成するべく種々研究を重ね
た結果、磁性酸化鉄粉末の粒子表面にコバルト化合物を
被着してコバルト含有強磁性酸化鉄を製造するプロセス
において、コバルト化合物を被着した後の乾燥工程に噴
霧乾燥機を用いることにより、コバルト含有磁性酸化鉄
の微粒子の集合体である直径が5〜200μmの球状粉
末であって、磁気記録媒体の製造時において集合前の一
次粒子にまで容易に分散し得る分散性の極めて優れた磁
性粉末が得られることの知見を得、本発明を完成したも
のである。すなわち本発明の第一は、BET法に上る比
表面積が30m2/g以上であるコバルト含有強磁性酸
化鉄の微粒子が集合して成る直径が5〜200μmの球
状粉末であって、粉体の安息角が35度以下であること
を特徴とするコバルト含有強磁性酸化鉄粉末である。
[Summary of the Invention 1] As a result of various studies to achieve the above object, the inventors of the present invention have developed a process for producing cobalt-containing ferromagnetic iron oxide by depositing a cobalt compound on the particle surface of magnetic iron oxide powder. By using a spray dryer in the drying process after coating the cobalt compound, a spherical powder with a diameter of 5 to 200 μm, which is an aggregate of fine particles of cobalt-containing magnetic iron oxide, is produced. The present invention was completed based on the knowledge that a magnetic powder with extremely excellent dispersibility that can be easily dispersed into primary particles before aggregation can be obtained. That is, the first aspect of the present invention is a spherical powder with a diameter of 5 to 200 μm, which is made up of fine particles of cobalt-containing ferromagnetic iron oxide having a specific surface area of 30 m2/g or more according to the BET method. This is a cobalt-containing ferromagnetic iron oxide powder characterized by an angle of 35 degrees or less.

また本発明の第二は、磁性酸化鉄を水系媒液中において
、コバルト塩またはコバルト塩とその他の金属塩及びア
ルカリで処理して該粒子の表面にコバルトを含む金属化
合物を被着し、次いでこの磁性酸化鉄を濾別、水洗、或
は更に加熱した後乾燥してコバルト含有強磁性酸化鉄粉
末を製造する方法において、該乾燥を噴霧乾燥によりお
こなうことを特徴とするコバルト含有強磁性酸化鉄粉末
の製造方法である。
The second aspect of the present invention is to treat magnetic iron oxide with a cobalt salt or a cobalt salt and other metal salts and an alkali in an aqueous medium to deposit a cobalt-containing metal compound on the surface of the particles, and then A method for producing cobalt-containing ferromagnetic iron oxide powder by filtering, washing with water, or further heating and drying the magnetic iron oxide, characterized in that the drying is carried out by spray drying. This is a method for producing powder.

BET法に上る比表面積が30m2/g以上であるコバ
ルト含有強磁性酸化鉄は、種々の方法によって製造され
、その製法は特に限定されるものではないが、通常、マ
グネタイト(γ−Fe20.)、マグネタイト(Fe−
0,)、ヘルドライド系化合物(FeOx、1.33<
x<1.5)などの磁性酸化鉄を水系媒液中において、
コバルト塩またはコバルト塩とその他の金属塩及びアル
カリで処理して該粒子の表面にコバルトを含む金属化合
物を被着し、次いでこの磁性酸化鉄を濾別、水洗、或は
更に加熱処理して得られる。このものの形状は、代表的
には針状晶であって平均粒径(長軸長)が0.08−0
.3μm1軸比が3〜15で比表面積が3030−7O
/g、望ましくは35〜70m2/gの微粒子であるが
、さらに前記針状晶形状のもののほか、例えば紡錘状、
米粒状など種々の形状のもので比表面積が前記範囲にあ
るような微粒子であってもよい。また、前記のその他の
金属塩としては例えば第一鉄、マンガン、亜鉛、バナシ
゛ウム、バリウム、マグネシウムなどの金属の塩が挙げ
られる。
Cobalt-containing ferromagnetic iron oxide having a specific surface area of 30 m2/g or more according to the BET method can be manufactured by various methods, and the manufacturing method is not particularly limited, but usually magnetite (γ-Fe20.), Magnetite (Fe-
0,), hellide-based compounds (FeOx, 1.33<
x < 1.5) in an aqueous medium,
A cobalt-containing metal compound is coated on the surface of the particles by treatment with a cobalt salt or a cobalt salt and other metal salts and an alkali, and then the magnetic iron oxide is filtered, washed with water, or further heat-treated. It will be done. The shape of this substance is typically acicular crystals with an average particle size (major axis length) of 0.08-0.
.. 3μm uniaxial ratio is 3-15 and specific surface area is 3030-7O
/g, preferably 35 to 70 m2/g, but in addition to the above-mentioned needle-shaped particles, for example, spindle-shaped,
Fine particles having various shapes such as rice grains and having a specific surface area within the above range may be used. Examples of the other metal salts mentioned above include salts of metals such as ferrous iron, manganese, zinc, vanadium, barium, and magnesium.

本発明の効果は上記比表面積を有する微粒子磁性酸化鉄
において特に顕著にあられれる。その理由は、比表面積
が大きくなるに従って、粒子間凝集力が大きくな1)、
乾燥時に乾燥粒子の凝集状態が着しく進むためと考えら
れる。
The effects of the present invention are particularly remarkable in fine particle magnetic iron oxide having the above-mentioned specific surface area. The reason is that as the specific surface area increases, the interparticle cohesive force increases1).
This is thought to be due to the fact that the agglomeration state of the dried particles progresses rapidly during drying.

比表面積の小さい(30m’/g未満)磁性酸化鉄の場
合は乾燥時の凝集はあまり問題とならず本発明の効果は
あまり認められない。
In the case of magnetic iron oxide having a small specific surface area (less than 30 m'/g), agglomeration during drying does not pose much of a problem, and the effects of the present invention are not so noticeable.

本発明の磁性粉末は、液滴の形を残しており、−次粒子
であるBET法に上る比表面積が30m”/g以上であ
るコバルト含有強磁性酸化鉄の微粒子が集合して成る直
径が5〜200μmの球状を呈している。このものは流
動性に優れており、粉体の流動性の目安としてよく用い
られる安息角は、35度以下であl)(ホソカワミクロ
ンKK製の「パウダーテスター」を用いて測定)通常の
乾燥装置、例えば熱風循環式や流動式の乾燥装置を用い
て得られたものと比較して大巾に低い。流動性に関する
粉体の特性である安息角は35度以下、望ましくは30
度以下である。安息角が35度をこえる磁性粉末は、分
散性が悪く、更には磁気記録媒体の角形比、配向性など
の磁気特性も良くないものである。また、35度をこえ
るような粉末は、一般に付着凝集性が強く、このため空
気輸送設備や貯蔵設備等で付着や閉塞を起こし易くなる
等の粉体取扱い上の問題があり好ましくない。流動性に
関する粉体のもう一つの特性として時々用いられる圧縮
度は、0.25以下、望ましくは0.20以下と思われ
る。
The magnetic powder of the present invention retains the shape of a droplet, and has a diameter consisting of fine particles of cobalt-containing ferromagnetic iron oxide having a specific surface area of 30 m"/g or more measured by the BET method. It has a spherical shape of 5 to 200 μm.This material has excellent fluidity, and the angle of repose, which is often used as a measure of the fluidity of powder, is 35 degrees or less. (measured using a dryer) is significantly lower than that obtained using a normal drying device, such as a hot air circulation type or fluidized flow type drying device. The angle of repose, which is a property of powder related to fluidity, is 35 degrees or less, preferably 30 degrees.
degree or less. Magnetic powders with an angle of repose exceeding 35 degrees have poor dispersibility and also have poor magnetic properties such as squareness ratio and orientation of magnetic recording media. Powders with a temperature exceeding 35 degrees generally have strong adhesion and agglomeration properties, and therefore are undesirable because they tend to cause adhesion and clogging in pneumatic transportation equipment, storage equipment, etc., and pose problems in handling the powder. The degree of compaction, which is sometimes used as another property of powders related to flowability, is believed to be less than 0.25, preferably less than 0.20.

このように流動性が着しく優れている本発明の磁性粉末
は、粉体としての取扱い土掻々の利点を有している。主
た該粉末は、磁性塗料調製時に容易に一次粒子近くまで
分散されるので、分散時間を大巾に短縮するだけでなく
、これを用いて磁気テープなどの磁気記録媒体を作成す
ると、塗膜の光沢のみならず磁気記録媒体の角形比(B
r/8m)や配向性(OR)などの磁気特性をも上り優
れたものにする。
The magnetic powder of the present invention, which has excellent fluidity, has the advantage of being easily handled as a powder. The main powder is easily dispersed close to the primary particles when preparing magnetic paint, so it not only greatly shortens the dispersion time, but also makes it possible to use it to create magnetic recording media such as magnetic tape. In addition to the glossiness of the magnetic recording medium, the squareness ratio (B
It also improves magnetic properties such as r/8m) and orientation (OR).

本発明は、次のような工程に上る球状のコバルト含有強
磁性酸化鉄粉末の製造方法である。
The present invention is a method for producing spherical cobalt-containing ferromagnetic iron oxide powder, which includes the following steps.

すなわち、本発明は、磁性酸化鉄を水系媒液中1こおい
て、フバルY塩またはコバルト塩とその他の金属塩及び
アルカリで処理して該粒子の表面にコバルトを含む金属
化合物を被着し、次いでこの磁性酸化鉄を濾別、水洗、
或は更に加熱した後、乾燥してコバルト含有強磁性酸化
鉄粉末を製造する方法において、該乾燥を噴霧乾燥によ
りおこなうことを特徴とするものである。
That is, in the present invention, magnetic iron oxide is placed in an aqueous medium and treated with Fval Y salt or cobalt salt, other metal salts, and alkali to coat the surface of the particles with a metal compound containing cobalt. Then, this magnetic iron oxide is separated by filtration, washed with water,
Alternatively, a method for producing a cobalt-containing ferromagnetic iron oxide powder by further heating and drying is characterized in that the drying is performed by spray drying.

噴n乾燥機は、溶液、コロイド、ペースト、スラリーな
どの液状原料を微粒化させ、高温気流と接触させて秒単
位で乾燥を行なう装置であり、熱風と液滴との接触方式
によ1)、或いは噴霧方式によQ種々の形式のものがあ
るが、本発明においてはいずれの形式のものでも用いる
ことができる。噴霧乾燥機の一例の断面図を図−1に示
しておく。
A spray dryer is a device that atomizes liquid raw materials such as solutions, colloids, pastes, and slurries, and dries them in seconds by contacting them with a high-temperature air stream. , or Q. There are various types of spraying methods, but any type can be used in the present invention. A cross-sectional view of an example of a spray dryer is shown in Figure 1.

噴霧乾燥機に供給する磁性酸化鉄のスラリー濃度は、そ
の性状に応じて加圧ノズル形式、或いはディスク形式で
噴霧化できるため特に制約はないが通常30〜400g
/ρ、望ましくは150〜300g/f程度である。磁
性酸化鉄濃度があまりに高すぎるとポンプ輸送や噴霧化
に支障を及ぼし、球状粒子にするための液滴の生成が不
充分となる。
The concentration of the magnetic iron oxide slurry supplied to the spray dryer is not particularly limited as it can be atomized using a pressure nozzle format or a disk format depending on its properties, but it is usually 30 to 400 g.
/ρ, preferably about 150 to 300 g/f. If the concentration of magnetic iron oxide is too high, it will interfere with pumping and atomization, resulting in insufficient droplet formation for spherical particles.

又、乾燥により水分を除去する目的からは、あまりに低
すぎる濃度の場合、経済的に効率が悪くなるので、工業
的に通常用いる濃度としては150g/ρ以上が望まし
い。
Furthermore, for the purpose of removing moisture by drying, if the concentration is too low, it will be economically inefficient, so the concentration usually used industrially is preferably 150 g/ρ or more.

噴霧化するときの吐出圧力は、噴霧形式や供給ポンプ形
式、能力によ1)種々適正条件があるが、通常2〜30
Kg/am”、盟主しくは10〜25 Kg/cm2程
度である。
There are various appropriate conditions for the discharge pressure during atomization depending on the spray type, supply pump type, and capacity, but it is usually 2 to 30
Kg/am", preferably about 10 to 25 Kg/cm2.

乾燥熱源としての熱風気流入口温度は、通常150℃以
上が用いら机るが、入口温度に応じて出口温度が上昇し
、噴霧乾燥製品を捕集する方法としてバグフィルタ一方
式を用いる場合、濾布の耐熱性の点で上限温度が規制さ
れる。
The inlet temperature of the hot air as a drying heat source is usually 150°C or higher, but the outlet temperature increases depending on the inlet temperature, and when using a bag filter as a method for collecting spray-dried products, the filtration The upper temperature limit is regulated based on the heat resistance of the fabric.

磁性酸化鉄の場合、乾燥時に物温か200 ’C以上に
加熱されると、磁気特性や分散特性が悪化しやすいため
、出口温度が200 ’C以上にならないように入口温
度を設定した方がよい。又、出口温度があまりに低すぎ
ると乾燥後の水分含有率が高くなりすぎて、追加乾燥を
行なった時に球状粒子状態が破壊されたり、追加乾燥設
備より受ける影響度が大きくなって、噴霧乾燥に上る分
散性改良の特徴が小さくな為ことや、乾燥効率が悪化す
るため好ましくない。故に乾燥出口温度としては通常6
0〜200”C1望ましくは70〜200℃程度である
In the case of magnetic iron oxide, if it is heated to a temperature above 200'C during drying, its magnetic properties and dispersion properties tend to deteriorate, so it is better to set the inlet temperature so that the outlet temperature does not exceed 200'C. . Also, if the outlet temperature is too low, the moisture content after drying will be too high, and the spherical particle state will be destroyed when additional drying is performed, or the influence of additional drying equipment will be greater, making it difficult to spray dry. This is not preferable because the characteristics of improved dispersibility are small and the drying efficiency deteriorates. Therefore, the drying outlet temperature is usually 6
0 to 200'' C1, preferably about 70 to 200°C.

噴霧乾燥機の機種や能力に応じて、前記の磁性酸化鉄濃
度及び吐出圧力、乾燥出口温度の各範囲を適正に組合せ
ることにより、5〜200μmの球状粒子直径を有する
磁性粉末が得られる。
By appropriately combining the above-mentioned ranges of magnetic iron oxide concentration, discharge pressure, and drying outlet temperature depending on the model and capacity of the spray dryer, magnetic powder having a spherical particle diameter of 5 to 200 μm can be obtained.

乾燥雰囲気としては非酸化性雰囲気1tvfに必要とせ
ず、空気中でよい。コバルト含有強磁性酸化鉄の乾燥雰
囲気として非酸化性雰囲気が要求されることもあるが、
これは一般にコバルト含有強磁性酸化鉄中のFe  が
酸化されることを防止するためである。本発明方法では
、瞬間的に乾燥できるためか、Fe”の酸化反応が進み
にくくなる。したかって、本発明方法においては、通常
の乾燥機では非酸化性雰囲気が要求される磁性酸化鉄の
場合でも雰囲気を非酸化性に調整する必要がなく空気中
で乾燥ができるのでコスト的に有利である。
As the drying atmosphere, a non-oxidizing atmosphere of 1 tvf is not required, and air may be used. A non-oxidizing atmosphere is sometimes required as a drying atmosphere for cobalt-containing ferromagnetic iron oxide.
This is generally to prevent Fe in the cobalt-containing ferromagnetic iron oxide from being oxidized. In the method of the present invention, the oxidation reaction of Fe" is difficult to proceed, perhaps because drying is instantaneous. Therefore, in the method of the present invention, in the case of magnetic iron oxide, which requires a non-oxidizing atmosphere in a normal dryer, However, it is advantageous in terms of cost since it is not necessary to adjust the atmosphere to be non-oxidizing and drying can be done in air.

[実施例] 次に本発明の実施例を示す。なお、参考のため比較例も
併せ掲記する。
[Example] Next, an example of the present invention will be shown. In addition, comparative examples are also listed for reference.

実施例及び比較例に用いたコバルト含有強磁性酸化鉄(
以下磁性酸化鉄と略す)は、平均粒径(長軸長)0.1
8μ、軸比8、Hc3800e、 ffs71emu/
g、比表面積50m”/gの特性を有するγ−F e 
203 を核晶とし、硫酸コバルト、硫酸第一鉄の水溶
液及び苛性ソーダ水溶液を使用して、核晶上にコバルト
を含有する磁性酸化鉄層を形成させ、濾別後充分に水洗
したものである。なお、コバルト及び第一鉄の含有量は
、乾量基準でそれぞれ3.5%、3.7%である。
Cobalt-containing ferromagnetic iron oxide (
(hereinafter abbreviated as magnetic iron oxide) has an average particle diameter (major axis length) of 0.1
8μ, axial ratio 8, Hc3800e, ffs71emu/
g, γ-F e with a specific surface area of 50 m”/g
203 as a core crystal, a cobalt-containing magnetic iron oxide layer was formed on the core crystal using an aqueous solution of cobalt sulfate, ferrous sulfate, and an aqueous solution of caustic soda, and the layer was filtered and thoroughly washed with water. Note that the contents of cobalt and ferrous iron are 3.5% and 3.7%, respectively, on a dry weight basis.

実施例1 磁性酸化鉄濃度195g/I2の水系スラリーを空気熱
風入口温度300°C1出ロ温度I Q Q ’Cで安
定している噴霧乾燥機(アシザワ・ニロアトマイザーK
K製、AN−12,5CN/CR型)においてノズル吐
出圧15Kg/am2で噴霧化して乾燥し、水分含有率
0.2重量%球状粒子平均直径が約85μmの磁性粉(
A)を得た。
Example 1 An aqueous slurry with a magnetic iron oxide concentration of 195 g/I2 was prepared using a spray dryer (Ashizawa Niro Atomizer K) which is stable at an air hot air inlet temperature of 300°C and an outlet temperature of IQQ'C.
Magnetic powder (manufactured by K, AN-12,5CN/CR type) with a nozzle discharge pressure of 15 kg/am2 and dried to produce spherical particles with a moisture content of 0.2% by weight and an average diameter of approximately 85 μm.
A) was obtained.

実施例2 空気熱風入口温度を400 ”C1出口温度をISO’
Cとした以外は実施例1と同じに行ない、水分含有率0
.1重量%球状粒子平均直径が約83μmの磁性粉(B
)を得た。
Example 2 Hot air inlet temperature is 400 ``C1 outlet temperature is ISO''
The same procedure as Example 1 was carried out except that C was used, and the moisture content was 0.
.. 1% by weight spherical particles Magnetic powder with an average diameter of about 83 μm (B
) was obtained.

実施例3 空気熱風入口温度を250°C1出口温度を75°Cと
した以外は実施例1と同じに行ない、水分含有率5 、
0 重量%の磁性粉末を得た。これを更に通気流箱型乾
燥機を用い、窒素ガス中120″Cで水分含有率0.1
重量%になるまで追加乾燥し、球状粒子平均直径が約8
0μmの磁性粉末(C)を得た。
Example 3 The procedure was the same as in Example 1 except that the hot air inlet temperature was 250°C and the outlet temperature was 75°C, and the moisture content was 5.
A magnetic powder containing 0% by weight was obtained. This was further dried at 120"C in nitrogen gas with a moisture content of 0.1 using an airflow box dryer.
% by weight, and the average diameter of the spherical particles is approximately 8.
A magnetic powder (C) of 0 μm was obtained.

比較例1 実施例で用いたものと同じ磁性酸化鉄スラリーを脱水し
てケーキ状とし、通気流箱型乾燥機により、窒素ガス中
120’Cで乾燥して水分含有率0.1重量%の磁性粉
(D)を得た。
Comparative Example 1 The same magnetic iron oxide slurry as that used in the example was dehydrated and made into a cake shape, and dried at 120'C in nitrogen gas using an air-flow box dryer to give a moisture content of 0.1% by weight. Magnetic powder (D) was obtained.

比較例2 比較例1と同じ磁性酸化鉄ケーキを流動型乾燥機により
、窒素ガス中120°Cで乾燥して水分含有率0.1重
量%の磁性粉(E)を得た。
Comparative Example 2 The same magnetic iron oxide cake as in Comparative Example 1 was dried at 120°C in nitrogen gas using a fluidized fluid dryer to obtain magnetic powder (E) with a water content of 0.1% by weight.

比較例3 比較例1と同じ磁性酸化鉄ケーキを回転型通気乾燥機に
より、窒素ガス中120°Cで乾燥して水分含有率0.
1重量%の磁性粉(F)を得た。
Comparative Example 3 The same magnetic iron oxide cake as in Comparative Example 1 was dried at 120°C in nitrogen gas using a rotary ventilation dryer to reduce the water content to 0.
A 1% by weight magnetic powder (F) was obtained.

比較例4 比較例1と同じ磁性酸化鉄ケーキを通気流箱型乾燥機に
よ1)、大気中120°Cで乾燥して水分含有率0.1
重量%の磁性粉(G)を得た。
Comparative Example 4 The same magnetic iron oxide cake as in Comparative Example 1 was dried in an air flow box dryer 1) at 120°C in the atmosphere to a moisture content of 0.1.
A magnetic powder (G) of % by weight was obtained.

上記サンプル(A)〜(G)について、通常の方法によ
り保磁力(Hc)及び飽和磁化(グS)を測定した。主
た、重クロム酸カリウム滴定法によQFej+含有率(
重量%)を測定した。
The coercive force (Hc) and saturation magnetization (GS) of the above samples (A) to (G) were measured by conventional methods. Mainly, QFej+ content (
% by weight) was measured.

更に、ホソカワ式パウダーテスターにより安息角、ゆる
み見掛比重と固め見掛比重を測定し 固め見掛比重−ゆるみ見掛比重 め    L その結果を第1表に示す。
Furthermore, the angle of repose, loose apparent specific gravity and hardened apparent specific gravity were measured using a Hosokawa powder tester, and the results are shown in Table 1.

安息角の測定方法 標準篩(目開き710μ)を振動させ、サンプルをロー
トを通じて注入法によりテーブルカップに粉を堆積させ
、粉がこぼれ落ち、安息角が一定の状態になったところ
で堆積した粉体の陵線(粉体をttk摂させたものを正
面から見すこ時の斜めの線をさす)を分度器によって測
定し、角度を出す。
How to measure the angle of repose: Vibrate a standard sieve (710 μm opening), pass the sample through the funnel, and deposit the powder in a table cup using the injection method. When the powder spills out and the angle of repose is constant, Measure the crest line (the diagonal line when looking at the powder from the front) using a protractor to calculate the angle.

ゆるみ見掛比重値の測定方法 標準篩(目開き710μ)を振動させて、サンプルをシ
ュートを通じて落下させ、規定の容器(内容積100c
c)に粉体が山盛りになるまで約20〜30秒位の時間
で入るようにし、ブレードを垂直に立てて粉の表面をす
り切って上皿天秤で秤量して、粉の重量÷100でゆる
み見掛比重値を出す。
Method for measuring loose apparent specific gravity: Vibrate a standard sieve (710 μm mesh size), drop the sample through the chute, and place in a specified container (inner volume 100 cm).
Allow the powder to enter c) for about 20 to 30 seconds until it becomes a heap, then hold the blade vertically, scrape the surface of the powder, weigh it with a top balance, and calculate the weight of the powder ÷ 100. Calculate the slack apparent specific gravity value.

固め見掛比重値の測定方法 規定容器(内容積100cc)にキャップをつぎ足して
タッピングホルダーに入れ、粉をキャップの上部まで入
れ、キャップカバーをしてタッピング(1回/秒)を1
80回させた後、ゆるみ見掛比重値と同様プレーYです
))きって秤量し、粉の重量÷100で固め見掛比重値
を出す。
Method for measuring apparent specific gravity after solidification Add a cap to a specified container (inner volume 100cc), place it in the tapping holder, fill the cap with powder up to the top, cover the cap, and tap (1 time/second) once.
After 80 times, play Y (same as the loose apparent specific gravity value))) Cut and weigh, harden by dividing the weight of the powder by 100, and calculate the apparent specific gravity value.

更にそれぞれのサンプルについて、下記の配合割合に従
って配合物を調製し、ボールミルで分散して磁性塗料を
製造した。
Further, for each sample, a compound was prepared according to the following compounding ratio and dispersed in a ball mill to produce a magnetic paint.

(1) コバルト含有強磁性酸化鉄粉末 100.0重
量部(2) 界面活性剤             3
.8 〃(3)塩ビー酢ビ共重合樹脂       8
.0 〃(4)ポリウレタン樹脂        35
.5  //(5) メチルエチルケトン      
108,1  /1(6) トルエン        
    108.1  //(7) シクロヘキサノン
        36.0  /7次いで、各々の磁性
塗料をポリエステルフィルムに通常の方法により塗布、
配向した後乾燥して約9μ厚の磁性塗膜を有する磁気テ
ープを作成した。それぞれのテープについて通常の方法
により保磁力(He)、角形比(Br/8m)、配向性
(OR)、反転磁界分布(SFD)、塗膜の光沢(60
゜−60’ Gloss)を測定した。その結果を第1
表に示す。
(1) Cobalt-containing ferromagnetic iron oxide powder 100.0 parts by weight (2) Surfactant 3
.. 8 (3) Vinyl chloride-vinyl acetate copolymer resin 8
.. 0 (4) Polyurethane resin 35
.. 5 //(5) Methyl ethyl ketone
108,1 /1(6) Toluene
108.1 //(7) Cyclohexanone 36.0 /7 Next, each magnetic paint was applied to a polyester film by a normal method,
After orientation and drying, a magnetic tape having a magnetic coating film with a thickness of about 9 μm was prepared. For each tape, the coercive force (He), squareness ratio (Br/8m), orientation (OR), switching field distribution (SFD), and coating film gloss (60
゜-60' Gloss) was measured. The result is the first
Shown in the table.

また、磁性粉(A)及び磁性粉(D)について、ボール
ミル分散時間と磁気テープ塗膜の光沢との関係を調べた
結果を第2図に示す。
Further, FIG. 2 shows the results of investigating the relationship between the ball mill dispersion time and the gloss of the magnetic tape coating for the magnetic powder (A) and the magnetic powder (D).

第1表の結果から、本発明によって得られるコバルト含
有強磁性酸化鉄粉末は、流動性に冨んだものであり、樹
脂バインダーへの分散性の指標ともなりうる塗膜の光沢
、角形比及び配向性の値から、分散性に優れたものであ
ることがわかる。また、空気熱風を用いたにもかかわら
ず、不活性雰囲気で行なった比較例のものと同ヒFe 
 含有率であり、Fe  の酸化反応が進み難いことを
示している。
From the results in Table 1, it can be seen that the cobalt-containing ferromagnetic iron oxide powder obtained by the present invention has high fluidity, and the gloss, squareness ratio and It can be seen from the orientation value that it has excellent dispersibility. In addition, although hot air was used, the Fe
content, indicating that the oxidation reaction of Fe is difficult to proceed.

第2図からは、本発明によって得られるものは、通常の
乾燥機を用いて得られたものと同等の塗膜光沢値にする
ために要する分散時間が大巾に短縮され、磁性塗料製造
時のコストを大l】に軽減できる特長を有する磁性粉に
改善されていることがわかる。
From FIG. 2, it can be seen that the dispersion time required to obtain a coating gloss value equivalent to that obtained using a conventional dryer is greatly reduced, and the dispersion time obtained by the present invention is significantly reduced. It can be seen that the magnetic powder has been improved to have the advantage of reducing the cost by a large amount.

実施例3の結果か呟乾燥排出品の水分値が不充分な場合
は追加乾燥すればよいことがわかる。この追加乾燥は、
所望の水分値との差、いわ(Φる残1)僅かな水分量を
除去するための補助手段であるか呟乾燥排出品の水分値
が高すぎる場合(約10%以上)は好ましくないが、5
%程度であれば通常の乾燥機を用いても噴霧乾燥機によ
ってもたらされる磁性粉末の特徴は失われない。
It can be seen from the results of Example 3 that if the moisture value of the dry product is insufficient, additional drying is sufficient. This additional drying
The difference between the desired moisture value and the residual moisture content (Φru 1) may be an auxiliary means to remove a small amount of moisture.It is not desirable if the moisture value of the dried waste product is too high (approximately 10% or more). , 5
%, the characteristics of the magnetic powder produced by the spray dryer will not be lost even if a normal dryer is used.

実施例及び比較例に用いたコバルト含有強磁性酸化鉄粒
子の結晶の構造を示す電子顕微鏡写真(30,000倍
)と磁性粉A、磁性粉りの粒子構造を示す顕@It写真
(40倍)を順に第3図〜第5図として添付する1本発
明によって得られたもの(磁性粉A)は、5〜200J
IIIlの粒子直径をもつ球状の粉末であることが明瞭
である。
Electron micrograph (30,000x) showing the crystal structure of cobalt-containing ferromagnetic iron oxide particles used in Examples and Comparative Examples, and micrograph @It (40x) showing the particle structure of magnetic powder A and magnetic powder. ) are attached in order as Figures 3 to 5. 1 The magnetic powder obtained by the present invention (magnetic powder A) has a particle size of 5 to 200 J.
It is clearly a spherical powder with a particle diameter of III.

[発明の効果] 本発明は以上のように構成したこと1こより次のような
種々の優れた効果を収めるものである。
[Effects of the Invention] The present invention achieves the following various excellent effects in addition to the above-described structure.

すなわち、 ■ この磁性粉末は、−大粒子であるコバルト含有強磁
性酸化鉄が比較的ゆるやかな凝集力で集合したものであ
るから、磁性塗料調製時に容易に一次粒子近くまで分散
され、分散時間を大巾に短縮する。したがって、工業操
作上コスト低下につながる。
In other words, ■ This magnetic powder is made up of cobalt-containing ferromagnetic iron oxide particles, which are large particles, aggregated with a relatively gentle cohesive force, so it is easily dispersed to near primary particles during the preparation of magnetic paint, and the dispersion time is short. Shorten to a large width. Therefore, it leads to lower costs in industrial operations.

■ この磁性粉末を用いて磁気テープなどの磁気記録媒
体を作成すると塗膜の光沢だけでなく角形比や配向性な
どの磁気特性をも大巾に改善する。
■ When magnetic recording media such as magnetic tapes are made using this magnetic powder, not only the gloss of the coating film but also the magnetic properties such as squareness ratio and orientation are greatly improved.

■ 本発明に上るコバルト含有強磁性酸化鉄粉末は、流
動性に富んだものであり、粉としての取扱い上棟々の利
点を有する。例えば、粉末輸送時などにおいては閉塞や
架橋現象を防止できる。
(2) The cobalt-containing ferromagnetic iron oxide powder of the present invention is highly fluid and has many advantages in handling as a powder. For example, clogging and crosslinking phenomena can be prevented during powder transportation.

■ 従来品においては、乾燥後解砕処理をすることによ
って分散性を少し改良しているが、この磁性粉末は解砕
をしなくとも分散性は優れており、解砕繰作が不要であ
る。
■ In conventional products, dispersibility is slightly improved by crushing after drying, but this magnetic powder has excellent dispersibility even without crushing, so repeated crushing is not necessary. .

■ この本発明方法によれば、乾燥時に非酸化性雰囲気
が要求される磁性酸化鉄の場合でも雰囲気を非酸化性に
調整する必要がなく、工業上コスト的に有利でおる。
(2) According to the method of the present invention, even in the case of magnetic iron oxide, which requires a non-oxidizing atmosphere during drying, there is no need to adjust the atmosphere to non-oxidizing, and it is industrially advantageous in terms of cost.

【図面の簡単な説明】[Brief explanation of the drawing]

$1図は噴霧乾燥機の一例を示す断面図、第2図は実施
例1及び比較例1で得られた磁性粉末について樹脂バイ
ンダー中での分散時間と塗膜光沢の関係を示す図であり
、第3図は実施例に用いたコバルト含有強磁性酸化鉄の
粒子の結晶の構造を示す電子顕微鏡写真(30,000
倍)、第4図、第5図はそれぞれ実施例1で得られた磁
性粉及び比較例1で得られた磁性粉の粒子構造を示す顕
微鏡写真であり、倍率は40倍である。 第2図中、曲線1は実施例1の磁性粉の場合、曲線2は
比較例1の磁性粉の場合を示す。
Figure 1 is a sectional view showing an example of a spray dryer, and Figure 2 is a diagram showing the relationship between dispersion time in a resin binder and coating gloss for the magnetic powders obtained in Example 1 and Comparative Example 1. , FIG. 3 is an electron micrograph (30,000
4 and 5 are micrographs showing the particle structure of the magnetic powder obtained in Example 1 and the magnetic powder obtained in Comparative Example 1, respectively, and the magnification is 40 times. In FIG. 2, curve 1 shows the case of the magnetic powder of Example 1, and curve 2 shows the case of the magnetic powder of Comparative Example 1.

Claims (1)

【特許請求の範囲】 1)BET法に上る比表面積が30m^2/g以上であ
るコバルト含有強磁性酸化鉄の微粒子が集合して成る直
径が5〜200μmの球状粉末であって、粉体の安息角
が35度以下であることを特徴とするコバルト含有強磁
性酸化鉄粉末。 2)磁性酸化鉄を水系媒液中において、コバルト塩また
はコバルト塩とその他の金属塩及びアルカリで処理して
該粒子の表面にコバルトを含む金属化合物を被着し、次
いでこの磁性酸化鉄を濾別、水洗、或は更に加熱した後
、乾燥してコバルト含有強磁性酸化鉄粉末を製造する方
法において、該乾燥を噴霧乾燥によりおこなうことを特
徴とするコバルト含有強磁性酸化鉄粉末の製造方法。
[Scope of Claims] 1) A spherical powder with a diameter of 5 to 200 μm made up of fine particles of cobalt-containing ferromagnetic iron oxide having a specific surface area of 30 m^2/g or more according to the BET method; A cobalt-containing ferromagnetic iron oxide powder having an angle of repose of 35 degrees or less. 2) Magnetic iron oxide is treated with cobalt salt or cobalt salt and other metal salts and alkali in an aqueous medium to deposit a cobalt-containing metal compound on the surface of the particles, and then the magnetic iron oxide is filtered. A method for producing a cobalt-containing ferromagnetic iron oxide powder by separately washing with water or further heating and drying the cobalt-containing ferromagnetic iron oxide powder, the drying being carried out by spray drying.
JP62010328A 1986-01-30 1987-01-20 Cobalt-containing ferromagnetic iron oxide powder and method for producing the same Expired - Lifetime JPH089486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62010328A JPH089486B2 (en) 1986-01-30 1987-01-20 Cobalt-containing ferromagnetic iron oxide powder and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP61-19005 1986-01-30
JP1900586 1986-01-30
JP62010328A JPH089486B2 (en) 1986-01-30 1987-01-20 Cobalt-containing ferromagnetic iron oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPS62275028A true JPS62275028A (en) 1987-11-30
JPH089486B2 JPH089486B2 (en) 1996-01-31

Family

ID=26345586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62010328A Expired - Lifetime JPH089486B2 (en) 1986-01-30 1987-01-20 Cobalt-containing ferromagnetic iron oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JPH089486B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092587A (en) * 2010-01-27 2010-04-22 Dowa Holdings Co Ltd Ferromagnetic metal powder and magnetic recording medium using the same
JP2011162882A (en) * 2011-03-11 2011-08-25 Dowa Holdings Co Ltd Ferromagnetic metal powder, and magnetic recording medium using the same
JP2012213383A (en) * 2011-03-28 2012-11-08 Jfe Steel Corp Iron powder for coating seed, and seed
JP2013046604A (en) * 2011-03-28 2013-03-07 Jfe Steel Corp Iron powder for coating seeds and iron-powder-coated seeds
JP2013046603A (en) * 2011-03-28 2013-03-07 Jfe Steel Corp Iron powder for coating seed and iron-powder-coated seeds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860624A (en) * 1981-10-01 1983-04-11 Agency Of Ind Science & Technol Ferromagnetic powder and its preparation
JPS60141624A (en) * 1983-12-27 1985-07-26 Ishihara Sangyo Kaisha Ltd Manufacture of acicular magnetic iron oxide containing cobalt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860624A (en) * 1981-10-01 1983-04-11 Agency Of Ind Science & Technol Ferromagnetic powder and its preparation
JPS60141624A (en) * 1983-12-27 1985-07-26 Ishihara Sangyo Kaisha Ltd Manufacture of acicular magnetic iron oxide containing cobalt

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092587A (en) * 2010-01-27 2010-04-22 Dowa Holdings Co Ltd Ferromagnetic metal powder and magnetic recording medium using the same
JP2011162882A (en) * 2011-03-11 2011-08-25 Dowa Holdings Co Ltd Ferromagnetic metal powder, and magnetic recording medium using the same
JP2012213383A (en) * 2011-03-28 2012-11-08 Jfe Steel Corp Iron powder for coating seed, and seed
JP2013046604A (en) * 2011-03-28 2013-03-07 Jfe Steel Corp Iron powder for coating seeds and iron-powder-coated seeds
JP2013046603A (en) * 2011-03-28 2013-03-07 Jfe Steel Corp Iron powder for coating seed and iron-powder-coated seeds
JP2016129522A (en) * 2011-03-28 2016-07-21 Jfeスチール株式会社 Rice seed coating iron powder, and rice seed
JP2016129521A (en) * 2011-03-28 2016-07-21 Jfeスチール株式会社 Rice seed-coating iron powder, and rice seed

Also Published As

Publication number Publication date
JPH089486B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JPH0217603B2 (en)
JPS62275028A (en) Ferromagnetic iron oxide powder containing cobalt and its production
JP6077198B2 (en) Hexagonal ferrite agglomerated particles
KR940007047B1 (en) Cobalt-containing ferro-magnetic iron oxide power and process for producing the same
CN101064205B (en) Magnetic metal powder suitable for use in magnetic recording media and method of manufacturing the powder
JPS6149251B2 (en)
JP3412676B2 (en) Spindle-shaped goethite particle powder and method for producing the same
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JPS5923505A (en) Magnetic powder
JPS6331085B2 (en)
JPS5854487B2 (en) Method for producing acicular magnetic iron oxide particle powder for magnetic recording materials
JPS60138731A (en) Production of magnetic recording medium
JPS59103310A (en) Manufacture of cobalt-containing magnetic iron oxide
JPH01125805A (en) Magnetic powder having improved dispersibility
JPH0521321B2 (en)
JPH0230563B2 (en)
JPS60147929A (en) Magnetic recording medium and its manufacture
JPS6331086B2 (en)
JPS62260724A (en) Production of ferromagnetic fine powder for magnetic recording
JPS636807A (en) Manufacture of fine particles of acicular iron for magnetic recording
JPH0492823A (en) Magnetic powder for magnetic recording and production thereof
JPH09205012A (en) Method for manufacturing metal magnetic powder
JPS61227921A (en) Ferromagnetic fine powder and its production
JPH0790331A (en) Manufacture of magnetic metallic powder
JPH0568843B2 (en)