JPS62260724A - Production of ferromagnetic fine powder for magnetic recording - Google Patents

Production of ferromagnetic fine powder for magnetic recording

Info

Publication number
JPS62260724A
JPS62260724A JP61104531A JP10453186A JPS62260724A JP S62260724 A JPS62260724 A JP S62260724A JP 61104531 A JP61104531 A JP 61104531A JP 10453186 A JP10453186 A JP 10453186A JP S62260724 A JPS62260724 A JP S62260724A
Authority
JP
Japan
Prior art keywords
compound
aqueous solution
fine powder
magnetic recording
hexagonal ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61104531A
Other languages
Japanese (ja)
Other versions
JPH0688796B2 (en
Inventor
Kazuo Nakada
中田 和男
Masaharu Hirai
平井 正治
Nobusuke Takumi
匠 伸祐
Saburou Katou
加藤 佐富郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP61104531A priority Critical patent/JPH0688796B2/en
Publication of JPS62260724A publication Critical patent/JPS62260724A/en
Publication of JPH0688796B2 publication Critical patent/JPH0688796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the titled ferromagnetic fine powder consisting of highly dispersible hexagonal ferrite crystal particles having improved perpendicular orientation property, by adding a phosphorus compound to a ferrite precursor prepared by heat-treating a basic aqueous suspension containing a metal compound, e.g. Ba, etc., and an iron compound, treating and firing the resultant blend. CONSTITUTION:An aqueous solution containing one or more metal compounds (Ma) of Ba, Sr and Pb, an iron compound and, as desired, one or more of Co, Ti, Mn compounds, etc., as a substitution element (Mb) for controlling coercive force in respective specific amounts is prepared. The molar ratio of the above-mentioned Ma component is 1/4-1/12 based on the Fe+Mb components. An solution of NaOH, KOH, etc., is brought into contact and blended with the above-mentioned aqueous solution of the metal compound to afford a basic aqueous suspension, which is then put in, e.g. a reaction vessel equipped with a heating device, and treated by reaction while heating at 60-250 deg.C, preferably 100-200 deg.C to give a plate particulate hexagonal ferrite precursor. A phosphorus compound, e.g. orthogphosphoric acid, is added to the resultant hexagonal ferrite precursor and fired at 650-950 deg.C to afford the above- mentioned ferromagnetic fine powder for magnetic recording.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、高密度磁気記録、特に垂直磁気記録用媒体に
好適な六方晶フェライト結晶粒子よりなる磁気記録用強
磁性微粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for producing a fine ferromagnetic powder for magnetic recording comprising hexagonal ferrite crystal grains suitable for high-density magnetic recording, particularly perpendicular magnetic recording media.

(発明の技術的背景とその問題点) 磁気記録は、一般に記録媒体の面内長手方向に磁化する
方式がとられている。しかるに、この方式による場合は
記録の高密度化を図ると記録媒体内の反磁界が増大して
十分な高密度記録を達成し難い。このような長手方向の
記録方式に対して記録媒体層の表面に垂直方向に磁化す
ることによって記録媒体内の反磁界を;威少させて高密
度記録を図るいわゆる垂直磁気記録方式が近年とみに注
目されてきている。
(Technical background of the invention and its problems) Magnetic recording generally employs a method of magnetizing the recording medium in the in-plane longitudinal direction. However, in this method, when attempting to increase the recording density, the demagnetizing field within the recording medium increases, making it difficult to achieve sufficiently high density recording. In contrast to such longitudinal recording methods, the so-called perpendicular magnetic recording method, which aims at high-density recording by magnetizing the surface of the recording medium perpendicularly to the surface of the recording medium to reduce the strength of the demagnetizing field within the recording medium, has recently attracted attention. It has been done.

ところで、前記垂直磁気記録媒体としては、従来がら実
用化が試みられてきているC o −Cr系などの合金
膜法によるもののほか、バリウムフェライトのような六
方晶フェライト結晶粒子粉末をバインダーに分散させた
ものをベースフィルム上に塗布するいわゆる塗布型記録
媒体が提案されている。前記塗布型の場合にあっては、
従来の長手記i>方式の記録媒体の製造の場合と同様に
生産性よく経済的にも有利に製造し得るとともに記録媒
体の耐久性が優れているところから、その実用化が急が
れている。
By the way, as the perpendicular magnetic recording medium, in addition to those using an alloy film method such as a Co-Cr system, which has been attempted to be put into practical use, there is also a method using a hexagonal ferrite crystal particle powder such as barium ferrite dispersed in a binder. A so-called coated recording medium has been proposed in which a base film is coated with a base film. In the case of the coating type,
As with the conventional method of manufacturing recording media, it can be manufactured with high productivity and economically advantageous, and the durability of the recording medium is excellent, so its practical application is urgently needed. There is.

一方、前記の垂直磁気記録’Jj、木に使用される六方
晶フェライト結晶粒子よりなる磁性粉末として1よ、記
録時に磁気ヘンドな飽和せしめない適当な範囲の保磁力
(He : 400〜20000e)と大きな飽和磁化
を有しかつ粒子板面状に対して垂直方向に磁化容易軸を
もつものであるとともに、0.3μ以下とりわけ0.2
μ以下の微細な粒子径のものであって磁性層中での分散
性が良好なものであることが重要であるとされている。
On the other hand, for the above-mentioned perpendicular magnetic recording 'Jj, as a magnetic powder made of hexagonal ferrite crystal grains used for wood, it has a coercive force (He: 400 to 20,000e) in an appropriate range that does not cause magnetic hend saturation during recording. It has a large saturation magnetization and an axis of easy magnetization perpendicular to the plane of the particle plate, and is less than 0.3μ, especially 0.2μ.
It is said that it is important that the particles have a fine particle size of μ or less and have good dispersibility in the magnetic layer.

しかして近時、前記の磁性粉末に要求される特性は、高
記録密度化の指向とあいまって、垂直磁気記録媒体にお
けるノイズレベルの低減化及び短波長領域での高出力化
を満足し得るものであることが一層望まれてきている。
However, in recent years, the characteristics required of the above-mentioned magnetic powders, combined with the trend towards higher recording densities, are those that can satisfy the requirements for reducing the noise level and increasing output in the short wavelength region in perpendicular magnetic recording media. It is becoming more and more desirable that

これがため、より微細な粒子径のものであってしかも粒
子径分布もよりシャープなものであること、かつ分散性
が良好であって塗膜面の平滑性に優れ、高配向性、高充
填性を示す六方晶7エライト粒子粉末の開発がますます
急がれている。
For this reason, it has a finer particle size and a sharper particle size distribution, and also has good dispersibility and excellent coating surface smoothness, with high orientation and high filling properties. There is an increasing need to develop hexagonal heptagonal 7-elite particles that exhibit the following properties.

従来か呟六方品フェライト粒子粉末の製造方法について
は、種々の方法が知られており、また粒子の微細化につ
いても数多くの提案がなされているが、一般に粒子の微
細化にともなって分散性や配向性が大巾にそこなわれ易
く、このため未だ前記要望を十分満足されるには至って
おらずその解決が強く希求されている。例えば六方晶フ
ェライト粒子微粉末の製造方法として、六方晶フェライ
トの構成成分を含む金属塩水溶液とアルカリ水溶液を混
合して得られる前駆体物質懸濁液を一旦加熱処理した後
焼成する方法はよく知られている。この方法は製造が比
較的容易であり、かつ微細で飽和磁化の高いものが得ら
れ易いものであるが、フェライト前駆体粒子の微細化が
進むと焼成過程での粒子間焼結や粒子形状の崩れが起つ
易く、このため配向性、充填性、分散性などの低下がさ
けられなかったりする。
Conventionally, various methods have been known for manufacturing hexagonal ferrite particles, and many proposals have been made for making the particles finer, but in general, as the particles become finer, dispersibility and The orientation is easily impaired to a large extent, and for this reason, the above-mentioned requirements have not yet been fully satisfied, and a solution to this problem is strongly desired. For example, as a method for producing fine powder of hexagonal ferrite particles, it is well known that a precursor suspension obtained by mixing a metal salt aqueous solution containing constituent components of hexagonal ferrite and an alkaline aqueous solution is heated and then fired. It is being This method is relatively easy to manufacture, and it is easy to obtain fine particles with high saturation magnetization, but as the ferrite precursor particles become finer, interparticle sintering and particle shape changes occur during the firing process. It is easy to collapse, and as a result, deterioration in orientation, filling properties, dispersibility, etc. is unavoidable.

また、一般に、六方晶フェライト粒子は保磁力が高く、
このため記録媒体として適当な範囲の保磁力に制御する
必要があり、通常Co、 T i、 N i、 Mn、
 Zr等の元素を適量添加することによってフェライト
構成原子のFe’中の一部を置換させる方法が行なわれ
るが、均一に効率良く置換させ且つ焼結を抑制させない
と保磁力低:威効来が十分でなく、結局、所望の低保磁
力粉末を得ようとすると、これら元素の置換量を多くす
る必要があり、その結果飽和磁化の低下や磁化容易軸の
垂直異方性が損われ易いという問題があった。
Additionally, hexagonal ferrite particles generally have a high coercive force;
For this reason, it is necessary to control the coercive force within an appropriate range as a recording medium, and usually Co, Ti, Ni, Mn,
A method of substituting a portion of Fe' in the ferrite constituent atoms by adding an appropriate amount of an element such as Zr is carried out, but unless the substitution is uniformly and efficiently and sintering is not suppressed, the coercive force is low. In the end, in order to obtain the desired low coercive force powder, it is necessary to increase the amount of substitution of these elements, which tends to reduce the saturation magnetization and damage the perpendicular anisotropy of the axis of easy magnetization. There was a problem.

(発明の目的) 本発明は、粒子間焼結を実質的に回避し得るとともに保
磁力制御が容易な方法であって、飽和磁化が十分高く、
微目粒子径のもので、且つ形状の整った六角板状で垂直
配向性に優れた高分散性の磁気記録用、とりわけ垂直磁
気記録用に好適な六方晶フェライト結晶粉末の製造方法
を提供することを目的とする。
(Objective of the Invention) The present invention is a method that can substantially avoid interparticle sintering and easily control coercive force, and has a sufficiently high saturation magnetization.
To provide a method for producing a hexagonal ferrite crystal powder having a fine particle size, a well-shaped hexagonal plate shape, excellent perpendicular alignment, and high dispersion, suitable for magnetic recording, especially perpendicular magnetic recording. The purpose is to

(発明の重要) 本発明者等は、かねてより六角板状の六方晶フェライト
結晶粒子の製造における前記問題点を解決すべく種々検
討を進めた結果、微細な7工ライト前駆体物質を焼成す
るにあたり特定の焼成処理剤を使用することによって、
飽和磁化を損なうことなく粒子間焼結を実質的に回避し
得、しからCo、Ti等による組成の部分置換を効率よ
くおこなわしめ、保磁力制御が容易になし得られること
の知見を得、本発明を完成したものである。
(Importance of the Invention) The present inventors have been conducting various studies to solve the above-mentioned problems in the production of hexagonal plate-shaped hexagonal ferrite crystal particles, and as a result, the present inventors have fired a fine heptagonal ferrite precursor material. By using a specific firing treatment agent,
Obtaining the knowledge that interparticle sintering can be substantially avoided without impairing saturation magnetization, that the composition can be partially replaced by Co, Ti, etc., and that coercive force can be easily controlled; This completes the present invention.

すなわち、本発明は、バリウム、ストロンチウム、鉛の
群から選;!れる1種以上の金属化合物と鉄化合物とを
少なくとも含む水溶液と、アルカリ水溶液とを混合して
アルカリ性懸濁液とし、次いで該懸濁液を60〜250
℃で加熱処理することによりフェライト前駆体物質を得
、得られた該前駆体物質iこ、リン化合物を添加処理し
、しかる後650〜950℃の温度範囲で焼成して六方
晶フェライト結晶粒子とすることを’!徴とする磁気記
n用強磁性微粉末の製造方法である。
That is, the present invention provides a method for selecting from the group of barium, strontium, and lead; An aqueous solution containing at least one or more metal compounds and an iron compound is mixed with an alkaline aqueous solution to form an alkaline suspension, and then the suspension is
A ferrite precursor material is obtained by heat treatment at a temperature of 0.degree. That's what you do! This is a method for producing ferromagnetic fine powder for magnetic recording.

本発明方法において、まず、バリウム、ストロンチウム
、鉛の群から選ばれる1種以上の金属化合物Maと鉄化
合物及び所望により保磁力制御のための置換元素Mbと
してCo、Ti5Ni、Mn、Zr、Zn、Ge5Nb
、■化合物の少なくとも1種を、それぞれ所定量含む水
溶液を作成する。
In the method of the present invention, first, one or more metal compounds Ma selected from the group of barium, strontium, and lead, an iron compound, and optionally Co, Ti5Ni, Mn, Zr, Zn, Ge5Nb
, (2) Prepare an aqueous solution containing a predetermined amount of at least one of the compounds.

これらの化合物は種々の水溶性化合物を使用し得るが、
好ましくは塩化物、硝酸塩などである。前記Ma成分は
、Fe+Mb成分に対してモル比で1/4〜1/12、
好ましくは176〜1/10である。該モル比が前記範
囲より小さくなると得られる7工ライ÷結晶粒子粉末は
、粗大化し易く分散性の低下、記録媒体における配向性
、表面平滑性などの特性の低下がさけられない。また該
モル比が、前記範囲より大きくなるとマグネトブランバ
イト型結晶と異なる結晶相が混在したりして、飽和磁化
の低下や形状の不均一化がさけられなかったりし好まし
くない。なお置換成分Mbは、Co、Ti5Ni、Mn
、Zr、Zn、Ge、Nb、Vの少なくとも1種をFe
1モルに対して0.2モル以下、好ましくは0.17モ
ル以下使用し得るが、とりわけFe成分を少なくともC
O及びTi元素で置換することが好ましい。
Various water-soluble compounds can be used as these compounds, but
Preferred are chlorides and nitrates. The Ma component has a molar ratio of 1/4 to 1/12 with respect to the Fe+Mb component,
Preferably it is 176 to 1/10. When the molar ratio is smaller than the above range, the resulting 7-layer crystal grain powder tends to become coarse, resulting in a decrease in dispersibility and a decrease in properties such as orientation and surface smoothness in the recording medium. Moreover, if the molar ratio is larger than the above range, a crystal phase different from the magnetobrambite crystal may coexist, resulting in a decrease in saturation magnetization and non-uniform shape, which is not preferable. Note that the substituted component Mb is Co, Ti5Ni, Mn
, Zr, Zn, Ge, Nb, and V with Fe
It can be used in an amount of 0.2 mol or less, preferably 0.17 mol or less per 1 mol, but especially the Fe component is at least C
It is preferable to substitute with O and Ti elements.

次に上記金属化合物水溶液に、例えばN a OH、K
 OHlNH,OHなどの水溶液を接触、混合しアルカ
リ性懸濁液とする。前記アルカリの添加量は、金属化合
物水溶液に含有される金属塩に対して当量以上、特に微
細なフェライト強磁性粉末を得ようとする場合は、懸濁
液のアルカリ濃度は、遊離OH基準で1.5モル/Q以
上、好ましくは2モル/ρ以上であって、前記範囲より
低きにすぎると、反応が十分進まず非板状粒子の生成が
多くみられ、このものは焼成過程で焼結粒子を形成し易
く配向性、分散性などの低下がさけられない。
Next, for example, N a OH, K
Aqueous solutions such as OH, NH, and OH are brought into contact and mixed to form an alkaline suspension. The amount of the alkali added should be at least equivalent to the metal salt contained in the metal compound aqueous solution, and especially when trying to obtain fine ferrite ferromagnetic powder, the alkali concentration of the suspension should be 1 or more based on free OH. .5 mol/Q or more, preferably 2 mol/ρ or more, and if it is too low than the above range, the reaction will not proceed sufficiently and many non-plate-shaped particles will be formed, and these particles will be sintered during the sintering process. It is easy to form particles, and deterioration of orientation, dispersibility, etc. is unavoidable.

次いで前記アルカリ性懸濁液を加熱装置付の反応容器を
使用するかまたはオートクレーブなどの圧力容器に入れ
て、60〜250℃1好ましくは100〜200℃で加
熱反応処理して板状粒子のフェライト前駆体物質を形成
させる。
Next, the alkaline suspension is heated and reacted at 60 to 250°C, preferably 100 to 200°C, using a reaction vessel equipped with a heating device or in a pressure vessel such as an autoclave, to form a ferrite precursor of plate-like particles. Form body substances.

前記の水熱処理時の温度が前記の範囲より低い場合には
、非晶質体を形成し易く、凝集体になり易い、そのため
均一な形状のフェライト粒子粉末が得られにりく、配向
性の低下がさけられなかったりする。一方、前記範囲よ
り高い場合には、粗大粒子の形成、粒度分布の広がりが
さけられなかったつして好ましくない。
If the temperature during the hydrothermal treatment is lower than the above range, amorphous bodies are likely to form and agglomerates are likely to form, making it difficult to obtain ferrite particles with a uniform shape and decreasing orientation. Sometimes I can't avoid it. On the other hand, if it is higher than the above range, the formation of coarse particles and broadening of the particle size distribution are undesirable.

次に本発明において、前記のようにして得られた大方晶
フェライト前駆体物質にリン化合物を添加処理するにあ
たっては、使用するリン化合物として種々のものを使用
し得るが、例えばオルトリン酸もしくはメタリン酸また
はそれらの塩、ピロリン酸もしくはヘキサリン酸または
それらの縮合リン酸塩、亜リン酸もしくは次亜リン酸ま
たはそれらの塩等の黒磯リン化合物、種々のリン酸エス
テル等の有眠リン化合物などを挙げることができるが、
通常オルトリン酸、ヘキサメタリン酸ナトリウムなどの
水溶液を使用するのが望ましい、前記リン化合物よりな
る処理剤をフェライト前駆体物質に添加処理するには、
種々の方法に上っておこなうことができるが、例えば前
記フェライト前駆体物質粒子を含む水性懸濁液中に、リ
ン酸水溶液を添加し、該粒子表面にリン化合物を吸着さ
せることによっておこなうことができる。
Next, in the present invention, when adding a phosphorus compound to the orthogonal ferrite precursor material obtained as described above, various phosphorus compounds can be used, such as orthophosphoric acid or metaphosphoric acid. or their salts, Kuroiso phosphorus compounds such as pyrophosphoric acid or hexaphosphoric acid or their condensed phosphates, phosphorous acid or hypophosphorous acid or their salts, and sleeping phosphorus compounds such as various phosphoric acid esters. You can, but
Usually, it is desirable to use an aqueous solution of orthophosphoric acid, sodium hexametaphosphate, etc. To add a treatment agent made of the phosphorus compound to the ferrite precursor material,
This can be carried out by various methods, but for example, it can be carried out by adding an aqueous phosphoric acid solution to an aqueous suspension containing the ferrite precursor particles and adsorbing a phosphorus compound onto the particle surface. can.

前記リン化合物の添加処理量は、フェライト前駆体物質
に対して重量基準でPとして0.05〜1.0%望まし
くは0.1〜0.5%である。添加処理量が、前記範囲
より少なきにすぎると焼結防止等の効果が十分ちたらさ
れず、また多きにすぎると飽和磁化の低下が大きく好ま
しくない。
The amount of the phosphorus compound added is 0.05 to 1.0%, preferably 0.1 to 0.5%, based on P based on the weight of the ferrite precursor material. If the amount added is too small than the above range, the effect of preventing sintering etc. will not be sufficiently reduced, and if it is too large, the saturation magnetization will be greatly reduced, which is not preferable.

なお、焼成処理剤として前記のリン化合物に、さらにケ
イ素化合物、アルミニウム化合物、ホウ素化合物、アル
カリ金属化合物、アルカリ土類金属化合物などを併せ添
加処理すると一層望ましい効果をもたらす場合がある。
Further, a more desirable effect may be obtained by adding a silicon compound, an aluminum compound, a boron compound, an alkali metal compound, an alkaline earth metal compound, etc. to the phosphorus compound as a firing treatment agent.

本発明方法において、前記のように加熱反応処理して得
られたフェライト前駆体物質に前記焼成処理剤の添加処
理をおこなった後、次いで焼成するにIよ普通650〜
950℃1望ましくは、700−900’C″cおこな
う、焼成温度が前記の範囲よ!)低くなると、フェライ
ト粒子の結晶化が十分進まず、飽和磁化が低くかったり
し、また、前記範囲より高くなると7工ライート粒子相
互の固着や焼結がおこり凝集塊が形成され易く、塗料化
での分散性が大巾に損なわれ記録媒体の磁気特性や表面
平滑性などの低下がさけられなかったりする。前記焼成
は、回転炉、流動層炉などの種々の型式の装置を使用し
て通常0.5〜5時間程度でおこなうことができる。な
お、本発明においては、前記焼成処理剤の添加処理を行
なうことによって、粒子間焼結の抑制ができ、高飽和磁
化であって、かつ微細粒子径のものを得ることができる
In the method of the present invention, after adding the sintering agent to the ferrite precursor material obtained by the heat reaction treatment as described above, the ferrite precursor material is then sintered.
If the firing temperature is lower than 950℃ (preferably 700-900'C''c), the crystallization of the ferrite particles will not proceed sufficiently, and the saturation magnetization may be low. When the temperature increases, the heptadolite particles tend to stick to each other and sinter, forming agglomerates, which greatly impairs the dispersibility of paints, resulting in unavoidable deterioration of the magnetic properties and surface smoothness of the recording medium. The above-mentioned calcination can be carried out using various types of equipment such as a rotary furnace and a fluidized bed furnace, and usually takes about 0.5 to 5 hours. By carrying out the treatment, interparticle sintering can be suppressed, and particles with high saturation magnetization and fine particle size can be obtained.

前記のようにして得られたフェライト結晶粒子粉末は、
水性媒液あるいは必要に応ヒ酸性水性媒液中(二浸漬処
理して過剰のバリウム分や夾雑成分を酸洗除去する。な
お、前記の場合に水性wc液に強酸性媒液を使用して処
理すると、分散性が一層高められる場合がある。
The ferrite crystal particle powder obtained as described above is
In an aqueous medium or, if necessary, in an arsenic aqueous medium (two immersion treatments are performed to remove excess barium and other impurities.In addition, in the above case, use a strong acidic medium for the aqueous WC Treatment may further enhance dispersibility.

以上詳述したように、本発明の製造方法によって得られ
た強磁性微粉末は、飽和磁化はぼ45〜60 emu7
′g、保磁力はぼ400〜2,0000eを有するマグ
ネトブランバイト型のフェライト結晶粒子粉末で、この
ものは六角板状を呈し平均粒子径かはiro、05〜0
.15μでかつ粒度分布の広がりも少なく磁気記録媒体
の磁性層中での分散性にきわめて優れ、高密度垂直磁気
記録用材料として甚だ好適なしのである。
As detailed above, the ferromagnetic fine powder obtained by the manufacturing method of the present invention has a saturation magnetization of approximately 45 to 60 emu7.
'g, a magnetobrambite type ferrite crystal grain powder with a coercive force of about 400 to 2,0000 e, which has a hexagonal plate shape and an average particle size of iro, 05 to 0.
.. It has a particle diameter of 15 μm, has a small particle size distribution, and has excellent dispersibility in the magnetic layer of a magnetic recording medium, making it extremely suitable as a material for high-density perpendicular magnetic recording.

(発明の実施例) 以下に実施例及び比較例を挙げ本発明をさらに説明する
(Examples of the Invention) The present invention will be further explained below with reference to Examples and Comparative Examples.

実施例 1モル/ρのBaCρ2水溶液360mR11モル/Q
のFeCρ、水溶液2496mQ、1モル/ρのCo 
CQ 2水溶液192mρ及fJ1モル/θのTiCJ
!4水溶液19水溶液1温1.5/10.4)、次いで
、この混合液を10モル/QのN a OH水溶KL3
480mO中に添加して褐色沈殿を含むアルカリ性懸濁
液を調整した。ひきつづいて該懸濁液をオートクレーブ
に入れ、150℃で5時間加熱してフェライト前駆体物
質粒子を生成させた(該前駆体物質粒子は、X線回折に
よれば、結晶性不完全なるもマグネトブランバイト型の
結晶構造のものであった)。
Example 1 mol/ρ BaCρ2 aqueous solution 360 mR 11 mol/Q
of FeCρ, aqueous solution 2496 mQ, 1 mol/ρ of Co
TiCJ with CQ 2 aqueous solution 192 mρ and fJ 1 mol/θ
! 4 aqueous solution 19 aqueous solution 1 temperature 1.5/10.4), then this mixture was mixed with 10 mol/Q NaOH aqueous solution KL3
480 mO to prepare an alkaline suspension containing a brown precipitate. Subsequently, the suspension was placed in an autoclave and heated at 150° C. for 5 hours to produce ferrite precursor particles (which, according to X-ray diffraction, were not crystalline or magnetite). It had a brambite crystal structure).

次いで得られた該沈殿物を濾過、水洗し、水にてリパル
プしスラリー(固形分濃度SOg/ff)とした。
The resulting precipitate was then filtered, washed with water, and repulped with water to form a slurry (solid concentration SOg/ff).

二のスラリー2ρにオルトリン酸水溶n(P濃度10g
/ρ)を15mρ添加し十分攪拌した0次いでこのもの
は濾別、乾燥(110’C)した後粗砕した。
Orthophosphoric acid aqueous solution n (P concentration 10g
15 mρ) was added and thoroughly stirred.Then, this mixture was filtered, dried (110'C), and then coarsely crushed.

しかる後、前記の添加処理をおこなったフェライト沈殿
粒子粉末を焼成温度を変え各1時間焼成してバリウムフ
ェライト結晶粒子粉末を得た1次いで得られた該粉末を
塩酸水溶液中に浸漬した後濾過、水洗したものを乾燥し
て本発明の強磁性粉末を得たに の時、焼成温度を750℃としたものを試料(A)80
0℃としたものを試料(B)とする。
After that, the ferrite precipitate particle powder subjected to the above-mentioned addition treatment was fired at different firing temperatures for 1 hour each to obtain barium ferrite crystal particle powder.Then, the obtained powder was immersed in an aqueous hydrochloric acid solution, and then filtered. Sample (A) 80
Sample (B) was prepared at 0°C.

比較例 前記実施例において、リン化合物の添加処理をおこなわ
ないことのほかは同側の場合と同様の方法で処理して強
磁性粉末を得た。この時焼成温度750℃としたものを
試料(C)、800℃としたものを試料(D)とする。
Comparative Example A ferromagnetic powder was obtained in the same manner as in the above Example, except that no phosphorus compound was added. At this time, the firing temperature was set to 750°C as sample (C), and the firing temperature was set as 800°C as sample (D).

なお、前記実施例及び比較例で得られた各試料は、X線
回折の結果、いす机もマグネトブランバイト結晶相のも
のであった。
As a result of X-ray diffraction, the samples obtained in the Examples and Comparative Examples were found to have a magnetobrambite crystal phase.

前記試料A−Dについて常法により平均粒子径(Dp 
:電子顕微鏡法)、保磁力(He)、飽和磁化(σS)
をそれぞれ測定し、さらに次記の配合組成で磁性塗料を
調製し、このものをポリエステルフィルム上に塗布し配
向処理して記録媒体を作成した。
The average particle diameter (Dp
:electron microscopy), coercive force (He), saturation magnetization (σS)
A magnetic paint was prepared with the following composition, and this was applied onto a polyester film and subjected to orientation treatment to produce a recording medium.

これらの結果を下表に示す。These results are shown in the table below.

磁性粉末          100 重量部酢ビー塩
ビ共重合体樹脂    16.2  //界面活性剤 
          4   〃メチルニチルケトン 
    186   〃前記記録媒体について、常法に
より保磁力(Hc工:媒体面に対して垂直方向)、配向
比(OR)、角形比(SQ上:媒体面に垂直方向であっ
て、反磁界補正後の値である)これらの結果を表1に示
す。
Magnetic powder 100 parts by weight Vinyl acetate vinyl chloride copolymer resin 16.2 //Surfactant
4 〃Methyl nityl ketone
186 For the recording medium, the coercive force (Hc: perpendicular to the medium surface), orientation ratio (OR), squareness ratio (SQ: perpendicular to the medium surface, after demagnetizing field correction) ) These results are shown in Table 1.

表  1 表1の結果から明らかなように、本発明のようにフェラ
イト前駆体物質に予めリン化合物を添加処理したものを
焼成することにより、飽和磁化を損なうことなく焼成中
の粒子焼結が抑制し得、角形比、配向性特に垂直配向性
が優れており、分散性がきわめて良好な飽和磁化が十分
高い六方晶フェライト結晶粒子微粉末が得られる事がわ
かる。
Table 1 As is clear from the results in Table 1, by firing a ferrite precursor material in which a phosphorus compound has been added in advance as in the present invention, particle sintering during firing can be suppressed without impairing saturation magnetization. It can be seen that a fine powder of hexagonal ferrite crystal particles with excellent squareness ratio, excellent orientation, especially vertical orientation, very good dispersibility, and sufficiently high saturation magnetization can be obtained.

(発明のゆ果) 粒子間J9.結が抑制され、飽和磁化が大きく、優れた
垂直配向性を有する高分散性の六方晶フェライト結晶粒
子よりなる強磁性粉末を、比較的簡潔な手段でもって容
易に製造し得、垂直磁気記録媒体のノズルレベルの低減
化、高出力化を図る上で甚だ有用なものである。
(Results of the invention) Between particles J9. A ferromagnetic powder consisting of highly dispersed hexagonal ferrite crystal grains with suppressed crystallization, large saturation magnetization, and excellent perpendicular orientation can be easily produced by a relatively simple means, and can be used as a perpendicular magnetic recording medium. This is extremely useful in reducing the nozzle level and increasing output.

Claims (1)

【特許請求の範囲】[Claims]  バリウム、ストロンチウム、鉛の群から選ばれる1種
以上の金属化合物と鉄化合物とを少なくとも含む水溶液
とアルカリ水溶液とを混合してアルカリ性懸濁液とし、
次いで該懸濁液を60〜250℃で加熱処理することに
よりフェライト前駆体物質を得、得られた該前駆体物質
に、リン化合物を添加処理し、しかる後650〜950
℃の温度範囲で焼成して六方晶フェライト結晶粒子とす
ることを特徴とする磁気記録用強磁性微粉末の製造方法
An alkaline suspension is obtained by mixing an aqueous solution containing at least one or more metal compounds selected from the group of barium, strontium, and lead and an iron compound with an alkaline aqueous solution;
Next, a ferrite precursor material is obtained by heat-treating the suspension at 60 to 250°C, and a phosphorus compound is added to the obtained precursor material, and then a ferrite precursor material of 650 to 950
A method for producing ferromagnetic fine powder for magnetic recording, characterized by firing it at a temperature range of ℃ to form hexagonal ferrite crystal particles.
JP61104531A 1986-05-07 1986-05-07 Method for producing ferromagnetic fine powder for magnetic recording Expired - Lifetime JPH0688796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61104531A JPH0688796B2 (en) 1986-05-07 1986-05-07 Method for producing ferromagnetic fine powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61104531A JPH0688796B2 (en) 1986-05-07 1986-05-07 Method for producing ferromagnetic fine powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPS62260724A true JPS62260724A (en) 1987-11-13
JPH0688796B2 JPH0688796B2 (en) 1994-11-09

Family

ID=14383076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61104531A Expired - Lifetime JPH0688796B2 (en) 1986-05-07 1986-05-07 Method for producing ferromagnetic fine powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH0688796B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227291A (en) * 2007-03-14 2008-09-25 Toda Kogyo Corp Ferrite particle powder for bonded magnet, resin composition for its bonded magnet and molded body using them
WO2011004773A1 (en) * 2009-07-08 2011-01-13 Tdk株式会社 Ferrite magnetic material
CN115321972A (en) * 2022-08-09 2022-11-11 矿冶科技集团有限公司 Chromium removal method of bonded permanent magnetic ferrite and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199306A (en) * 1984-10-22 1986-05-17 Dowa Mining Co Ltd Oxide magnetic material and manufacture thereof
JPS62252908A (en) * 1986-04-25 1987-11-04 Sumitomo Metal Mining Co Ltd Manufacture of barium ferrite fine particle for magnetic recording

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199306A (en) * 1984-10-22 1986-05-17 Dowa Mining Co Ltd Oxide magnetic material and manufacture thereof
JPS62252908A (en) * 1986-04-25 1987-11-04 Sumitomo Metal Mining Co Ltd Manufacture of barium ferrite fine particle for magnetic recording

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227291A (en) * 2007-03-14 2008-09-25 Toda Kogyo Corp Ferrite particle powder for bonded magnet, resin composition for its bonded magnet and molded body using them
WO2011004773A1 (en) * 2009-07-08 2011-01-13 Tdk株式会社 Ferrite magnetic material
EP2453449A1 (en) * 2009-07-08 2012-05-16 TDK Corporation Ferrite magnetic material
CN102473499A (en) * 2009-07-08 2012-05-23 Tdk株式会社 Ferrite magnetic material
EP2453449A4 (en) * 2009-07-08 2013-04-03 Tdk Corp Ferrite magnetic material
JP5418595B2 (en) * 2009-07-08 2014-02-19 Tdk株式会社 Sintered magnet
KR101377409B1 (en) * 2009-07-08 2014-04-01 티디케이가부시기가이샤 Ferrite magnetic material
US8834738B2 (en) 2009-07-08 2014-09-16 Tdk Corporation Ferrite magnetic material
US9336933B2 (en) 2009-07-08 2016-05-10 Tdk Corporation Ferrite magnetic material
CN115321972A (en) * 2022-08-09 2022-11-11 矿冶科技集团有限公司 Chromium removal method of bonded permanent magnetic ferrite and application thereof
CN115321972B (en) * 2022-08-09 2023-10-24 矿冶科技集团有限公司 Chromium removal method and application of bonded permanent magnetic ferrite

Also Published As

Publication number Publication date
JPH0688796B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US4778734A (en) Barium ferrite magnetic powder and magnetic recording medium containing the same
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JPS62260724A (en) Production of ferromagnetic fine powder for magnetic recording
JPS62275027A (en) Production of ferromagnetic fine powder for magnetic recording
KR960002625B1 (en) Process for producing microcrystalline barium ferrite platelets
JPH0688794B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH01282129A (en) Barium ferrite magnetic powder and its production
JPH0526727B2 (en)
JPH0717385B2 (en) Method for producing composite ferrite magnetic powder
KR960011787B1 (en) Proces for preparing ferromagnetic fine particles for magnetic recording
JPH0417897B2 (en)
JPH0380725B2 (en)
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JPH0645462B2 (en) Method for manufacturing barium ferrite powder
JPH0130884B2 (en)
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH02133323A (en) Production of magnetic powder of magnetoplumbite type ferrite
JPH0692256B2 (en) Method for manufacturing barium ferrite powder
JPH0230563B2 (en)
JPH06104575B2 (en) Method for producing tabular Ba ferrite fine particle powder
JPH0377642B2 (en)
JPH0216248B2 (en)
JPS649372B2 (en)