JPH0230563B2 - - Google Patents

Info

Publication number
JPH0230563B2
JPH0230563B2 JP57207048A JP20704882A JPH0230563B2 JP H0230563 B2 JPH0230563 B2 JP H0230563B2 JP 57207048 A JP57207048 A JP 57207048A JP 20704882 A JP20704882 A JP 20704882A JP H0230563 B2 JPH0230563 B2 JP H0230563B2
Authority
JP
Japan
Prior art keywords
cobalt
magnetic
iron oxide
coating
metal hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57207048A
Other languages
Japanese (ja)
Other versions
JPS5998503A (en
Inventor
Kazuo Nakada
Seigo Maruo
Kyoshi Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP57207048A priority Critical patent/JPS5998503A/en
Publication of JPS5998503A publication Critical patent/JPS5998503A/en
Publication of JPH0230563B2 publication Critical patent/JPH0230563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70652Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides gamma - Fe2 O3
    • G11B5/70668Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides gamma - Fe2 O3 containing a dopant
    • G11B5/70673Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides gamma - Fe2 O3 containing a dopant containing Co

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、各種有機バインダーに対して改善さ
れた分散性を有し、かつ優れた磁気特性を有する
コバルト含有磁性酸化鉄に関する。 近年、磁気記録媒体においては益々高性能化が
要求されており、これに伴つて磁性材料として高
保磁力の磁性粉末や高充填性の磁性粉末が要求さ
れている。 磁気記録媒体の記録素子として汎用されている
γ−Fe2O3やコバルト含有酸化鉄などの磁性粉末
は、その表面が親水性であるため、各種有機バイ
ンダーと混練して磁性塗料を調製する際、バイン
ダーへの濡れがわるく、またそれ自体の磁性のた
め、粒子相互の磁気凝集があつて、バインダー中
に均一に分散されにくいという欠点があつた。 この対策として、機械的分散手段を用いて、凝
集塊をほぐす方法(特開昭50−22297、特開昭55
−157216、特開昭56−10903)が試みられている。
しかし、この方法も機械的分散操作を止めると凝
集がはじまるため、根本的解決にはならない。さ
らに、磁性粉末の粒子表面を有機バインダーとな
じみのよい界面活性剤などで磁性塗料調製前に被
覆する方法(特公昭53−19120、特開昭54−
37297、特開昭53−141196、特開昭54−82354、特
開昭54−85397)や磁性塗料調製時に分散剤とし
て界面活性剤を添加する方法(特開昭55−
151068、特開昭55−151069)が試みられている。 界面活性剤を粒子表面に被覆する方法として、
水系、非水系での浸漬処理、または粉末に直接ス
プレーする方法があるが、この場合、有機バイン
ダーとの混練中に被覆された界面活性剤の脱着が
起つて効果が持続できなかつたり、酢ビ塩ビ系樹
脂での分散性は改良されても、ウレタン樹脂では
効果が少ないといつた樹脂選択性の問題がある。 また、有機バインダー中における磁性粉末の濡
れをよくするため、磁性塗料調製時に多量の界面
活性剤を添加すると、テープの強度低下、プリー
デイング、粉落ち等の欠点がある。 本発明者達は、このような欠点を改善するため
に種々検討した結果、コバルト含有磁性酸化鉄の
表面にあらかじめMg,Ca,Sr及び、Baの水酸
化物の少くとも一種を被覆させると、磁性塗料調
製時に有機バインダー中における分散性が改善さ
れることを見い出し、本発明を完成したものであ
る。 すなわち、本発明は、その表面に、Mg,Ca,
Sr及びBaの水酸化物の少くとも1種からなる被
覆層を有することを特徴とするコバルト含有磁性
酸化鉄である。 本発明に使用するコバルト含有磁性酸化鉄とし
ては、γ−Fe2O3などの磁性酸化鉄粉末を核晶と
して、コバルトまたはコバルトと鉄などの金属化
合物を用いて被着したものなどが挙げられ、中で
も第一鉄化合物とコバルト化合物とを併せ被着し
たコバルト含有磁性酸化鉄を使用したときには高
保磁力で他の磁気特性においても優れたものが得
られる。 これらの被着において、コバルト、第1鉄、な
どの添加順序、添加方法、被着時の温度、被着時
の〔OH〕濃度などは、適宜選択して用いればよ
い。 前記コバルトまたはコバルトおよびその他の金
属化合物を被着させる場合は、核晶となる磁性酸
化鉄粉末の全Fe量の重量基準に対し、コバルト
単独の場合は通常Coとして0.5〜10%、また、例
えばコバルト化合物と第一鉄化合物を組み合わせ
て被着する場合は、前者をCoとして0.5〜10%、
後者をFe2+として1〜20%とするのが適当であ
る。 コバルトまたは、コバルトと鉄などの金属塩を
用いて被着したものに対して、本発明の金属水酸
化物を被覆させる場合には、金属水酸化物を被覆
させる前および(または)被覆させた後で加熱処
理を付加することが好ましい。 加熱処理を付加する方法としては、例えば、(1)
磁性酸化鉄粉末に、アルカリの水性溶液中で、コ
バルト被着処理後、該金属水酸化物を被覆させ、
過水洗後、該金属水酸化物が分解しないよう加
熱処理する方法、(2)コバルト被着処理後、過水
洗し、加熱処理後、該金属水酸化物を被覆させる
方法、(3)コバルト被着処理後、過水洗し、乾燥
又は加熱処理したもの、あるいは、コバルト被着
を行ない、加熱処理し、必要に応じ更に乾燥を行
なつたものについて、該金属水酸化物を被覆させ
る方法などが挙げられる。 前記の加熱処理は、通常気相中または液相中で
行われるが、工業的操作の容易性や経済性を考慮
すると、通常気相中や水蒸気中で行われる。 加熱処理の温度は、通常60〜300℃であるが、
該金属水酸化物を被覆させた後に加熱処理を付加
する場合は、該金属水酸化物が分解しないよう
に、60〜150℃で加熱処理をすることが望ましい。 ここでいう水酸化物とは、水和水酸化物、水和
酸化物あるいは、これらの中間のものである水和
オキシ水酸化物を総称するものであり、厳密な意
味で陰性成分が水酸基であるような化合物に限る
ものではない。コバルト含有磁性酸化鉄の表面に
被覆させる水酸化物の量は、一般に核晶となるコ
バルト含有磁性酸化鉄100重量部に対して0.01〜
10重量部であり、望ましくは0.05〜3重量部であ
る。水酸化物の量が10重量部を越えると、磁気凝
集を生じにくくし、分散性を向上させる上では効
果があるが、水酸化物が非磁性物であるため、コ
バルト含有磁性酸化鉄の保磁力等の磁気特性が低
下するため望ましくない。 コバルト含有磁性酸化鉄の表面に金属水酸化物
を被覆させる方法は、特に限定されるものではな
く、各種の方法が採用できる。それらの方法にお
いては金属水酸化物を表面に均一に存在させるこ
とが望ましい。 例えば、コバルト含有磁性酸化鉄のスラリー中
において、金属塩をアルカリで中和する場合、ス
ラリーをよく撹拌し、核晶となるコバルト含有磁
性酸化鉄の分散状態を良好にしておくことが望ま
しい。 また、前記の中和反応はできるだけ徐々に進む
ようにすることが均一に被覆させる上からは効果
的である。そのためには、スラリーの温度、
PH、濃度やスラリーへの金属塩溶液、アルカリ
溶液の添加速度については適宜調整する必要があ
る。被覆させる時の雰囲気は、酸化性、不活性、
還元性のいずれでもよい。 本発明によれば、コバルト含有磁性酸化鉄につ
いて、主要磁気特性に悪影響をもたらすことな
く、有機バインダー中への分散性を改善すること
ができる。本発明のコバルト含有磁性酸化鉄を用
いて得られた磁気テープは、金属水酸化物を被覆
しないコバルト含有磁性酸化鉄を用いて得られた
磁気テープに比べて角形比(Br/Bm)、配向性
(OR)が向上している。Br/BmおよびORが向
上していることは、本発明のコバルト含有磁性酸
化鉄が有機バインダー中における分散性において
改善されていることの裏付けとなつている。 本発明のコバルト含有磁性酸化鉄を用いると、
如何なる理由で有機バインダー中における分散性
が改善されるのかは必ずしも明確でないが、(1)金
属水酸化物を被覆することにより、コバルト含有
磁性酸化鉄の有機バインダー中における磁気凝集
が生じにくくなる、(2)コバルト含有磁性酸化鉄と
有機バインダーとの親和性が高まり、濡れがよく
なる。(3)有機バインダー中において被覆された金
属水酸化物がコバルト含有磁性酸化鉄から脱離し
にくく、分散効果が持続しやすい、ことなどが推
定される。 次に本発明の実施例について説明する。 実施例 1 針状γ−Fe2O3〔BET比表面積31m2/g、針状
比10:1〕200gを2の水に分散させてスラリ
ーとし、非酸化性雰囲気にて硫酸コバルト及び硫
酸第1鉄の水溶液を添加、次いでNaOH水溶液
を滴下して、γ−Fe2O3粒子表面にコバルト及び
鉄化合物を被着させた。被着量は、γ−Fe2O3
の鉄に対してCo原子が5重量%、Fe原子として
10重量%であつた。この被着スラリーを過、水
洗し、この湿ケーキをリパルプし、水に分散させ
て、150g/のスラリーとし、N2ガスを吹き込
み、60℃に加温した。このスラリーを撹拌下非酸
化性雰囲気にてNaOH水溶液と、CaCl2水溶液と
をPH8.5に保持しつつ、1時間で滴下し、その後
引き続き1時間撹拌して熟成し、粒子表面に均一
にカルシウム水酸化物を被覆する。被覆量は、コ
バルト含有磁性酸化鉄粉末に対してCaとして0.8
重量%である。 熟成後、過水洗し、この湿ケーキを別容器に
入れた水と共に、オートクレーブ中に入れてN2
置換、密閉した後、130℃で6時間水蒸気の存在
下で加熱処理した。次いで60℃で8時間乾燥し
て、本発明の磁性粉末を得た。 実施例 2 CaCl2の水溶液の代りに、SrCl2の水溶液を用
い、該金属水酸化物の被覆量をSrとして0.7重量
%とした以外は実施例1の場合と同様にして、本
発明の磁性粉末を得た。 実施例 3 CaCl2の水溶液の代りに、MgSO4の水溶液を用
い、該水酸化物を被覆する際、PHを10.5に保持
し、被覆量をMgとして0.7重量%とした以外は実
施例1の場合と同様にして、本発明の磁性粉末を
得た。 比較例 1 実施例1において、コバルト及び鉄の化合物を
被着後過水洗し、金属水酸化物の被覆処理に供
することなく、この湿ケーキを別容器に入れた水
と共に、オートクレーブ中に入れ、実施例1の場
合と同様にして、磁性粉末を得た。 実施例1〜3及び比較例1で得た磁性粉末を用
い、試料振動型磁力計で飽和磁化(σS)を測定し
た後、下記の配合割合に従つて磁性塗料を調製
し、通常の方法によりポリエステルフイルム上に
塗布し、磁場配向した後、乾燥して、約6μの磁
性塗膜を有する磁気テープを作成した。 磁性粉末 24重量部 ポリウレタン樹脂 5重量部 塩ビ−酢ビ共重合体 1.2 〃 分散剤 0.5 〃 混合溶剤(トルエン/MEK=1/1)
69.3 〃 得られたそれぞれの磁気テープについて、通常
の方法により角形比(Br/Bm)、配向性(OR)
を測定し、その結果を表−1に示した。 また、実施例1〜2及び比較例1で得た磁性粉
末を用い、下記の組成で塩ビ−酢ビ−ビニルアル
コール共重合体を主成分とするバインダー組成の
磁気テープを作成し、角形比(Br/Bm)、配向
性(OR)を測定し、表−2に結果を示した。 磁性粉 100重量部 塩ビ−酢ビ−ビニルアルコール共重合体
10.5 〃 ジオクチルフタレート 4 〃 大豆レシチン 1.6 〃 界面活性剤(特殊リン酸エステル型非イオン性
アニオン活性剤) 4 〃 トルエン 110 〃 MEK 100 〃
The present invention relates to a cobalt-containing magnetic iron oxide having improved dispersibility in various organic binders and excellent magnetic properties. In recent years, there has been a demand for increasingly higher performance in magnetic recording media, and along with this, magnetic powders with high coercive force and magnetic powders with high filling properties are required as magnetic materials. Magnetic powders such as γ-Fe 2 O 3 and cobalt-containing iron oxide, which are commonly used as recording elements in magnetic recording media, have hydrophilic surfaces, so they are used when mixing with various organic binders to prepare magnetic paints. However, it has the disadvantage that it has poor wettability to the binder, and because of its own magnetism, particles tend to magnetically aggregate with each other, making it difficult to disperse them uniformly in the binder. As a countermeasure to this problem, a method of loosening the agglomerates using mechanical dispersion means (JP-A-50-22297, JP-A-55
-157216, Japanese Unexamined Patent Publication No. 56-10903) has been attempted.
However, this method does not provide a fundamental solution since aggregation begins when the mechanical dispersion operation is stopped. Furthermore, a method of coating the particle surface of magnetic powder with a surfactant or the like that is compatible with an organic binder before preparing magnetic paint (Japanese Patent Publication No. 53-19120;
37297, JP-A-53-141196, JP-A-54-82354, JP-A-54-85397) and a method of adding a surfactant as a dispersant during the preparation of magnetic paint (JP-A-55-1999).
151068, Japanese Unexamined Patent Publication No. 151069) has been attempted. As a method of coating the surface of particles with surfactant,
There are immersion treatments in aqueous and non-aqueous systems, and methods of spraying directly onto the powder, but in this case, the coated surfactant may be desorbed during kneading with the organic binder, resulting in a lack of sustained effect, or Even if the dispersibility of PVC resins has been improved, there are problems with resin selectivity, such as urethane resins being less effective. Furthermore, if a large amount of surfactant is added during the preparation of a magnetic coating material in order to improve the wetting of the magnetic powder in the organic binder, there are disadvantages such as a decrease in the strength of the tape, pleading, and powder falling off. As a result of various studies in order to improve these drawbacks, the present inventors found that if the surface of cobalt-containing magnetic iron oxide is coated with at least one of the hydroxides of Mg, Ca, Sr, and Ba, The present invention was completed based on the discovery that the dispersibility in an organic binder is improved during the preparation of magnetic paint. That is, the present invention has Mg, Ca,
This is a cobalt-containing magnetic iron oxide characterized by having a coating layer made of at least one of Sr and Ba hydroxides. Examples of the cobalt-containing magnetic iron oxide used in the present invention include those in which magnetic iron oxide powder such as γ-Fe 2 O 3 is used as a nucleus crystal and coated with cobalt or a metal compound such as cobalt and iron. In particular, when a cobalt-containing magnetic iron oxide coated with a ferrous compound and a cobalt compound is used, a high coercive force and excellent other magnetic properties can be obtained. In these depositions, the order of addition of cobalt, ferrous iron, etc., addition method, temperature during deposition, [OH] concentration during deposition, etc. may be appropriately selected and used. When depositing the above-mentioned cobalt or cobalt and other metal compounds, in the case of cobalt alone, it is usually 0.5 to 10% as Co, based on the weight of the total Fe amount of the magnetic iron oxide powder that becomes the nucleus crystal, and, for example, When depositing a combination of cobalt compound and ferrous compound, the former is 0.5 to 10% Co,
It is appropriate that the latter be 1 to 20% as Fe 2+ . When coating the metal hydroxide of the present invention on a material coated with cobalt or cobalt and a metal salt such as iron, the metal hydroxide of the present invention is coated before and/or after the metal hydroxide is coated. It is preferable to add heat treatment later. Examples of methods for adding heat treatment include (1)
A magnetic iron oxide powder is coated with the metal hydroxide after a cobalt deposition treatment in an aqueous alkaline solution,
After washing with water, heat treatment is performed to prevent the metal hydroxide from decomposing; (2) after cobalt coating treatment, washing with water and heat treatment is followed by coating the metal hydroxide; (3) Cobalt coating is performed. After coating, the metal hydroxide can be coated with the metal hydroxide after washing with water, drying or heat treatment, or with cobalt coating, heat treatment, and further drying if necessary. Can be mentioned. The above-mentioned heat treatment is usually carried out in a gas phase or a liquid phase, but in consideration of ease of industrial operation and economic efficiency, it is usually carried out in a gas phase or water vapor. The temperature of heat treatment is usually 60 to 300℃,
When heat treatment is added after coating with the metal hydroxide, it is desirable to perform the heat treatment at 60 to 150°C to prevent the metal hydroxide from decomposing. The term hydroxide here is a general term for hydrated hydroxide, hydrated oxide, or hydrated oxyhydroxide, which is an intermediate between these, and in a strict sense, the negative component is a hydroxyl group. It is not limited to certain compounds. The amount of hydroxide to be coated on the surface of the cobalt-containing magnetic iron oxide is generally 0.01 to 100 parts by weight of the cobalt-containing magnetic iron oxide that will serve as the nucleus crystals.
The amount is 10 parts by weight, preferably 0.05 to 3 parts by weight. If the amount of hydroxide exceeds 10 parts by weight, it is effective in making magnetic agglomeration less likely to occur and improving dispersibility, but since hydroxide is a non-magnetic substance, This is undesirable because magnetic properties such as magnetic force deteriorate. The method for coating the surface of the cobalt-containing magnetic iron oxide with metal hydroxide is not particularly limited, and various methods can be employed. In these methods, it is desirable to have the metal hydroxide uniformly present on the surface. For example, when a metal salt is neutralized with an alkali in a slurry of cobalt-containing magnetic iron oxide, it is desirable to stir the slurry well to maintain a good dispersion state of the cobalt-containing magnetic iron oxide, which becomes the nucleus crystals. Furthermore, it is effective to allow the neutralization reaction to proceed as gradually as possible in order to achieve uniform coating. For this purpose, the temperature of the slurry,
It is necessary to adjust the pH, concentration, and rate of addition of the metal salt solution and alkaline solution to the slurry as appropriate. The atmosphere during coating should be oxidizing, inert,
It may be reducible. According to the present invention, the dispersibility of cobalt-containing magnetic iron oxide into an organic binder can be improved without adversely affecting the main magnetic properties. The magnetic tape obtained using the cobalt-containing magnetic iron oxide of the present invention has a higher squareness ratio (Br/Bm) and orientation than the magnetic tape obtained using the cobalt-containing magnetic iron oxide not coated with metal hydroxide. (OR) has improved. The improvement in Br/Bm and OR supports that the cobalt-containing magnetic iron oxide of the present invention has improved dispersibility in an organic binder. When using the cobalt-containing magnetic iron oxide of the present invention,
It is not necessarily clear why the dispersibility in the organic binder is improved, but (1) by coating with metal hydroxide, magnetic aggregation of cobalt-containing magnetic iron oxide in the organic binder becomes less likely to occur; (2) The affinity between the cobalt-containing magnetic iron oxide and the organic binder increases, improving wetting. (3) It is presumed that the metal hydroxide coated in the organic binder is difficult to detach from the cobalt-containing magnetic iron oxide, and the dispersion effect is likely to be sustained. Next, examples of the present invention will be described. Example 1 200 g of acicular γ-Fe 2 O 3 [BET specific surface area 31 m 2 /g, acicular ratio 10:1] was dispersed in 2 water to make a slurry, and cobalt sulfate and sulfuric acid were added in a non-oxidizing atmosphere. An aqueous solution of iron was added, and then an aqueous NaOH solution was dropped to deposit cobalt and iron compounds on the surfaces of the γ-Fe 2 O 3 particles. The amount of Co atoms deposited is 5% by weight relative to the iron in γ-Fe 2 O 3 , and the amount of Co atoms is 5% by weight as Fe atoms.
It was 10% by weight. The deposited slurry was filtered and washed with water, and the wet cake was repulped and dispersed in water to form a 150 g/slurry, bubbled with N 2 gas, and heated to 60°C. NaOH aqueous solution and CaCl 2 aqueous solution were added dropwise to this slurry in a non-oxidizing atmosphere with stirring while maintaining the pH at 8.5 over a period of 1 hour, and then continued to be stirred for 1 hour to ripen, so that calcium was uniformly distributed on the particle surface. Cover with hydroxide. The coating amount is 0.8 as Ca for cobalt-containing magnetic iron oxide powder.
Weight%. After ripening, the wet cake was rinsed with water and placed in an autoclave with water in a separate container and heated with N2 .
After replacement and sealing, heat treatment was performed at 130°C for 6 hours in the presence of steam. The powder was then dried at 60° C. for 8 hours to obtain a magnetic powder of the present invention. Example 2 The magnetic properties of the present invention were prepared in the same manner as in Example 1 except that an aqueous solution of SrCl 2 was used instead of an aqueous solution of CaCl 2 and the amount of metal hydroxide coated was 0.7% by weight as Sr. A powder was obtained. Example 3 The procedure of Example 1 was repeated except that an aqueous solution of MgSO 4 was used instead of an aqueous solution of CaCl 2 , the pH was maintained at 10.5 when coating the hydroxide, and the coating amount was 0.7% by weight as Mg. A magnetic powder of the present invention was obtained in the same manner as in the above case. Comparative Example 1 In Example 1, the cobalt and iron compounds were applied and washed with water, and the wet cake was placed in an autoclave with water in a separate container without being subjected to the metal hydroxide coating treatment. Magnetic powder was obtained in the same manner as in Example 1. Using the magnetic powders obtained in Examples 1 to 3 and Comparative Example 1, the saturation magnetization (σ S ) was measured using a sample vibrating magnetometer, and then a magnetic paint was prepared according to the blending ratio shown below, and a conventional method was used. This was applied onto a polyester film, oriented in a magnetic field, and then dried to produce a magnetic tape with a magnetic coating film of about 6 μm. Magnetic powder 24 parts by weight Polyurethane resin 5 parts by weight PVC-vinyl acetate copolymer 1.2 Dispersant 0.5 Mixed solvent (toluene/MEK=1/1)
69.3 〃 For each magnetic tape obtained, the squareness ratio (Br/Bm) and orientation (OR) were determined by the usual method.
was measured and the results are shown in Table-1. Further, using the magnetic powders obtained in Examples 1 to 2 and Comparative Example 1, magnetic tapes with a binder composition mainly composed of vinyl chloride-vinyl acetate-vinyl alcohol copolymer were prepared with the following composition, and the squareness ratio ( Br/Bm) and orientation (OR) were measured, and the results are shown in Table 2. Magnetic powder 100 parts by weight PVC-vinyl acetate-vinyl alcohol copolymer
10.5 〃 Dioctyl phthalate 4 〃 Soybean lecithin 1.6 〃 Surfactant (special phosphate ester type nonionic anionic surfactant) 4 〃 Toluene 110 〃 MEK 100 〃

【表】【table】

【表】 表−1及び表−2から明らかなように、コバル
ト含有酸化鉄の表面に被覆させる金属元素の種類
などによつて程度の差はあるものの、金属水酸化
物を被覆させない場合(比較例)と比べて、
Br/Bm、ORなどが向上しており、またバイン
ダー組成を変えても同様であり、有機バインダー
中での分散性が改善されていると共に、樹脂選択
性の問題もないことがわかる。
[Table] As is clear from Tables 1 and 2, although there are differences in degree depending on the type of metal element to be coated on the surface of cobalt-containing iron oxide, when the surface of cobalt-containing iron oxide is not coated with metal hydroxide (comparison For example, compared to
It can be seen that Br/Bm, OR, etc. are improved, and the results are the same even when the binder composition is changed, indicating that the dispersibility in the organic binder is improved and there is no problem with resin selectivity.

Claims (1)

【特許請求の範囲】[Claims] 1 その表面に、Mg、Ca、Sr及びBaの水酸化
物の少くとも1種からなる被覆層を有することを
特徴とするコバルト含有磁性酸化鉄。
1. A cobalt-containing magnetic iron oxide characterized by having on its surface a coating layer consisting of at least one of hydroxides of Mg, Ca, Sr, and Ba.
JP57207048A 1982-11-26 1982-11-26 Magnetic iron oxide containing cobalt Granted JPS5998503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207048A JPS5998503A (en) 1982-11-26 1982-11-26 Magnetic iron oxide containing cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207048A JPS5998503A (en) 1982-11-26 1982-11-26 Magnetic iron oxide containing cobalt

Publications (2)

Publication Number Publication Date
JPS5998503A JPS5998503A (en) 1984-06-06
JPH0230563B2 true JPH0230563B2 (en) 1990-07-06

Family

ID=16533337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207048A Granted JPS5998503A (en) 1982-11-26 1982-11-26 Magnetic iron oxide containing cobalt

Country Status (1)

Country Link
JP (1) JPS5998503A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184801A (en) * 1988-01-13 1989-07-24 Showa Denko Kk Manufacture of magnetic iron oxide powder for magnetic recording
JP3427871B2 (en) * 1996-06-24 2003-07-22 戸田工業株式会社 Cobalt-coated acicular magnetic iron oxide particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976402A (en) * 1982-10-25 1984-05-01 Toda Kogyo Corp Manufacture of magnetic iron oxide powder for magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976402A (en) * 1982-10-25 1984-05-01 Toda Kogyo Corp Manufacture of magnetic iron oxide powder for magnetic recording medium

Also Published As

Publication number Publication date
JPS5998503A (en) 1984-06-06

Similar Documents

Publication Publication Date Title
US4539261A (en) Process for producing magnetic powder and product
US4778734A (en) Barium ferrite magnetic powder and magnetic recording medium containing the same
JPH0217603B2 (en)
JPS6332242B2 (en)
JPS6242337B2 (en)
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
JPS5856232A (en) Magnetic recording medium
JPS6149251B2 (en)
JPS6331085B2 (en)
JPH0230563B2 (en)
JPS5923505A (en) Magnetic powder
JPH037121B2 (en)
JPH0755832B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPH0480522B2 (en)
JPH0755829B2 (en) Magnetic particle powder and method for producing the same
JPS6132259B2 (en)
JPS6331086B2 (en)
JPH0157482B2 (en)
JPH0425686B2 (en)
JPH0425687B2 (en)
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JPH0430162B2 (en)
JPS59169937A (en) Production of magnetic powder
JPH0521321B2 (en)
JPS61132521A (en) Magnetic iron oxide particle powder for magnetic recording medium and production thereof