JPH0521321B2 - - Google Patents

Info

Publication number
JPH0521321B2
JPH0521321B2 JP59223459A JP22345984A JPH0521321B2 JP H0521321 B2 JPH0521321 B2 JP H0521321B2 JP 59223459 A JP59223459 A JP 59223459A JP 22345984 A JP22345984 A JP 22345984A JP H0521321 B2 JPH0521321 B2 JP H0521321B2
Authority
JP
Japan
Prior art keywords
cobalt
iron oxide
water
treatment
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59223459A
Other languages
Japanese (ja)
Other versions
JPS61101010A (en
Inventor
Kazuo Nakada
Seigo Maruo
Kyoshi Asano
Masatoshi Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP59223459A priority Critical patent/JPS61101010A/en
Publication of JPS61101010A publication Critical patent/JPS61101010A/en
Publication of JPH0521321B2 publication Critical patent/JPH0521321B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は、コバルト含有磁性酸化鉄粉末の製造
方法に関する。 (発明の技術的背景とその問題点) 磁気記録媒体は、一般に磁性粉末を樹脂結合剤
中に分散させてなる磁性塗料を、プラチツクのフ
イルムやシートの基板上に塗布して磁性層を形成
させたものであるが、磁性粉粒子が二次凝集をお
こしたりして該塗料中で十分分散されないと、充
填度の大きな均一で平滑な磁性層を形成させるこ
とはできない。磁性粉粒子の凝集による磁性層の
不均一化は、磁気記録媒体の磁気特性や電磁変換
特性をいちじるしく損ない易い。すなわち、角形
比や磁場配向性の低下がさけられず、さらに出力
の低下、ノイズの増大、ドロツプアウトの原因と
なり易い。 磁性粉の分散性の改良に関しては、従来から
種々の観点から研究がなされてきており、それに
ついて数多くの提案がなされている。最も一般的
には、種々の分散剤例えばレシチン、脂肪酸、脂
肪酸アミド、脂肪酸エステル、金属石ケン、高級
アルコールやそのエステル、ポリエチレンオキサ
イドやその酸エステル、オルガノシリコーンなど
を磁性塗料中に配合することによつておこなわれ
ることが多いが、場合によつてはこれらの分散剤
を磁性粉に表面処理したものを塗料化することに
よつておこなわれたりしている。一方、近年磁気
記録の高密度化にともなつて、保磁力や飽和磁化
の大きい針状のコバルト含有磁性酸化鉄粉末の需
要が増大してきているが、このものは通常の磁性
酸化鉄粉末に比して、粒子間の相互作用によるい
わゆる磁気凝集を起し易く、そのために結合剤樹
脂中での均一分散が非常に難しく、その結果磁気
記録媒体における所望の特性の改善が十分奏せら
れない場合が少なくない。しかして、前記磁気記
録媒体の高密度化の傾向はますます強まつてきて
おり、特に最近の8ミリビデオやマイクロカセツ
トへの指向にともなつて、高比表面積の微小粒子
径のコバルト含有磁性酸化鉄粉末を使用すること
によつてS/N比、出力、情報容量等の増大をは
かることが試みられている。しかしながら、該磁
性酸化鉄粒子の比表面積が例えば35m2/gを超え
ると表面エネルギーの増大にともなつて分散性が
急激に低下し、前記所望の特性の磁気記録媒体を
形成させることが、いちじるしく困難となること
はよく知られている。このため例えば種々の分散
剤の使用による表面処理法の改善提案がなされて
いるが、未だ十分満足すべき改良をみるに至つて
おらず、その解決が希求されている。 (発明の目的) 本発明は、高保磁力特性と優れた電磁変換特性
を有する高比表面積磁性粉末であつて、かつ分散
性、配向性、充填性などの特性のいちじるしく改
善し得るコバルト含有磁性酸化鉄粉末の製造方法
を提供することにある。 (発明の概要) 本発明者等は、上記目的を達成するべく種々研
究を重ねた結果、特定のジアミンの脂肪酸塩化合
物を、高比表面積のコバルト含有磁性酸化鉄粒子
表面で特定の処理方法で反応生成させて吸着処理
することによつて、該磁性酸化鉄粉末の分散性を
いちじるしく改善し得、前記問題点をいずれも解
決しうることの知見にもとづいて本発明を完成し
た。すなわち、本発明は、BET値が35m2/g以
上の比表面積を有するコバルト含有磁性酸化鉄粒
子の水性スラリー中で、一般式R1NH(CH2o
NH2(式中R1は炭素数6以上のアルキル基、アル
ケニル基またはアリール基であり、nは1〜10の
整数である)で示されるジアミンの水溶性化合物
の少なくとも1種と、一般式R2COOH(式中R2
炭素数6以上のアルキル基、アルケニル基または
アリール基である)で示される脂肪酸の水溶性化
合物の少なくとも1種とを反応させて、該酸化鉄
粒子表面に該反応生成物であるジアミンの脂肪酸
塩を吸着させることを特徴とするコバルト含有磁
性酸化鉄粉末の製造方法である。 本発明方法において、分散剤を処理するコバル
ト含有磁性酸化鉄粒子としては、γ−Fe2O3
Fe3O4又はγ−Fe2O3を部分還元して得られるよ
うなベルトライド化合物などを基本粒子として使
用することができる。このものは、通常針状晶な
いしこれと類似の形状を有するものである。前記
基本粒子表面にコバルト化合物、またはコバルト
化合物と第一鉄、マンガン、亜鉛、クロム、ニツ
ケルなどのその他の金属化合物とを被着させてコ
バルト含有磁性酸化鉄粒子とする。前記コバルト
含有化合物の被着量は、基本粒子に対する重量基
準で、コバルトとして0.5〜30%、好ましくは1
〜10%であり、第一鉄の場合は、1〜30%、好ま
しくは2〜20%、その他の金属の場合は0.05〜10
%である。高保磁力のものを得るにはコバルト化
合物と第一鉄化合物とを組合せるのが好ましい。 前記コバルト含有化合物の被着方法としては、
種々の方法によつておこなうことができるが、通
常、前記基本粒子を水、アルカリ水溶液または少
なくともコバルトを含む金属塩の処理剤水溶液に
分散させて、水性スラリーとし、前記スラリーへ
さらにアルカリ水溶液または(および)前記処理
剤水溶液を一部もしくは全部を同時または順次添
加して基本粒子表面に前記金属塩の水酸化物を沈
殿させることによつておこなうことができる。前
記被着処理は、可及的に空気の混入を排除して実
質的に非酸化性雰囲気下、通常沸点以下好ましく
は50℃以下で0.1〜10時間反応させることによつ
ておこなうことが望ましい。なお、前記反応系内
のアルカリ濃度は通常0.01〜3モル/、好まし
くは0.5〜2モル/である。 本発明方法において、前記のようにして得られ
たコバルト含有磁性酸化鉄粒子に対して分散剤処
理をおこなうには、前記コバルト含有化合物の被
着処理スラリーを瀘過、水洗してアルカリ分など
を除去し、得られた湿ケーキを、(1)水に懸濁させ
て水性スラリーとして供しても、(2)密閉容器に入
れ、水蒸気の存在下に60〜200℃で加熱処理をお
こなつた後、この処理ケーキを水に懸濁させて水
性スラリーとして供してもよい、なお、前記加熱
処理は非酸化性雰囲気下でおこなうのが好まし
い。さらに(3)通常の乾燥をおこなつて付着水分を
脱水した後、次いで非酸化性雰囲気下で100〜300
℃で乾式熱処理をおこない、この処理粉末を水に
懸濁させて水性スラリーとして供してもよい。あ
るいは(4)前記(2)の水蒸気処理後、次いで前記(3)の
乾式加熱処理をおこなつた後、水性スラリーとし
て供してもよく、いづれの方法をも適用できる。
前記のようにして加熱処理をおこなう場合、基本
粒子表面にコバルトフエライト層をより均一に成
長させることができ、高保磁力で角形比、配向
性、飽和磁束密度の一層優れたものを得ることが
でき、このものに分散剤処理を施すことによつて
コバルト含有磁性酸化鉄の有する前記特性が記録
媒体中で十分維持され、きわめて高性能の記録媒
体を形成させることができる。 本発明方法における分散剤処理において、該分
散剤処理を適用する磁性酸化鉄粉末は、前記のよ
うに磁性酸化鉄の基本粒子コバルト含有化合物を
被着させたものであるが、比表面積がBET値で
35m2/g以上のような微細粒子粉末に対してとり
わけ好適である。処理に供する一般的R1NH
(CH2oNH2(R1は炭素数6以上のアルキル基、
アルケニル基またはアリール基、nは1〜10の整
数)で示されるジアミンの水溶性化合物として
は、前記範囲の種々のものを使用し得るが、なる
べくは、アルキル基、アルケニル基またはアリー
ル基の炭素数が6〜20であり、またnは2〜6の
整数であるのが好ましい。それらの具体例として
は、例えば (1) C6H13NH(CH23NH2、 (2) C8H17NH(CH23NH2、 (3) C10H21NH(CH23NH2、 (4) C12H25NH(CH23NH2、 (5) C14H29NH(CH23NH2、 (6) C14H29NH(CH24NH2、 (7) C16H33NH(CH23NH2、 (8) C18H35NH(CH23NH2、 (9) C18H37NH(CH23NH2、 (10) C18H37NH(CH24NH2、 (11) C20H41NH(CH24NH2、 (12) C20H41NH(CH26NH2、 (13)
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing cobalt-containing magnetic iron oxide powder. (Technical background of the invention and its problems) Magnetic recording media are generally made by coating a magnetic paint, which is made by dispersing magnetic powder in a resin binder, on a plastic film or sheet substrate to form a magnetic layer. However, if the magnetic powder particles are not sufficiently dispersed in the paint due to secondary aggregation, it is not possible to form a uniform and smooth magnetic layer with a large degree of filling. Non-uniformity of the magnetic layer due to agglomeration of magnetic powder particles tends to significantly impair the magnetic properties and electromagnetic conversion properties of the magnetic recording medium. That is, a decrease in the squareness ratio and magnetic field orientation is unavoidable, which is likely to cause a decrease in output, an increase in noise, and dropout. Regarding the improvement of the dispersibility of magnetic powder, research has been carried out from various viewpoints, and many proposals have been made in this regard. Most commonly, various dispersants such as lecithin, fatty acids, fatty acid amides, fatty acid esters, metal soaps, higher alcohols and their esters, polyethylene oxide and its acid esters, organosilicones, etc. are blended into magnetic paints. However, in some cases, magnetic powder is surface-treated with these dispersants and turned into a paint. On the other hand, as the density of magnetic recording has increased in recent years, the demand for acicular cobalt-containing magnetic iron oxide powder with large coercive force and saturation magnetization has increased, but this powder is more expensive than ordinary magnetic iron oxide powder. magnetic agglomeration due to interaction between particles, making uniform dispersion in the binder resin very difficult, and as a result, the desired characteristics of the magnetic recording medium cannot be sufficiently improved. There are quite a few. However, the trend toward higher densities in magnetic recording media is becoming stronger, and with the recent trend towards 8mm video and microcassettes, cobalt-containing magnetic materials with high specific surface areas and small particle diameters are becoming more and more popular. Attempts have been made to increase the S/N ratio, output, information capacity, etc. by using iron oxide powder. However, when the specific surface area of the magnetic iron oxide particles exceeds, for example, 35 m 2 /g, the dispersibility rapidly decreases as the surface energy increases, making it significantly difficult to form a magnetic recording medium with the desired characteristics. It is well known that this can be difficult. For this reason, proposals have been made to improve surface treatment methods, for example by using various dispersants, but no satisfactory improvement has yet been achieved, and a solution to this problem is desired. (Object of the Invention) The present invention provides a high specific surface area magnetic powder having high coercive force characteristics and excellent electromagnetic conversion characteristics, and a cobalt-containing magnetic oxide that can significantly improve properties such as dispersibility, orientation, and fillability. An object of the present invention is to provide a method for producing iron powder. (Summary of the Invention) As a result of various studies to achieve the above object, the inventors of the present invention applied a specific diamine fatty acid salt compound to the surface of cobalt-containing magnetic iron oxide particles with a high specific surface area by a specific treatment method. The present invention was completed based on the knowledge that the dispersibility of the magnetic iron oxide powder can be significantly improved by reaction-forming and adsorption treatment, and that all of the above-mentioned problems can be solved. That is, the present invention provides an aqueous slurry of cobalt-containing magnetic iron oxide particles having a specific surface area of 35 m 2 /g or more with a BET value of 35 m 2 /g or more.
At least one water-soluble diamine compound represented by NH 2 (wherein R 1 is an alkyl group, alkenyl group, or aryl group having 6 or more carbon atoms, and n is an integer of 1 to 10) and the general formula R 2 COOH (wherein R 2 is an alkyl group, alkenyl group, or aryl group having 6 or more carbon atoms) is reacted with at least one kind of water-soluble fatty acid compound to form the iron oxide particles on the surface of the iron oxide particles. This is a method for producing cobalt-containing magnetic iron oxide powder, which is characterized by adsorbing a fatty acid salt of diamine, which is a reaction product. In the method of the present invention, the cobalt-containing magnetic iron oxide particles treated with the dispersant include γ-Fe 2 O 3 ,
A bertolide compound such as that obtained by partially reducing Fe 3 O 4 or γ-Fe 2 O 3 can be used as the basic particles. This crystal usually has a needle-like crystal or a similar shape. A cobalt compound or a cobalt compound and another metal compound such as ferrous, manganese, zinc, chromium, or nickel is deposited on the surface of the basic particles to obtain cobalt-containing magnetic iron oxide particles. The amount of the cobalt-containing compound applied is 0.5 to 30% as cobalt, preferably 1% based on the weight of the basic particles.
~10%, for ferrous iron 1-30%, preferably 2-20%, and for other metals 0.05-10
%. In order to obtain a high coercive force, it is preferable to combine a cobalt compound and a ferrous compound. The method for depositing the cobalt-containing compound is as follows:
This can be carried out by various methods, but usually the basic particles are dispersed in water, an aqueous alkali solution, or an aqueous solution of a treatment agent containing at least cobalt to form an aqueous slurry, and the slurry is further mixed with an aqueous alkali solution or ( and) This can be carried out by adding part or all of the aqueous solution of the treatment agent simultaneously or sequentially to precipitate the hydroxide of the metal salt on the surface of the basic particles. The above-mentioned adhesion treatment is desirably carried out in a substantially non-oxidizing atmosphere, excluding the inclusion of air as much as possible, by reacting at a temperature below the boiling point, preferably below 50° C., for 0.1 to 10 hours. The alkali concentration in the reaction system is usually 0.01 to 3 mol/, preferably 0.5 to 2 mol/. In the method of the present invention, in order to perform a dispersant treatment on the cobalt-containing magnetic iron oxide particles obtained as described above, the slurry for adhering the cobalt-containing compound is filtered and washed with water to remove alkaline components, etc. The resulting wet cake can be either (1) suspended in water and served as an aqueous slurry, or (2) placed in a sealed container and heat-treated at 60 to 200°C in the presence of water vapor. Thereafter, this treated cake may be suspended in water to provide an aqueous slurry. Note that the heat treatment is preferably performed in a non-oxidizing atmosphere. Furthermore, (3) after performing normal drying to remove the adhering moisture, the
Dry heat treatment may be carried out at .degree. C., and the treated powder may be suspended in water to provide an aqueous slurry. Alternatively, (4) the product may be provided as an aqueous slurry after the steam treatment in (2) above and then the dry heat treatment in (3) above, and either method can be applied.
When heat treatment is performed as described above, a cobalt ferrite layer can be grown more uniformly on the surface of the basic particles, and a high coercive force with better squareness ratio, orientation, and saturation magnetic flux density can be obtained. By subjecting this material to a dispersant treatment, the properties of the cobalt-containing magnetic iron oxide are sufficiently maintained in the recording medium, making it possible to form an extremely high-performance recording medium. In the dispersant treatment in the method of the present invention, the magnetic iron oxide powder to which the dispersant treatment is applied is the magnetic iron oxide basic particle coated with the cobalt-containing compound as described above, but the specific surface area is smaller than the BET value. in
It is particularly suitable for fine particle powders such as 35 m 2 /g or more. Common R 1 NH for treatment
(CH 2 ) o NH 2 (R 1 is an alkyl group having 6 or more carbon atoms,
As the water-soluble diamine compound represented by an alkenyl group or an aryl group (n is an integer of 1 to 10), various compounds within the above range can be used, but preferably carbon atoms of the alkyl group, alkenyl group, or aryl group are used. Preferably, the number is from 6 to 20, and n is an integer from 2 to 6. Specific examples thereof include (1) C 6 H 13 NH (CH 2 ) 3 NH 2 , (2) C 8 H 17 NH (CH 2 ) 3 NH 2 , (3) C 10 H 21 NH (CH 2 ) 3 NH 2 , (4) C 12 H 25 NH (CH 2 ) 3 NH 2 , (5) C 14 H 29 NH (CH 2 ) 3 NH 2 , (6) C 14 H 29 NH (CH 2 ) 4 NH 2 , (7) C 16 H 33 NH (CH 2 ) 3 NH 2 , (8) C 18 H 35 NH (CH 2 ) 3 NH 2 , (9) C 18 H 37 NH (CH 2 ) 3 NH 2 , (10) C18H37NH ( CH2 ) 4NH2 , ( 11) C20H41NH ( CH2 ) 4NH2 , (12 ) C20H41NH ( CH2 ) 6NH2 , (13)

【式】な どのN−置換トリ、テトラ、ペンタまたはヘキサ
メチレンジアミンの塩酸塩、酢酸塩、乳酸塩、ア
ジピン酸塩等を挙げることができる。前記ジアミ
ンは、それらが単独であつてもあるいはそれらの
2種もしくはそれ以上の混合物として使用しても
よい。また、本発明方法において、前記一般式
R2COOH(R2は炭素数6以上のアルキル基、アル
ケニル基またはアリール基)で示される脂肪酸の
水溶性化合物としては、種々のものを使用し得る
が、なるべくはアルキル基、アルケニル基または
アリール基の炭素数が6〜20であるのが好まし
い。それらの具体例としては、例えば、 C6H13COOH、C8H17COOH、C10H21COOH、
C11H23COOH、C13H27COOH、C15H31COOH、
C17H33COOH、C17H35COOH、C20H41COOH、
Examples include hydrochloride, acetate, lactate, adipate, etc. of N-substituted tri-, tetra-, penta- or hexamethylenediamine such as [Formula]. The diamines may be used alone or as a mixture of two or more thereof. Furthermore, in the method of the present invention, the general formula
As the water-soluble fatty acid compound represented by R 2 COOH (R 2 is an alkyl group, alkenyl group, or aryl group having 6 or more carbon atoms), various compounds can be used, but preferably an alkyl group, an alkenyl group, or an aryl group is used. Preferably, the group has 6 to 20 carbon atoms. Specific examples thereof include, for example, C 6 H 13 COOH, C 8 H 17 COOH, C 10 H 21 COOH,
C 11 H 23 COOH, C 13 H 27 COOH, C 15 H 31 COOH,
C 17 H 33 COOH, C 17 H 35 COOH, C 20 H 41 COOH,

【式】などの脂肪酸のアルカリ金属 塩、アルカリ土類金属塩、アンモニウム塩などを
挙げることができる。 本発明方法において、前記のジアミンの水溶性
化合物と脂肪酸の水溶性化合物とを、コバルト含
有磁性酸化鉄粒子表面上で反応させて反応生成物
であるジアミンの脂肪酸塩を被覆処理するには、
先ず該酸化鉄粒子を水などの水性媒液に懸濁させ
て固形濃度が通常100〜200g/の水性スラリー
を形成させる。次いでこの水性スラリーへ、前記
のジアミンの水溶性化合物と脂肪酸の水溶性化合
物とを添加する。前記処理剤の添加はそれらを順
次または同時いづれでもよいが、順次添加してそ
れぞれの処理剤を水性スラリーに十分混合させな
がらおこなうと一層望ましい、なお前記処理は通
常、常温下で反応させることができるが、必要に
応じ加熱下で反応させてもよい。また前記反応は
反応系のスラリーのPHが通常6〜13、とりわけ
6.5〜12であるのが望ましく、前記PHが6より低
くなると被着されたコバルト化合物の溶出が起つ
たり、一方前記PHが13より大きくなると反応生成
物の酸化鉄粒子表面への被覆が不均一になり易く
望ましくない。 本発明方法において、コバルト含有磁性酸化鉄
粒子表面における前記反応生成物は、前記ジアミ
ン1モルに対して前記脂肪酸がほぼ1〜2モルの
反応によつて形成されるものであつて、該酸化鉄
粒子の重量基準に対して該反応生成物が通常0.1
〜10%望ましくは0.5〜5%被覆されるのが好ま
しい。前記のジアミンの水溶性化合物と脂肪酸の
水溶性化合物は、前記被覆量に応じてそれぞれ添
加されるが、通常該酸化鉄粒子の重量基準に対し
て前者は0.2〜2%、また後者は0.3〜3%添加す
る。添加量がいづれも、前記範囲より少なきにす
ぎると所望の効果が得られず、また前記範囲より
多きにすぎると例えばブルーミング現象を発生し
たりして磁性塗膜の性能を低下させるなど好まし
くない。前記反応処理スラリーは、所定時間反応
後、瀘過、水洗、乾燥して処理品を回収する。ま
た、コバルト含有化合物の被着後、前記したよう
な熱処理を施すことなく、分散剤処理をおこなつ
た場合は、前記の乾燥処理に引きつづいては例え
ば非酸化性雰囲気中で乾式熱処理をおこなうなど
の熱処理を施すことによつて磁気特性をさらに高
めることもできる。なお、本発明の分散剤処理の
場合にあつては、前記の分散剤処理後に熱処理を
おこなつても、分散剤の処理効果はなんら損なわ
れることはない。 実施例 1 保磁力(Hc);370 OE、軸比(L/W);10で
比表面積(BET値);40m2/gを有するγ−
Fe2O3の針状磁性酸化鉄微粉末の100gを、水1
に分散させて水性スラリーとし、該スラリーに
室温(30℃)で窒素ガスを吹込みながら0.85モ
ル/の硫酸コバルト水溶液63mlと0.9モル/
の硫酸第一鉄水溶液126とを添加し、次いで10
モル/の水酸化ナトリウム水溶液169mlを添加
して、室温(30℃)で5時間撹拌して該酸化鉄粒
子表面にコバルト及び第一鉄の金属水酸化物を沈
澱させて被着処理をおこなつた。この処理スラリ
ーを瀘過水洗した後、得られたケーキを容器に入
れ、別の容器に入れた水と共にオートクレーブ中
に密閉して窒素ガスで置換した後、130℃で6時
間飽和水蒸気の存在下で加熱処理した。(得られ
たコバルト含有磁性酸化鉄粉末の比表面積
(BET値)は35m2/gであつた) 次いで前記加熱処理湿ケーキを水に分散させて
水性スラリーとし、該スラリーに対して主成分が
例示化合物(7)、(8)及び(9)の混合物よりなるジアミ
ン(デユオミンT:ライオン・アクゾ社製)の塩
酸塩水溶液(濃度2重量%)30mlを添加し、室温
下(30℃)で十分撹拌した。次いでオレイン酸ナ
トリウム水溶液(濃度5重量%)18.4mlを添加し
反応させて、コバルト含有磁性酸化鉄粒子表面に
該反応生成物を吸着させた。なお、前記反応時の
スラリーのPHは7であつた。該反応処理スラリー
は瀘過、水洗した後、湿ケーキを常法により乾燥
して含水分を除去して本発明方法による処理品を
得た。(試料A) 実施例 2 前記実施例1において、オレイン酸ナトリウム
水溶液に代えてラウリン酸ナトリウム水溶液(濃
度5重量%)16mlを使用すること及び前記デユオ
ミンTの塩酸塩水溶液(濃度2重量%)を36ml使
用することのほかは、同例の場合と同様に処理し
て本発明方法による処理品を得た。(試料B) 実施例 3 前記実施例1において、オレイン酸ナトリウム
水溶液に代えて安息香酸ナトリウム水溶液(濃度
5重量%)12.7mlを使用すること及び前記デユオ
ミンTの塩酸塩水溶液(濃度2重量%)を41.8ml
使用することのほかは、同例の場合と同様に処理
して本発明方法による処理品を得た。(試料C) 実施例 4 前記実施例1において、前記デユオミンTなる
ジアミンの水溶性化合物に代えて、主成分が例示
化合物(4)と(5)との混合物よりなるジアミン(デユ
オミンC、ライオン・アクゾ社製)の塩酸塩水溶
液(濃度2重量%)26.3mlを使用すること及び前
記オレイン酸ナトリウム水溶液(濃度5重量%)
19.9mlを使用することのほかは、同例の場合と同
様に処理して本発明方法による処理品を得た。
(試料D) 実施例 5 前記実施例1の場合と同様にしてコバルト化合
物と第一鉄化合物とを被着処理した後、その処理
スラリーを瀘過、水洗して得られた湿ケーキを水
に分散させて、コバルト含有磁性酸化鉄の水性ス
ラリーを形成した。該スラリーに対して実施例1
の場合と同様にして分散剤の吸着処理をおこなつ
た。なお前記吸着処理時のスラリーのPHは10であ
つた。次いで前記吸着処理スラリーを瀘過、水洗
し、得られた湿ケーキを、実施例1の場合と同様
にして飽和水蒸気の存在下で130℃で6時間加熱
処理して本発明方法による処理品を得た。(試料
E) 実施例 6 前記実施例5において、分散剤の吸着剤のスラ
リーPHを12に調節したことのほかは、同例の場合
と同様にして処理して、本発明方法による処理品
を得た。(試料F) 実施例 7 前記実施例1において、コバルト化合物と第一
鉄化合物とを被着処理したスラリーを瀘過、水洗
した後、得られた湿ケーキを飽和水蒸気による加
熱処理に代えて、窒素ガス雰囲気中で130℃で5
時間乾式加熱処理したことのほかは、同例の場合
と同様に処理して本発明方法による処理品を得
た。(試料G) 実施例 8 前記実施例5において、分散剤の吸着処理をお
こなつた後、処理スラリーを瀘過、水洗し、得ら
れた湿ケーキを常法により乾燥し、次いで窒素ガ
ス雰囲気中で130℃で5時間乾式加熱処理したこ
とのほかは、同例の場合と同様に処理して本発明
方法による処理品を得た。(試料H) 実施例 9 保磁力(Hc);340 Oe、軸比(L/W);10で
比表面積(BET値);45m2/gを有するγ−
Fe2O3の針状磁性酸化鉄微粉末の100gを、水1
に分散させて水性スラリーとし、該スラリーに
室温(30℃)で窒素ガスを吹込みながら、10モ
ル/の水酸化ナトリウム水溶液169mlを添加し、
次いで0.9モル/の硫酸第一鉄水溶液126mlを添
加し、しかる後に0.85モル/の硫酸コバルト水
溶液63mlを添加して、室温(30℃)で5時間撹拌
して該酸化鉄粒子表面に第一鉄の水酸化物を沈殿
させ、次いでコバルトの水化物を沈殿させて被着
処理した。該被着処理スラリーは、瀘過、水洗し
た後その湿ケーキを常法により乾燥後、次いで窒
素ガス雰囲気中で120℃で5時間乾式加熱処理し
た。得られた前記コバルト含有化合物を被着した
磁性酸化鉄粉末(比表面積、BET値41m2/gで
あつた)100gを、水1に分散させて、水性ス
ラリーとし、該スラリーに対して前記実施例1の
場合と同様にして、デユオミンT(ライオン・ア
クゾ社製)の塩酸塩水溶液(濃度2重量%)39.6
mlと、オレイン酸ナトリウム水溶液(濃度2重量
%)24.2mlとを添加して反応させて、コバルト含
有磁性酸化鉄粒子表面に該反応生成物を吸着処理
して、本発明方法による処理品を得た。(試料) 実施例 10 前記実施例9において、デユオミンTなるジア
ミンの水溶性化合物に代えて、例示化合物(8)オレ
イル・トリメチレン・ジアミンの塩酸塩水溶液
(濃度2重量%)39.6mlを使用することのほかは、
同例の場合と同様に処理して本発明方法により処
理品を得た。(試料J) 実施例 11 保磁力(Hc);335 Oe、軸比(L/W);10で
比表面積(BET値);50m2/gを有するγ−
Fe2O3の針状磁性酸化鉄微粉末の100gを、水1
に分散させて水性スラリーとし、該スラリーに
室温(30℃)で窒素ガスを吹き込みながら、撹拌
下に10モル/の水酸化ナトリウム水溶液181ml
を添加し、次いで0.90モル/の硫酸第一鉄水溶
液139mlを添加し、さらに0.85モル/の硫酸コ
バルト水溶液70mlを添加して、室温(30℃)で5
時間撹拌してコバルト化合物と第一鉄化合物とを
被着処理した。次いで前記被着処理スラリーを瀘
過、水洗した後、該湿ケーキを窒素ガス雰囲気中
で125℃で4時間乾式加熱処理した。得られたコ
バルト含有磁性酸化鉄粉末(比表面積、BET値
46m2/gであつた)100gを、水1に分散させ
て、水性スラリーとし、該スラリーに対して前記
実施例1の場合と同様にしてデユオミンT(ライ
オン・アクゾ社製)の塩酸塩水溶液(濃度2重量
%)79.0mlを添加し、室温下で十分撹拌した。次
いでオレイン酸ナトリウム水溶液(濃度5重量
%)48.4mlを添加し、反応させてコバルト含有磁
性酸化鉄粒子の表面に該反応生成物を吸着処理し
本発明方法による処理品を得た。なお、前記吸着
処理時のスラリーのPHは7であつた。(試料K) 比較例 1 前記実施例1において、ジアミン及び脂肪酸に
よる分散剤処理をおこなわないことのほかは、同
例の場合と同様に処理した。(試料L) 比較例 2 前記実施例1において、分散剤の吸着処理時の
スラリーのPHを5としたことのほかは、同例の場
合と同様にして処理した。(試料M) 比較例 3 前記実施例5において、コバルト含有化合物を
被着処理後、該処理スラリー(アルカリ濃度;
OH基1モル/)を瀘過、水洗することなく分
散剤の吸着処理をおこなつたことのほかは、同例
の場合と同様に処理した。(試料N) 比較例 4 前記実施例9において、分散剤の吸着処理時に
オレイン酸ナトリウム水溶液を添加しないことの
ほかは、同例の場合と同様に処理した。(試料P) 比較例 5 前記実施例9において、ジアミン及び脂肪酸の
分散剤処理に代えて、アルキルモノアミン化合物
(ライオン・アクゾ社製;アーミンCD;ヤシ油脂
肪酸系アルキル置換のモノアミン)の塩酸塩水溶
液(濃度2重量%)を100ml使用することのほか
は、同例の場合と同様に処理した。(試料Q) 比較例 6 前記実施例1におけるコバルト含有化合物を被
着処理して得られた湿ケーキを飽和水蒸気の存在
下で130℃で6時間加熱処理し、該加熱処理ケー
キを水に分散させた水性スラリーに対して、ジア
ミンの脂肪酸塩(ライオン・アクゾ社製;デユオ
ミンTDO;牛脂脂肪酸系アルキル置換のトリメ
チレンジアミンのオレイン酸塩)の塩酸塩水溶液
(20重量%)を75.9ml添加し、室温下(30℃)で
十分撹拌後、該処理スラリーを瀘過、水洗し、得
られた湿ケーキを常法により乾燥した。(試料R) なお、デユオミンTDOは水不溶性であり、水
性スラリーとの混和がむずかしく、実質的に処理
効果がみられず、またデユオミンTDOの塩酸塩
水溶液は粘稠性であり、水性スラリーとの均一な
混和が容易でなかつた。 比較例 7 前記実施例11において、ジアミン及び脂肪酸に
よる分散剤処理をおこなわないことのほかは、同
例の場合と同様に処理した。(試料S) 比較例 8 前記実施例1において、コバルト含有磁性酸化
鉄粉末(試料L)に対して、ジアミンの脂肪酸塩
(ライオン・アクゾ社製;デユオミンTDO)を、
後記磁性塗料の調製時に磁性酸化鉄粉末100重量
部に対して2重量部添加して塗料化した。 前記の実施例及び比較例で得られた各試料につ
いて、下記の割合で配合し、サンドグラインダー
で混練して磁性塗料を調製した。 (1) 磁性酸化鉄粉末 100重量部 (2) ビニル樹脂(塩化ビニル:酢酸ビニル共重合
体) 21〃 (3) ウレタン樹脂 5〃 (4) メチルエチルケトン 123〃 (5) トルエン 123〃 (6) シクロヘキサン 4〃 前記のように調製された各磁性塗料をポリエス
テルフイルム上に塗布し、配向処理した後乾燥し
て約6μ厚の磁性塗膜を有する磁気記録媒体を作
成した。この記録体について常法によ磁気特性と
して保磁力(Hc)、残留磁束密度(Br)、角形比
(Br/Bm)及び配向比(OR)を、電磁変換特性
として入力−20dBに対する400Hz出力を、それぞ
れ測定した。その結果を次表に示す。
Examples include alkali metal salts, alkaline earth metal salts, and ammonium salts of fatty acids such as [Formula]. In the method of the present invention, in order to react the water-soluble compound of diamine and the water-soluble compound of fatty acid on the surface of the cobalt-containing magnetic iron oxide particles to coat the reaction product with the fatty acid salt of diamine,
First, the iron oxide particles are suspended in an aqueous medium such as water to form an aqueous slurry having a solid concentration of usually 100 to 200 g. Next, the water-soluble diamine compound and the water-soluble fatty acid compound described above are added to this aqueous slurry. The treatment agents may be added sequentially or simultaneously, but it is more preferable to add them sequentially and thoroughly mix each treatment agent into the aqueous slurry.The treatment is usually carried out at room temperature. However, the reaction may be carried out under heating if necessary. In addition, in the above reaction, the pH of the slurry in the reaction system is usually 6 to 13, especially
It is desirable that the pH range is from 6.5 to 12; if the pH is lower than 6, the deposited cobalt compound may elute, while if the pH is higher than 13, the reaction product may not be fully coated on the surface of the iron oxide particles. It tends to become uniform, which is undesirable. In the method of the present invention, the reaction product on the surface of the cobalt-containing magnetic iron oxide particles is formed by a reaction of about 1 to 2 moles of the fatty acid with respect to 1 mole of the diamine, and The reaction product is usually 0.1% based on the weight of the particles.
Preferably it is coated by ~10%, preferably 0.5-5%. The water-soluble diamine compound and the water-soluble fatty acid compound are added depending on the amount of coating, but the former is usually 0.2 to 2% and the latter 0.3 to 2% based on the weight of the iron oxide particles. Add 3%. In any case, if the amount added is too little than the above range, the desired effect cannot be obtained, and if the amount added is too much than the above range, for example, the performance of the magnetic coating film may be deteriorated due to blooming phenomenon, which is undesirable. . After the reaction treatment slurry has reacted for a predetermined period of time, it is filtered, washed with water, and dried to recover the treated product. In addition, if a dispersant treatment is performed after the cobalt-containing compound has been deposited without the heat treatment described above, the dry heat treatment may be followed by dry heat treatment in a non-oxidizing atmosphere, for example. The magnetic properties can be further enhanced by heat treatment such as the following. In addition, in the case of the dispersant treatment of the present invention, even if heat treatment is performed after the dispersant treatment, the treatment effect of the dispersant is not impaired in any way. Example 1 γ- with coercive force (Hc): 370 OE, axial ratio (L/W): 10, specific surface area (BET value): 40 m 2 /g
Add 100g of acicular magnetic iron oxide fine powder of Fe 2 O 3 to 1 part of water.
to form an aqueous slurry, and while blowing nitrogen gas into the slurry at room temperature (30°C), add 63ml of a 0.85 mol/cobalt sulfate aqueous solution and 0.9 mol//
ferrous sulfate aqueous solution of 126 and then 10
Add 169 ml of an aqueous solution of sodium hydroxide (169 ml) and stir at room temperature (30°C) for 5 hours to precipitate cobalt and ferrous metal hydroxides on the surface of the iron oxide particles for deposition treatment. Ta. After filtering and washing the treated slurry with water, the resulting cake was placed in a container, sealed in an autoclave with water in another container, purged with nitrogen gas, and then placed in the presence of saturated steam at 130°C for 6 hours. heat treated. (The obtained cobalt-containing magnetic iron oxide powder had a specific surface area (BET value) of 35 m 2 /g.) Next, the heat-treated wet cake was dispersed in water to form an aqueous slurry, and the main component was added to the slurry. Add 30 ml of an aqueous hydrochloride solution (concentration 2% by weight) of a diamine (DUOMIN T: manufactured by Lion Akzo) consisting of a mixture of exemplary compounds (7), (8) and (9), and at room temperature (30°C). Stir thoroughly. Next, 18.4 ml of an aqueous sodium oleate solution (concentration 5% by weight) was added and reacted to cause the reaction product to be adsorbed onto the surface of the cobalt-containing magnetic iron oxide particles. Note that the pH of the slurry during the reaction was 7. The reaction-treated slurry was filtered and washed with water, and then the wet cake was dried in a conventional manner to remove water content to obtain a product treated by the method of the present invention. (Sample A) Example 2 In Example 1, 16 ml of a sodium laurate aqueous solution (concentration 5% by weight) was used instead of the sodium oleate aqueous solution, and the hydrochloride aqueous solution of Duomine T (concentration 2% by weight) was used. A product treated by the method of the present invention was obtained in the same manner as in the same example except that 36 ml was used. (Sample B) Example 3 In Example 1, 12.7 ml of a sodium benzoate aqueous solution (concentration 5% by weight) was used instead of the sodium oleate aqueous solution, and the hydrochloride aqueous solution of Duomine T (concentration 2% by weight) was used. 41.8ml
A product treated by the method of the present invention was obtained by processing in the same manner as in the same example except for the use. (Sample C) Example 4 In Example 1, in place of the diamine water-soluble compound called DEUOMINE T, a diamine (DEUOMINE C, LION. 26.3 ml of a hydrochloride aqueous solution (concentration 2% by weight) of Akzo Corporation) and the above sodium oleate aqueous solution (concentration 5% by weight)
A product treated by the method of the present invention was obtained in the same manner as in the same example except that 19.9 ml was used.
(Sample D) Example 5 After coating a cobalt compound and a ferrous compound in the same manner as in Example 1, the treated slurry was filtered and washed with water, and the resulting wet cake was soaked in water. Dispersion formed an aqueous slurry of cobalt-containing magnetic iron oxide. Example 1 for the slurry
The adsorption treatment of the dispersant was carried out in the same manner as in the case of . Note that the pH of the slurry during the adsorption treatment was 10. Next, the adsorption-treated slurry was filtered and washed with water, and the resulting wet cake was heat-treated at 130°C for 6 hours in the presence of saturated steam in the same manner as in Example 1 to obtain a product treated by the method of the present invention. Obtained. (Sample E) Example 6 A product treated by the method of the present invention was treated in the same manner as in Example 5, except that the slurry pH of the dispersant adsorbent was adjusted to 12. Obtained. (Sample F) Example 7 In Example 1, the slurry coated with a cobalt compound and a ferrous compound was filtered and washed with water, and then the resulting wet cake was heated with saturated steam, 5 at 130℃ in nitrogen gas atmosphere
A product treated by the method of the present invention was obtained in the same manner as in the same example except that it was subjected to a dry heat treatment for a period of time. (Sample G) Example 8 In Example 5, after performing the adsorption treatment of the dispersant, the treated slurry was filtered and washed with water, the resulting wet cake was dried by a conventional method, and then placed in a nitrogen gas atmosphere. A product treated by the method of the present invention was obtained in the same manner as in the same example except that it was dry heat treated at 130°C for 5 hours. (Sample H) Example 9 γ- having coercive force (Hc): 340 Oe, axial ratio (L/W): 10, specific surface area (BET value): 45 m 2 /g
Add 100g of acicular magnetic iron oxide fine powder of Fe 2 O 3 to 1 part of water.
to form an aqueous slurry, add 169 ml of a 10 mol/aqueous sodium hydroxide solution to the slurry while blowing nitrogen gas at room temperature (30°C),
Next, 126 ml of a 0.9 mol/aqueous ferrous sulfate solution was added, followed by 63 ml of a 0.85 mol/aqueous cobalt sulfate solution, and the mixture was stirred at room temperature (30°C) for 5 hours to coat the surface of the iron oxide particles with ferrous sulfate. The hydroxide of cobalt was precipitated and then the hydrate of cobalt was precipitated and deposited. The adhesion treatment slurry was filtered and washed with water, and the wet cake was dried by a conventional method, and then dry heat treated at 120° C. for 5 hours in a nitrogen gas atmosphere. 100 g of the obtained magnetic iron oxide powder coated with the cobalt-containing compound (specific surface area, BET value 41 m 2 /g) was dispersed in 1 part of water to form an aqueous slurry, and the slurry was subjected to the above-mentioned procedure. In the same manner as in Example 1, an aqueous hydrochloride solution (concentration 2% by weight) of Duomine T (manufactured by Lion Akzo) 39.6
ml and 24.2 ml of a sodium oleate aqueous solution (concentration 2% by weight) were added and reacted, and the reaction product was adsorbed onto the surface of cobalt-containing magnetic iron oxide particles to obtain a treated product by the method of the present invention. Ta. (Sample) Example 10 In the above Example 9, 39.6 ml of an aqueous hydrochloride solution (concentration 2% by weight) of oleyl trimethylene diamine (exemplified compound (8)) was used in place of the diamine water-soluble compound called Duomine T. Besides,
A treated product was obtained by the method of the present invention by processing in the same manner as in the same example. (Sample J) Example 11 γ- having coercive force (Hc): 335 Oe, axial ratio (L/W): 10, specific surface area (BET value): 50 m 2 /g
Add 100g of acicular magnetic iron oxide fine powder of Fe 2 O 3 to 1 part of water.
to form an aqueous slurry, and add 181 ml of a 10 mol/aqueous sodium hydroxide solution to the slurry under stirring while blowing nitrogen gas into the slurry at room temperature (30°C).
was added, then 139 ml of a 0.90 mol/ferrous sulfate aqueous solution, and further 70 ml of a 0.85 mol/cobalt sulfate aqueous solution, and the mixture was heated at room temperature (30°C) for 50 minutes.
The cobalt compound and ferrous compound were deposited by stirring for a period of time. Next, the adhesion treatment slurry was filtered and washed with water, and then the wet cake was dry heat treated at 125° C. for 4 hours in a nitrogen gas atmosphere. Obtained cobalt-containing magnetic iron oxide powder (specific surface area, BET value
46 m 2 /g) was dispersed in 1 part of water to make an aqueous slurry, and to this slurry was added an aqueous hydrochloride solution of Duomine T (manufactured by Lion Akzo) in the same manner as in Example 1 above. 79.0 ml (concentration: 2% by weight) was added and thoroughly stirred at room temperature. Next, 48.4 ml of an aqueous sodium oleate solution (concentration 5% by weight) was added, and the reaction product was adsorbed onto the surface of the cobalt-containing magnetic iron oxide particles to obtain a product treated by the method of the present invention. Note that the pH of the slurry during the adsorption treatment was 7. (Sample K) Comparative Example 1 The same treatment as in Example 1 was carried out except that the dispersant treatment with diamine and fatty acid was not performed. (Sample L) Comparative Example 2 A sample was treated in the same manner as in Example 1 except that the pH of the slurry during the dispersant adsorption treatment was set to 5. (Sample M) Comparative Example 3 In Example 5, after applying the cobalt-containing compound, the treated slurry (alkali concentration;
The treatment was carried out in the same manner as in the same example, except that the dispersant was adsorbed without filtering 1 mol/OH group and washing with water. (Sample N) Comparative Example 4 The same treatment as in Example 9 was carried out except that the sodium oleate aqueous solution was not added during the dispersant adsorption treatment. (Sample P) Comparative Example 5 In Example 9, instead of treating the diamine and fatty acid with a dispersant, an aqueous hydrochloride solution of an alkyl monoamine compound (manufactured by Lion Akzo; Armin CD; coconut oil fatty acid-based alkyl-substituted monoamine) was used. The treatment was carried out in the same manner as in the same example except that 100 ml of (concentration 2% by weight) was used. (Sample Q) Comparative Example 6 The wet cake obtained by applying the cobalt-containing compound in Example 1 was heat-treated at 130°C for 6 hours in the presence of saturated steam, and the heat-treated cake was dispersed in water. To the aqueous slurry prepared, 75.9 ml of a hydrochloride aqueous solution (20% by weight) of a diamine fatty acid salt (manufactured by Lion Akzo; Duomin TDO; oleate salt of beef tallow fatty acid-based alkyl-substituted trimethylenediamine) was added. After thorough stirring at room temperature (30°C), the treated slurry was filtered and washed with water, and the resulting wet cake was dried in a conventional manner. (Sample R) Duomin TDO is water-insoluble and difficult to mix with the aqueous slurry, resulting in virtually no treatment effect. Also, the aqueous hydrochloride solution of Duomin TDO is viscous and difficult to mix with the aqueous slurry. Uniform mixing was not easy. Comparative Example 7 The same treatment as in Example 11 was carried out except that the dispersant treatment with diamine and fatty acid was not performed. (Sample S) Comparative Example 8 In Example 1, diamine fatty acid salt (manufactured by Lion Akzo; Duomin TDO) was added to the cobalt-containing magnetic iron oxide powder (Sample L).
When preparing the magnetic paint described later, 2 parts by weight were added to 100 parts by weight of magnetic iron oxide powder to form a paint. The samples obtained in the above Examples and Comparative Examples were mixed in the following proportions and kneaded with a sand grinder to prepare magnetic paints. (1) Magnetic iron oxide powder 100 parts by weight (2) Vinyl resin (vinyl chloride: vinyl acetate copolymer) 21〃 (3) Urethane resin 5〃 (4) Methyl ethyl ketone 123〃 (5) Toluene 123〃 (6) Cyclohexane 4. Each of the magnetic coatings prepared as described above was applied onto a polyester film, subjected to orientation treatment, and then dried to produce a magnetic recording medium having a magnetic coating film approximately 6 μm thick. Regarding this recording body, the coercive force (Hc), residual magnetic flux density (Br), squareness ratio (Br/Bm), and orientation ratio (OR) were determined as the magnetic properties by the usual method, and the 400Hz output for an input of -20dB was determined as the electromagnetic conversion characteristics. , were measured respectively. The results are shown in the table below.

【表】【table】

【表】 なお、比較例2の場合には、Hcが分散剤の処
理前のものに比し大巾に低下をきたしたため、そ
の他の測定はおこなわなかつた。 上表の結果から明らかなように、本発明方法に
よつて得られるコバルト含有磁性酸化鉄粉末は、
比較例の場合に比して分散性が向上し、その結果
Br、Br/Bm、ORの磁気特性、400Hz出力の電
磁変換特性のいずれもが改善され、高密度記録媒
体を作成させる上できわめて好適なものであるこ
とがわかる。また本発明方法によつて得られるコ
バルト含有磁性酸化鉄粉末は、該分散剤が強固に
吸着しているため塗料化時に分散剤を添加した場
合に比べてブルーミング、磁性粉の粉落ち(磁気
ヘツドの目づまり)などがほとんどみられないも
のであつた。 (発明の効果) 以上の説明から明らかな通り、本発明方法は、
凝集性の強い比表面積の大きな微粒子のコバルト
含有磁性酸化鉄を、水性懸濁中で、ジアミンの水
溶性化合物と脂肪酸の水溶性化合物との反応で得
られたジアミンの脂肪酸塩分散剤を該粒子表面に
反応吸着させるため分散剤を強固に担持させるこ
とができ該粒子の凝集性をきわめて効果的に改質
することができるものである。 本発明方法によつて得られるコバルト含有磁性
酸化鉄粉末を用いて磁気記録媒体を作成すると、
記録媒体の結合剤樹脂との濡れがよく均一な分散
性がもたされるために配向性よく高充填性磁性層
を形成させることが、磁気特性および電磁変換特
性がいちじるしく改善された高密度記録媒体とす
ることができる。 さらに本発明方法は、磁性酸化鉄のコバルト含
有化合物の披着処理後の水性スラリーを、熱処理
してコバルト含有化合物の被着層を変成処理する
前後で任意におこなうことができ、工程の煩雑化
をともなうことなく、また熱処理時の凝集を効果
的に回避し得るものである。
[Table] Note that in the case of Comparative Example 2, the Hc was significantly lower than that before treatment with the dispersant, so no other measurements were performed. As is clear from the results in the above table, the cobalt-containing magnetic iron oxide powder obtained by the method of the present invention is
The dispersibility is improved compared to the comparative example, and as a result
It can be seen that the magnetic properties of Br, Br/Bm, and OR, and the electromagnetic conversion properties of 400Hz output are all improved, making it extremely suitable for producing high-density recording media. In addition, since the cobalt-containing magnetic iron oxide powder obtained by the method of the present invention has the dispersant strongly adsorbed, it is less prone to blooming and falling of the magnetic powder (magnetic head) than when a dispersant is added at the time of coating. clogging) was hardly observed. (Effects of the invention) As is clear from the above explanation, the method of the present invention has the following effects:
Fine particles of cobalt-containing magnetic iron oxide with a strong cohesive property and a large specific surface area are suspended in an aqueous solution, and a diamine fatty acid salt dispersant obtained by a reaction between a diamine water-soluble compound and a fatty acid water-soluble compound is added to the surface of the particles. Since the dispersant is reacted and adsorbed on the particles, the dispersant can be strongly supported, and the cohesiveness of the particles can be extremely effectively modified. When a magnetic recording medium is made using cobalt-containing magnetic iron oxide powder obtained by the method of the present invention,
High-density recording with significantly improved magnetic properties and electromagnetic conversion properties is achieved by forming a highly packed magnetic layer with good orientation due to good wettability with the binder resin of the recording medium and uniform dispersion. It can be a medium. Furthermore, in the method of the present invention, the aqueous slurry after the deposition treatment of the cobalt-containing compound of the magnetic iron oxide can be heat-treated and the adhesion layer of the cobalt-containing compound can be subjected to the transformation treatment at any time, thereby reducing the complexity of the process. In addition, agglomeration during heat treatment can be effectively avoided.

Claims (1)

【特許請求の範囲】[Claims] 1 BET値が35m2/g以上の比表面積を有する
コバルト含有磁性酸化鉄粒子の水性スラリー中
で、一般式R1NH(CH2oNH2(式中R1は炭素数6
以上のアルキル基、アルケニル基またはアリール
基であり、nは1〜10の整数である)で示される
ジアミンの水溶性化合物の少なくとも1種と、一
般式R2COOH(式中R2は炭素数6以上のアルキル
基、アルケニル基またはアリール基である)で示
される脂肪酸の水溶性化合物の少なくとも1種と
を反応させて、該酸化鉄粒子表面に該反応生成物
であるジアミンの脂肪酸塩を吸着させることを特
徴とするコバルト含有磁性酸化鉄粉末の製造方
法。
1 In an aqueous slurry of cobalt-containing magnetic iron oxide particles having a specific surface area with a BET value of 35 m 2 /g or more, the general formula R 1 NH (CH 2 ) o NH 2 (wherein R 1 is carbon number 6
At least one water-soluble diamine compound represented by the above alkyl group, alkenyl group or aryl group, where n is an integer of 1 to 10) and the general formula R 2 COOH (wherein R 2 is the number of carbon atoms) 6 or more alkyl groups, alkenyl groups, or aryl groups) by reacting with at least one water-soluble fatty acid compound represented by 6 or more alkyl groups, alkenyl groups, or aryl groups, and adsorbing the reaction product fatty acid salt of diamine on the surface of the iron oxide particles. A method for producing cobalt-containing magnetic iron oxide powder, the method comprising:
JP59223459A 1984-10-24 1984-10-24 Manufacture of cobalt containing magnetic iron oxide powder Granted JPS61101010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59223459A JPS61101010A (en) 1984-10-24 1984-10-24 Manufacture of cobalt containing magnetic iron oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59223459A JPS61101010A (en) 1984-10-24 1984-10-24 Manufacture of cobalt containing magnetic iron oxide powder

Publications (2)

Publication Number Publication Date
JPS61101010A JPS61101010A (en) 1986-05-19
JPH0521321B2 true JPH0521321B2 (en) 1993-03-24

Family

ID=16798477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59223459A Granted JPS61101010A (en) 1984-10-24 1984-10-24 Manufacture of cobalt containing magnetic iron oxide powder

Country Status (1)

Country Link
JP (1) JPS61101010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11844494B2 (en) 2019-01-15 2023-12-19 Boston Scientific Scimed, Inc. Alignment method and tools

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482278B1 (en) * 2002-10-21 2005-04-14 한국과학기술연구원 Iron oxide nanoparticles and synthesizing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157216A (en) * 1979-05-28 1980-12-06 Hitachi Maxell Ltd Manufacture of magnetic powder for magnetic recording

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157216A (en) * 1979-05-28 1980-12-06 Hitachi Maxell Ltd Manufacture of magnetic powder for magnetic recording

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11844494B2 (en) 2019-01-15 2023-12-19 Boston Scientific Scimed, Inc. Alignment method and tools

Also Published As

Publication number Publication date
JPS61101010A (en) 1986-05-19

Similar Documents

Publication Publication Date Title
KR860000485B1 (en) Process for producing ferromagnetic metallic particles
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
JPH0521321B2 (en)
JPS6149251B2 (en)
JPS5923505A (en) Magnetic powder
JPS6331085B2 (en)
CA1079057A (en) Stabilization of chromium dioxide magnetic pigments
JPS6021307A (en) Production of ferromagnetic metallic powder
JPH0114175B2 (en)
JPS6132259B2 (en)
JPH0755832B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
KR940007047B1 (en) Cobalt-containing ferro-magnetic iron oxide power and process for producing the same
JPS6411577B2 (en)
JPH037121B2 (en)
JP3242744B2 (en) Method for producing plate-like ferrite magnetic powder
JPH01298106A (en) Manufacture of ferromagnetic iron powder
JPS60181209A (en) Manufacture of magnetic powder
JPH01125805A (en) Magnetic powder having improved dispersibility
JPH0430162B2 (en)
JPS60196905A (en) Manufacture of cobalt denatured ferrite magnetic powder
JPH0230563B2 (en)
JPH0230625A (en) Cobalt-containing ferromagnetic iron oxide powder and production thereof
JPH0790331A (en) Manufacture of magnetic metallic powder
JPH0157482B2 (en)
JP2660714B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder