JPS636807A - Manufacture of fine particles of acicular iron for magnetic recording - Google Patents

Manufacture of fine particles of acicular iron for magnetic recording

Info

Publication number
JPS636807A
JPS636807A JP61149450A JP14945086A JPS636807A JP S636807 A JPS636807 A JP S636807A JP 61149450 A JP61149450 A JP 61149450A JP 14945086 A JP14945086 A JP 14945086A JP S636807 A JPS636807 A JP S636807A
Authority
JP
Japan
Prior art keywords
iron
fine particles
oxyhydroxide
magnetic
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61149450A
Other languages
Japanese (ja)
Inventor
Kazufuyu Sudou
須藤 和冬
Fujio Hayashi
林 富士男
Noritoshi Utsuno
宇津野 徳利
Kimiteru Tagawa
公照 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61149450A priority Critical patent/JPS636807A/en
Publication of JPS636807A publication Critical patent/JPS636807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To easily prepare high dispersive magnetic paint by drying oxyhydroxide iron or iron oxide, or surfacemodified oxyhydroxide iron or iron oxide in the state flocculated in liquid. CONSTITUTION:Oxyhydroxide iron or iron oxide, or surfacemodified oxyhydroxide iron or iron oxide is suspended in liquid. Then, hydrogen ion concentration of suspension is so controlled as to become suspended flocculation range to be flocculated, and then dried. Then, it is converted to ferromagnetic iron fine particles by vapor contact reducting reaction with reducing gas. Thus, the secondary coagulation lump strength of the magnetic fine particles in ferromagnetic metal fine particles are much weakened. Accordingly, the fluidity of organic solvent slurry is very improved to extremely accelerate paint dispersion.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、音声及び映像を主とした高密度磁気記録媒体
用磁性素材としての強磁性金属粉微粒子の製造方法に間
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing ferromagnetic metal powder particles as a magnetic material for high-density magnetic recording media mainly used for audio and video.

〈従来の技術〉 磁気テープ、磁気記録媒体として有用な磁性粉末は、従
来、T−酸化鉄が主体であったが、近年VTR用や高級
オーディオ用の高密度記録媒体が望まれるようになり、
オキシ水酸化鉄あるいは酸化鉄を主体とする粉末を、還
元性ガスによる気相接触還元反応せしめて得られる、金
属鉄、もしくはコバルト或いはニッケルと鉄との合金を
主体とする高い保磁力を有する金属磁性微粒子が用いら
れる様になってきた。金属磁性微粒子の保磁力は形状異
方性が強い為、粒子サイズ、針状性等に依存するが、例
えばテープ記録用としては適性な保磁力・残留磁束密度
が必要である。
<Prior art> Magnetic powder useful for magnetic tapes and magnetic recording media has traditionally been mainly T-iron oxide, but in recent years, high-density recording media for VTRs and high-end audio have become desirable.
A metal with high coercive force that is mainly made of metallic iron, cobalt, or an alloy of nickel and iron, which is obtained by subjecting powder mainly composed of iron oxyhydroxide or iron oxide to a vapor phase catalytic reduction reaction using a reducing gas. Magnetic particles have come to be used. The coercive force of metal magnetic fine particles has strong shape anisotropy, so it depends on particle size, acicularity, etc., but appropriate coercive force and residual magnetic flux density are required for tape recording, for example.

磁気記録用媒体はオーディオ用、ビデオ用を問わず広い
記録周波数帯域での高出力化、低ノイズ化が要請され、
咳要請に対応するため磁性粉末としてはその形状はます
ます微細化の傾向にあり、尚且塗料用樹脂との親和性や
分散性、塗膜の配向性・充填性を更に向上する事が望ま
れ、バインダー樹脂・各種添加剤の改良及び塗料分散・
媒体加工技術の改良研究が成されている(例えば明石三
部「磁気テープの進歩」、日本応用磁気学会誌、7(3
)、185(1983)、) 。
Magnetic recording media, whether used for audio or video, are required to have high output and low noise over a wide recording frequency band.
In order to respond to the demand for coughs, the shape of magnetic powders is becoming increasingly finer, and it is desired to further improve the affinity and dispersibility with paint resins, as well as the orientation and filling properties of paint films. , improvement of binder resins and various additives, and coating dispersion/
Research to improve media processing technology has been carried out (for example, Akashi Sanbe ``Advances in magnetic tape'', Journal of the Japan Society of Applied Magnetics, 7 (3).
), 185 (1983), ).

しかして−般に、粒子が微細化すると表面エネルギーが
大きくなり、その為に二次凝集性が強くなる。即ち、磁
性粉末の場合、高出力化、低ノイズ化の要請に対応する
ために素材の一次粒子を微細化すればするほど、その表
面エネルギーが増加するので、逆に粒子間の凝集・焼結
が一層激しくなり、容易に塗料分散する事が困難になる
という二律背反的な問題が惹起する。
However, in general, when particles become finer, their surface energy increases, and therefore, secondary agglomeration becomes stronger. In other words, in the case of magnetic powder, the finer the primary particles of the material are made to meet the demands for higher output and lower noise, the more their surface energy increases, and conversely the agglomeration and sintering between particles increases. This results in a trade-off problem in that the particles become more intense and it becomes difficult to easily disperse the paint.

磁性素材としての金属微粒子はγ−酸化鉄などに比べて
飽和磁化(σS)が大きいことなどから凝集し易く、又
表面変性オキシ水酸化鉄の気相接触還元で製造すると、
粒子間の焼結が生成する事もあり、分散操作も困難にな
る。従って、磁性金属微粒子の二次凝集塊を少なくする
事、又は磁性金属微粒子の二次凝集強度を制御する事、
即ち一次粒子の面接触(aggrega tes)を少
なくし、線接触(agg lomera Les)にと
どめる技術が重要になってきた(例えば、安藤浩人「顔
料の分散」印刷インキアドバンス講座−印刷インキと被
印刷物の課題要旨集)。
Fine metal particles as a magnetic material tend to aggregate because of their larger saturation magnetization (σS) compared to γ-iron oxide, etc., and when produced by vapor phase catalytic reduction of surface-modified iron oxyhydroxide,
Sintering between particles may occur, making dispersion operations difficult. Therefore, it is possible to reduce the secondary agglomeration of magnetic metal fine particles or to control the secondary agglomeration strength of magnetic metal fine particles.
In other words, techniques to reduce surface contact (aggregates) of primary particles and limit line contact (aggrega tes) have become important (for example, see Hiroto Ando's ``Pigment Dispersion'' Printing Ink Advanced Course - Printing Inks and Coverings). Collection of printed assignment summaries).

その為、原料工程でオキシ水酸化鉄或いは酸化鉄を樹脂
・脂肪酸等の各種有機物で処理し、仮焼・還元を行う事
も提案されている(特公昭56−17291号、特公昭
59−51725号、特開昭60−74405号)。
Therefore, it has been proposed to treat iron oxyhydroxide or iron oxide with various organic substances such as resins and fatty acids in the raw material process, and to perform calcination and reduction (Japanese Patent Publication No. 56-17291, Japanese Patent Publication No. 59-51725). No., JP-A-60-74405).

又磁性粉をカンプリング剤による表面処理・表面活性側
の吸着・有機モノマーの重合樹脂処理・マイクロカプセ
ル化処理等の化学的処理、所謂表面改質がホモミキサー
・デイスパー等による機械的分散処理と併用する系で成
されている(例えば、小石真純、角田光雄「粉体の表面
化学」日刊工業新聞社)。
In addition, chemical treatments such as surface treatment of magnetic powder with a camping agent, adsorption on the surface active side, polymerization resin treatment of organic monomers, microencapsulation treatment, so-called surface modification, and mechanical dispersion treatment using a homomixer, disper, etc. (For example, Masumi Koishi and Mitsuo Tsunoda, "Surface Chemistry of Powder," Nikkan Kogyo Shimbun).

前者の方法に於いては仮焼・還元工程でを搬物が燃焼、
熱分解或いは炭素化等により磁性粉末中にそのまま残存
する事は殆どない為好都合であり、粒子間の接触を少な
くし、焼結を回避する効果は得られるが、表面処理され
た鉄粉の懸濁ケーキが処理有機物により凝集構造をとり
やすくなって分散しにくくなり塗料特性が非常に低下す
ることがしばしばあり、適切なを搬物の種類を選択する
こと、またこれを適切に使用することばは非常に難しい
In the former method, the material is burned during the calcination and reduction process,
This is advantageous because it hardly remains as it is in the magnetic powder due to thermal decomposition or carbonization, and it has the effect of reducing contact between particles and avoiding sintering, but there are some concerns about surface-treated iron powder. The turbid cake tends to take on an agglomerated structure due to the organic matter being treated, making it difficult to disperse and often resulting in a significant drop in paint properties. extremely difficult.

後者の方法では、表面変性オキシ水酸化鉄の還元で製造
した金属磁性微粒子はその本質として、形骸粒子が多孔
性となる為、γ−Fe、O,等の酸化鉄系の磁性粉に比
べて、機械的強度が強く、又金属粉である為発火の危険
性が高い、従って、各種の表面改!操作、特に凝集塊を
一次粒子化する微粒化処理は細心の注意をはらって行う
ことが必要である。
In the latter method, metal magnetic fine particles produced by reduction of surface-modified iron oxyhydroxide are essentially porous particles, so compared to iron oxide-based magnetic powders such as γ-Fe, O, etc. , has strong mechanical strength, and since it is a metal powder, there is a high risk of ignition. Therefore, various surface modifications! The operation, especially the atomization treatment for converting the agglomerates into primary particles, must be performed with extreme caution.

〈発明が解決しようとする問題点〉 音声及び映像を主対象とした高密度磁気記録媒体用の磁
性素材としての針状性金属磁性微粒子は凝集性・焼結性
が大きく、基本的に7−FezOy或いはコバルト含有
γ−Fez03に比べて塗料分散は困難である。更に高
出力・低ノイズ化の為に、粒子はますます微細化の傾向
にあるが、これを充分分散されるために塗料分散時間の
延長や強力な機械分散が必要となり、その結果該金属磁
性微粒子の針状の形状を保持できなかったり、未分散凝
集塊が残存したりしてしまい塗料を媒体加工した場合の
磁気特性や媒体表面の平滑性が悪くなる場合が産生ずる
。その結果、磁性素材の粒子自体は充分微細化したにも
かかわらず、実際にテープ等を形成した場合には、意図
した通りの高出力・低ノイズの電磁変換特性が得られな
かった。
<Problems to be solved by the invention> Acicular metal magnetic fine particles used as magnetic materials for high-density magnetic recording media mainly intended for audio and video have high agglomeration and sintering properties, and are basically 7- Paint dispersion is difficult compared to FezOy or cobalt-containing γ-Fez03. Furthermore, in order to achieve higher output and lower noise, particles tend to become smaller and finer, but in order to sufficiently disperse them, it is necessary to extend the paint dispersion time and use powerful mechanical dispersion, and as a result, the metal magnetic The acicular shape of the fine particles may not be maintained, or undispersed aggregates may remain, resulting in poor magnetic properties and poor media surface smoothness when the paint is processed into a medium. As a result, although the particles of the magnetic material themselves were made sufficiently fine, when a tape or the like was actually formed, it was not possible to obtain the intended high-output, low-noise electromagnetic conversion characteristics.

また、容易に塗料分散できるように表面改質して1!遺
された磁性金属粉は、併用する微粒化処理操作、すなわ
ち、凝集している粒子を機械的にほぐす処理操作により
粒子崩壊が起こり易い為、機械的処理の種属の選定、使
用条件等が難しく、磁性粉の磁気特性、特に保磁力の低
下や媒体加工した場合の角型比(Br/8m)の低下等
が生じ易く、本来の目的である微粒化処理を達成するこ
とは非常に困難であった。
In addition, the surface has been modified so that paint can be easily dispersed! The remaining magnetic metal powder is susceptible to particle disintegration due to the combined atomization treatment, that is, the mechanical loosening of aggregated particles. It is very difficult to achieve the original purpose of atomization treatment, as it tends to cause a decrease in the magnetic properties of magnetic powder, especially the coercive force, and a decrease in the squareness ratio (Br/8m) when processing media. Met.

本発明は以上の問題点を解決すべく鋭意検討しした結果
、超微細な磁性金属微粒子を製造するに当たって、その
中間工程で二次凝集の極めて弱い原料粉を意図的に生成
せしめる事により、容易に高分散性磁性塗料の調製可能
な磁性金属微粒子を製造しうろことを見出し、本発明を
完成した。
As a result of intensive studies to solve the above problems, the present invention has been developed to facilitate the production of ultrafine magnetic metal particles by intentionally producing raw material powder with extremely weak secondary aggregation in an intermediate process. The inventors discovered that it is possible to produce magnetic metal fine particles that can be used to prepare highly dispersed magnetic paints, and completed the present invention.

く問題点を解決する為の手段〉 本発明の要旨は、上記の如く、よく知られた湿式法によ
る微細な針状性オキシ水酸化鉄微粒子を合成し、次いで
形状保持成分類による被着変性処理を施し、以後必要に
応じて洗浄し、該懸濁液を凝集させた後に乾燥・粉砕す
るという手段を採用することに事により、その後の水素
ガスを主体とする還元性ガスによる気相接触還元反応に
供した該微粒子が、粗原料たるオキシ水酸化鉄微粒子の
それを破損・破壊する事なく良く継承した針状性の形状
を示し得る事、および、かくして得られた該微粒子の二
次凝集性は極めて弱く、溶剤中で容易にほぐれるため、
粒子間焼結の少なく、容易に塗料分散が可能であるとい
う特性を有する事点にある。
Means for Solving Problems> As described above, the gist of the present invention is to synthesize fine acicular iron oxyhydroxide fine particles by a well-known wet method, and then to modify the adhesion using a shape-retaining component. By applying a method of processing, washing as necessary, coagulating the suspension, and then drying and pulverizing it, subsequent gas phase contact with a reducing gas mainly composed of hydrogen gas can be achieved. The fine particles subjected to the reduction reaction can exhibit an acicular shape well inherited from that of the coarse raw material iron oxyhydroxide fine particles without being damaged or destroyed, and the secondary shape of the fine particles thus obtained can be Cohesion is extremely weak and easily loosens in solvents.
It has the characteristics that there is little interparticle sintering and it can be easily dispersed in paint.

すなわち、本発明は、オキシ水酸化鉄あるいは酸化鉄を
、若しくは、表面変性したオキシ水酸化鉄あるいは酸化
鉄を還元性ガスによる気相接触還元反応せしめて強磁性
鉄微粒子を製造する方法に於いて、該オキシ水酸化鉄あ
るいは酸化鉄を、若しくは、表面変性したオキシ水酸化
鉄あるいは酸化鉄を液中で凝集させた状態で乾燥する事
を特徴とする針状性の強磁性金属鉄微粒干支の製造方法
であり、特に、オキシ水酸化鉄あるいは酸化鉄を、若し
くは、表面変性したオキシ水酸化鉄あるいは酸化鉄を液
中に懸濁させ、該懸濁液の水素イオン濃度を該懸濁液の
凝集領域に制御してこれらを凝集せしめた後乾燥し、更
に還元性ガスによる気相接触還元反応によって強磁性鉄
微粒子にする針状性の強磁性金属鉄微粒干支の製造方法
である。
That is, the present invention provides a method for producing ferromagnetic iron fine particles by subjecting iron oxyhydroxide or iron oxide, or surface-modified iron oxyhydroxide or iron oxide, to a vapor phase catalytic reduction reaction with a reducing gas. , an acicular ferromagnetic metallic iron fine particle zodiac characterized by drying the iron oxyhydroxide or iron oxide, or the surface-modified iron oxyhydroxide or iron oxide in an agglomerated state in a liquid. This is a production method, in particular, in which iron oxyhydroxide or iron oxide, or surface-modified iron oxyhydroxide or iron oxide, is suspended in a liquid, and the hydrogen ion concentration of the suspension is adjusted by adjusting the hydrogen ion concentration of the suspension. This is a method for producing acicular ferromagnetic metallic iron fine particles, which are controlled in an agglomeration region, agglomerated, dried, and further made into ferromagnetic iron fine particles by a gas phase catalytic reduction reaction using a reducing gas.

なお、本発明のもっとも好ましい実施の態様としては、
比表面積20〜150m”/gr、のα−オキシ水酸化
鉄もしくはP 5Al−、Ti、、Cr、、 Mn、 
Co、、Nt、 Zn等の元素から選ばれた少なくとも
一種の元素が共沈したα−オキシ水酸化鉄に、堺結回避
・形状保持・保磁力制御・耐蝕性の向上等の為に、B 
、 Kg、AI、5iSP s Tis ZnSCrS
Mn5 Co、 Ni、 Cu、 Zr、Sn、Pb、
 Ca5Ba等の元素から選ばれた少なくとも一種の元
素を表面被着して水洗後、液中に懸濁しその水素イオン
濃度(pi()を各種の鉱酸・有機酸或いはアルカリで
制御し、凝集させてその凝集状態を保持させたまま乾燥
・粉砕し、必要に応じて300〜800℃において仮焼
し、表面変性α−酸化鉄とした後、水素ガスを主体とす
る還元性ガスにより、300〜500℃で気相接触還元
反応に供して鉄を主体とした金属磁性微粒子を製造する
ものである。
Note that the most preferred embodiment of the present invention is as follows:
α-Iron oxyhydroxide or P5Al-, Ti, Cr, Mn, with a specific surface area of 20 to 150 m''/gr.
B is added to α-iron oxyhydroxide co-precipitated with at least one element selected from Co, Nt, Zn, etc. to avoid Sakai formation, maintain shape, control coercive force, and improve corrosion resistance.
, Kg, AI, 5iSPs Tis ZnSCrS
Mn5 Co, Ni, Cu, Zr, Sn, Pb,
At least one element selected from elements such as Ca5Ba is deposited on the surface, washed with water, suspended in the liquid, and the hydrogen ion concentration (pi) is controlled with various mineral acids, organic acids, or alkalis, and the mixture is aggregated. After drying and pulverizing the agglomerated state while maintaining its agglomerated state, and calcining at 300 to 800°C as necessary to obtain surface-modified α-iron oxide, it is heated to 300 to 800°C using a reducing gas mainly containing hydrogen gas. Metal magnetic fine particles mainly composed of iron are produced by subjecting the particles to a gas phase catalytic reduction reaction at 500°C.

本発明において使用されるオキシ水酸化鉄或いは酸化鉄
は、長軸径0.1〜1,0μ、短軸径0.01〜0.1
μ程度のものでありその軸比(L/El) 4〜30の
形状の所謂コロイド粒子と考える事ができる。
The iron oxyhydroxide or iron oxide used in the present invention has a major axis diameter of 0.1 to 1.0μ and a minor axis diameter of 0.01 to 0.1.
It can be considered to be a so-called colloidal particle having an axial ratio (L/El) of 4 to 30.

本発明は、オキシ水酸化鉄あるいは酸化鉄を、若しくは
、表面変性したオキシ水酸化鉄あるいは酸化鉄を液中で
「凝集させた状態で」乾燥する事を最も大きな特徴とす
る。ここで本発明に於ける「凝集させた状態で」とは、
オキシ水酸化鉄あるいは酸化鉄の、若しくは、表面変性
したオキシ水酸化鉄あるいは酸化鉄の懸濁液が、容易に
二相分離し、水相が上部に鉄のゲル相が下部に形成され
る状態にあることをいう、これに対し「凝集させない状
態で」とは、懸濁液が「分散状態」にあることを意味し
オキシ水酸化鉄あるいは酸化鉄の、若しくは、表面変性
したオキシ水酸化鉄あるいは酸化鉄の懸濁液が、容易に
は二相分離せず長時間−相状態つまり見掛は上半乳状の
状態にあることを意味する。すなわち、本発明者等の知
見によると、該懸濁液は外見上、かかる凝集状態にある
「凝集領域」と分散状態にある「分散領域」の見掛は上
明瞭に区別される二つの異なる領域状態をとりうるちの
なのである。
The main feature of the present invention is that iron oxyhydroxide or iron oxide, or surface-modified iron oxyhydroxide or iron oxide is dried in a liquid in an "agglomerated state". Here, in the present invention, "in an aggregated state" means
A state in which a suspension of iron oxyhydroxide or iron oxide, or a surface-modified iron oxyhydroxide or iron oxide, easily separates into two phases, with an aqueous phase at the top and an iron gel phase at the bottom. In contrast, "in a non-agglomerated state" means that the suspension is in a "dispersed state". Alternatively, it means that the iron oxide suspension does not easily separate into two phases and remains in a phase state for a long time, that is, it appears to be in an upper half milky state. That is, according to the findings of the present inventors, the suspension has two distinct appearances: the "agglomerated region" in the agglomerated state and the "dispersed region" in the dispersed state. It is the one that can take on the state of the realm.

該二つの領域は、例えば粘度やrj:、降高さをもって
表示することが出来る。すなわち、凝集領域は分散領域
に比較して、より粘度が高く、より沈降高さが小さい状
態にある事を意味する。従って、オキシ水酸化鉄の製造
方法・共沈量、共沈量或いは表面変性の方法・表面変性
種・表面変性種の量等によっても異なる為に、一義的に
は特定できないが、懸濁液の水素イオン濃度(pH)を
変えてこれに対して前記の粘度・沈降高さの測定をし、
後者を縦軸に前者を横軸にプロットすることにより、後
記実施例に示すようにグラフ上でこの二つの領域を決定
することができる。たとえば、第1図においては、大略
pH3〜pH7の範囲が凝集領域であり、pH8〜pH
12の範囲が分散領域であることがわかる。或いは希薄
な懸濁液でのζ電位を測定をし、等電点付近のpHを測
定することによっても粒子の凝集・分散を知る事ができ
る。
These two regions can be displayed using, for example, viscosity, rj:, and falling height. In other words, the agglomerated region has a higher viscosity and a lower sedimentation height than the dispersed region. Therefore, it cannot be unambiguously determined because it varies depending on the manufacturing method of iron oxyhydroxide, the amount of coprecipitation, the amount of coprecipitation, the method of surface modification, the amount of surface-modified species, and the amount of surface-modified species. The above-mentioned viscosity and sedimentation height were measured by changing the hydrogen ion concentration (pH) of
By plotting the latter on the vertical axis and the former on the horizontal axis, these two areas can be determined on the graph as shown in Examples below. For example, in Figure 1, the range of approximately pH 3 to pH 7 is the aggregation region, and the range of pH 8 to pH 7 is the aggregation region.
It can be seen that the range of 12 is the dispersion area. Alternatively, particle aggregation and dispersion can also be determined by measuring the ζ potential of a dilute suspension and measuring the pH near the isoelectric point.

例えば、α−オキシ水酸化鉄懸濁液の場合は通常pH7
付近を境界領域としてそれ以下では分散し、それ以上で
凝集するが、表面変性α−オキシ水酸化鉄では凝集領域
が逆転する場合もあり、いちがいには規定出来ないので
実験的に定めるのが好ましい。
For example, in the case of α-iron oxyhydroxide suspension, the pH is usually 7.
The vicinity is defined as a boundary region, below which it is dispersed, and above it is agglomerated; however, in the case of surface-modified α-iron oxyhydroxide, the aggregation region may be reversed, and cannot be determined exactly, so it is preferable to determine it experimentally.

表面変性オキシ水酸化鉄を水洗後更に懸濁凝集させるの
ではなく、あらかじめこの凝集領域のpHを実験的に定
めておけば、酸あるいはアルカリによって凝集領域のp
Hに調整した水で水洗する事により凝集状態を制御する
ことも可能であり、更に好ましくは硝酸のような揮発性
の酸或いはアンモニアのような揮発性のアルカリを使用
する事が望ましい、かくして巨大な束状塊の少なく、又
粒子間の接触の少ない原料粉とする事ができる。
Rather than further suspending and flocculating the surface-modified iron oxyhydroxide after washing with water, if the pH of this flocculation region is determined experimentally in advance, the pH of the flocculation region can be lowered by acid or alkali.
It is also possible to control the agglomeration state by washing with water adjusted to H, and it is more preferable to use a volatile acid such as nitric acid or a volatile alkali such as ammonia. It is possible to obtain a raw material powder with less bunch-like lumps and less contact between particles.

該粉砕粉を必要に応じて300〜800℃において仮焼
し表面変性α−Fe、O,とした後、還元炉に充填し、
水素ガスを主体とする還元性ガスにより、300〜50
0℃で気相接触還元反応することにより凝集の弱い金属
磁性粉末が得られる。
The pulverized powder is calcined at 300 to 800°C as necessary to form surface-modified α-Fe, O, and then charged into a reduction furnace.
300 to 50 by reducing gas mainly composed of hydrogen gas
A weakly agglomerated metal magnetic powder can be obtained by carrying out a gas phase catalytic reduction reaction at 0°C.

かくして得られた該金属磁性微粒子は極めて微細な粒子
から構成されており、非常に活性が大きく、容易に酸化
され、そのままでは大気中で自然発火し酸化鉄に戻って
しまう事から、それ自体公知の方法により表面に酸化被
膜を形成し、安定化することが望ましい。
The metal magnetic fine particles obtained in this way are composed of extremely fine particles, have very high activity, are easily oxidized, and spontaneously ignite in the atmosphere and return to iron oxide, which is a well-known phenomenon in itself. It is desirable to form an oxide film on the surface and stabilize it by the method described above.

凝集領域においては、微粒子は液中で二次凝集塊を形成
していると考えられるが、これを乾燥して得られる二次
凝集塊は、該金属磁性微粒子の塗料調製においては、そ
の強度がおそらく比較的弱く容易にほぐれやすい為、有
機溶剤にしん漬すると良好な流動性が得られ、又バイン
ダー樹脂との親和性・分散性の助荊として加えられる各
種添加剤ともすみやかに、尚且均−に吸着が進行し、容
易に磁性塗料とする事が出来、その結果として特に−プ
媒体の表面平滑性が向上するのである。
In the agglomeration region, the fine particles are thought to form a secondary agglomerate in the liquid, but the strength of the secondary agglomerate obtained by drying the metal magnetic fine particles is Probably because it is relatively weak and easily loosens, good fluidity can be obtained when soaked in an organic solvent, and it can also be quickly and evenly mixed with various additives added to improve affinity and dispersibility with the binder resin. As a result, the magnetic coating material can be easily made into a magnetic coating material, and as a result, the surface smoothness of the coating medium is particularly improved.

本発明の最大の特徴は通常の発想とは全く逆に、凝集状
態にある微粒子を乾燥することにある。
The most important feature of the present invention is that, contrary to conventional thinking, fine particles in an aggregated state are dried.

おそらく、当業者であれば、分散状態にある微粒子を乾
燥した方がより分散状態にある乾燥微粒子が得られると
考えるのが普通であろうが、意外なことに、分散状態に
ある微粒子を乾燥した場合は、逆に極めて強固に結合し
た二次凝集塊が乾燥の過程で新たに生成して仕舞うので
ある。これに対し、はじめからある程度の凝集状態にあ
る状態のものを乾燥した場合は恐らく、弱い結合状態に
ある二次凝集塊が生成するため本願の目的を好適に達成
することが出来るのである。
Those skilled in the art would probably think that drying fine particles in a dispersed state would yield dry fine particles in a more dispersed state, but surprisingly, drying fine particles in a dispersed state If this happens, on the other hand, extremely strongly bonded secondary aggregates will be newly formed during the drying process. On the other hand, if the material is dried to some degree in agglomerated state from the beginning, secondary agglomerates in a weakly bonded state are likely to be produced, so that the object of the present application can be suitably achieved.

〔作 用〕[For production]

本発明の方法により得られる強磁性金属微粒子の特徴は
従来のものより磁性微粒子の二次凝集塊強度がはるかに
弱い事である。該二次凝集塊は有機溶剤中で容易にほぐ
れると思われ、従って、咳強磁性金属微粒子の有機溶剤
スラリーの流動性は非常に良好であり、塗料分散性が極
めて速い事である。
A feature of the ferromagnetic metal fine particles obtained by the method of the present invention is that the secondary agglomerate strength of the magnetic fine particles is much weaker than that of conventional ones. It is thought that the secondary agglomerates are easily loosened in an organic solvent, and therefore, the fluidity of the organic solvent slurry of the ferromagnetic metal fine particles is very good, and the coating dispersibility is extremely fast.

特に、原料である表面が変成されたオキシ水酸化鉄の乾
燥粉体の凝集を制御する事により仮焼成いは気相接触還
元反応を行う場合、粒子間焼結が少な(、製造された磁
性金属微粒子の有機溶剤スラリーの流動性・塗料分散性
も良好となり、極めて好ましい。
In particular, when pre-calcination or gas phase catalytic reduction reaction is performed by controlling the agglomeration of dry powder of iron oxyhydroxide, which is the raw material and whose surface has been modified, interparticle sintering is small (the produced magnetic The fluidity and paint dispersibility of the organic solvent slurry of metal fine particles are also improved, which is extremely preferable.

また、近年の磁性微粒子をより微細化しようという傾向
にある中で、特に、長軸径:0.3μ以下の針状性金属
微粒子系の使用が必要となる8m/mビデオ用途等に於
いて本発明の強磁性金属微粒子製造方法は極めて有用な
手段となり得るものである。
In addition, in recent years there has been a trend to make magnetic fine particles even finer, especially in 8m/m video applications, etc., which require the use of acicular metal fine particles with a major axis diameter of 0.3μ or less. The method for producing ferromagnetic metal fine particles of the present invention can be an extremely useful means.

この結果、媒体加工を施した場合、より微細化を計った
微粒子系を素材粉として使用可能になり、磁気特性上は
殆ど変わる事のないシステムにする事が可能となる。こ
の事の直接的結果として、媒体の表面平滑性が向上し、
更に磁気言己録特性、即ち高周波数域でのtUt変換特
性(=感度・出力)およびノイズが極めて大きく改善さ
れる事となる〔実施例〕 以下、実施例及び比較例により、本発明の方法及び効果
を詳細に述べる。
As a result, when media processing is performed, it becomes possible to use finer particles as the material powder, and it becomes possible to create a system with almost no change in magnetic properties. As a direct result of this, the surface smoothness of the media increases,
Furthermore, the magnetic recording characteristics, that is, the tUt conversion characteristics (=sensitivity/output) in the high frequency range, and the noise are significantly improved [Example] Hereinafter, the method of the present invention will be explained with reference to Examples and Comparative Examples. and effects in detail.

実施例−1〜2 本実施例は、所謂オーディオメタルポジション用の、金
属鉄を主成分とした強磁性金属微粒子についての本発明
の方法及びその効果の大要を示す例である。
Examples 1 to 2 The present examples are examples showing a summary of the method of the present invention and its effects regarding ferromagnetic metal fine particles containing metal iron as a main component for so-called audio metal positions.

〈原料粉の製造〉 特開昭57−106527号及び57−96504号記
載の方法により、P 、 Ni  及びSi−成分を重
量比でP/Fe・0.3/100 、Ni/Fe=1.
5/100 、及びSi/Fe=1.5/100だけ含
む針状性オキシ水酸化鉄微粒子を合成し、水洗した。
<Manufacture of raw material powder> By the method described in JP-A-57-106527 and JP-A-57-96504, P, Ni and Si components were mixed in a weight ratio of P/Fe.0.3/100, Ni/Fe=1.
5/100, and acicular iron oxyhydroxide fine particles containing Si/Fe=1.5/100 were synthesized and washed with water.

該微粒子の形状は、窒素ガスの吸着特性から算出した比
表面mc:sA)は39.2m”/gr、又6乃至9万
倍の透過電子顕微鏡像から算出した長軸径(=シ)との
比と短軸径(:D)との比即ち軸比(: L/D)は1
5であった。
The shape of the fine particles has a specific surface mc:sA) of 39.2 m''/gr calculated from the adsorption characteristics of nitrogen gas, and a major axis diameter (=shi) calculated from a transmission electron microscope image of 60,000 to 90,000 times. and the short axis diameter (:D), that is, the axial ratio (:L/D) is 1
It was 5.

〈オキシ水酸化鉄の分散・凝集〉 上記の水洗ペーストを水で希釈・攪拌し、硝酸及びアン
モニア水でオキシ水酸化鉄スラリー(5wtX)の水素
イオン濃度(pH)を調整した。各スラリーの粘度をB
型粘度計にて測定した結果を第1図に示す、又水洗ペー
ストを水で希釈・攪拌し、硝酸・アンモニア水でそのp
Hを制御したオキシ水酸化鉄スラリー(0,2wtZ)
を調整し、24時間後の沈降高さを測定した結果を第1
図に示す。この結果より、pH3〜7付近が該スラリー
の凝集開城である事がわかったので、該ペースト(オキ
シ水酸化鉄の含!20et$) IKgをライカイ器に
より混煉しながら硝酸で各pH4,5(実施例1)及び
pH5,5(実施例2) に制御し、更に2時間混煉し
、次いで箱型熱風乾燥器にて120℃、18時間乾燥し
、奈良式自由粉砕機により粉砕し原料粉とした。
<Dispersion/coagulation of iron oxyhydroxide> The above-mentioned washing paste was diluted with water and stirred, and the hydrogen ion concentration (pH) of the iron oxyhydroxide slurry (5wtX) was adjusted with nitric acid and aqueous ammonia. The viscosity of each slurry is B
The results measured using a viscometer are shown in Figure 1.The washing paste was diluted and stirred with water, and its pH was diluted with nitric acid/ammonia water.
Iron oxyhydroxide slurry with controlled H (0.2wtZ)
and measured the sedimentation height after 24 hours.
As shown in the figure. From this result, it was found that the slurry coagulated and opened at around pH 3 to 7. Therefore, while kneading IKg of the paste (containing iron oxyhydroxide, !20 et $) in a rice cooker, it was mixed with nitric acid to pH 4 and 5, respectively. (Example 1) and pH 5.5 (Example 2), kneaded for an additional 2 hours, dried in a box-type hot air dryer at 120°C for 18 hours, and crushed in a Nara type free crusher. It was powdered.

〈還元鉄粉の製造〉 かくして得られた粉砕粉体を固定床方式の還元炉に充填
し、水素ガスによる気相接触還元反応(:is、a7s
℃、ガス空間速度=20 Nl!13−H2/にg −
Fe、)Ir)による還元鉄粉とした。
<Manufacture of reduced iron powder> The pulverized powder thus obtained was charged into a fixed bed reduction furnace, and subjected to a gas phase catalytic reduction reaction (:is, a7s) using hydrogen gas.
°C, gas space velocity = 20 Nl! 13-H2/nig −
It was made into reduced iron powder using Fe, )Ir).

次いで、該微粒子を充分トルエンに侵順して後、該微粒
子スラリーをホーロー製バット上に1c11程の厚味に
なる様に移し、大気中でトルエンの飛散処理を加えた。
Next, after thoroughly soaking the fine particles in toluene, the fine particle slurry was transferred onto an enamel vat to a thickness of about 1c11, and subjected to toluene scattering treatment in the atmosphere.

溶剤臭が無くなった段階で磁性粉を回収し、風乾金属鉄
粉とした。
When the smell of the solvent disappeared, the magnetic powder was collected and made into air-dried metal iron powder.

該風乾金属鉄粉の形状を3万乃至9万倍の電子顕微鏡で
観察すると、イメージ上は一次原料のオキシ水酸化鉄の
形状を良く継承し、破順・破壊、更に粒子間焼結の類は
殆ど見られなかった。
When the shape of the air-dried metallic iron powder is observed with an electron microscope at a magnification of 30,000 to 90,000 times, it appears that it closely follows the shape of the primary raw material, iron oxyhydroxide, and shows signs of fracture order, fracture, and interparticle sintering. was hardly seen.

該風乾金属鉄粉の磁気特性を東英工業社製試料振動型磁
力計VSM−111により測定し、又比表面積を窒素ガ
スの吸着特性から算出し表に示す。
The magnetic properties of the air-dried metallic iron powder were measured using a sample vibrating magnetometer VSM-111 manufactured by Toei Kogyo Co., Ltd., and the specific surface area was calculated from the nitrogen gas adsorption properties and is shown in the table.

〈風乾金rIIq鉄粉の分散型の評価〉該風乾金属鉄粉
60gr、を採取して、下記材料と共に、五十嵐機械製
造■製テスト用4筒弐サンドグラインダーMODEL 
4TSG−1/4、内容積800m l  のポットに
投入し、回転数1500rpm、で分散し、15.30
、60.120m1n、 fiに塗料30gr、を抜き
取った。
<Evaluation of the dispersion type of air-dried metal iron powder> 60g of the air-dried metal iron powder was collected and used together with the following materials in a 4-tube sand grinder MODEL manufactured by Igarashi Kikai Manufacturing ■.
Pour 4TSG-1/4 into a pot with an internal volume of 800 ml and disperse at a rotation speed of 1500 rpm.
, 60.120m1n, 30g of paint was extracted from fi.

分散メディアとしては、1 、5mmφのガラスピーズ
を用いた。
Glass beads with a diameter of 1.5 mm were used as the dispersion media.

・UCC社製塩酢ビ系ポリ? −VAG)I:6.Og
r・三井東圧化学社製ポリウレタン NL−2448:6.Ogr −1容剤 トルエン:85gr、、 MEK:85gr
・UCC made salt-vinyl acetate poly? -VAG)I:6. Og
r. Polyurethane NL-2448 manufactured by Mitsui Toatsu Chemical Co., Ltd.: 6. Ogr-1 container Toluene: 85gr, MEK: 85gr
.

次いで、分散メディアを分離して磁性塗料とし、磁気テ
ープ仕様の精密コーターにてアプリケーターを利用して
13μ厚の東し社製ポリエステル・フィルム(ニルミラ
ー13W−QO6S)上に塗工した。乾@後、カレンダ
ー・ロール処理する事な(、スガ試験機社製デジタル変
角光沢計UGV−50(大射角60°)により塗膜の光
沢度を測定した。その結果を表に示す、これより以下に
記述する比較例−1に比べて、分散速度は速く、尚且分
散の到達も高くなる事がわかった。
Next, the dispersion media was separated to obtain a magnetic paint, which was coated onto a 13μ thick polyester film (Nilmirror 13W-QO6S) manufactured by Toshi Co., Ltd. using an applicator in a precision coater equipped with magnetic tape. After drying, the gloss of the coating film was measured using a digital variable angle gloss meter UGV-50 (large incident angle 60°) manufactured by Suga Test Instruments Co., Ltd. without calendering and rolling treatment.The results are shown in the table. From this, it was found that the dispersion speed was faster and the attainment of dispersion was also higher than in Comparative Example-1 described below.

〈風乾金属鉄粉の塗料化、塗工およびシートの評価〉 該風乾金属鉄粉10gr、を採取して、下記材料と共に
、内容積550m lのポットに投入し、米国レッド・
デビル社製ペイント・シェーカーで6時間混合・分散を
続けた。分散メディアとしては、2.0Llalφのア
ルミナビーズを用いた。
<Conversion of air-dried metallic iron powder into paint, coating, and evaluation of sheets> 10g of the air-dried metallic iron powder was collected and placed in a pot with an internal volume of 550 ml along with the following materials.
Mixing and dispersion continued for 6 hours using a DeVille paint shaker. Alumina beads of 2.0Llalφ were used as the dispersion media.

−UCC社製塩酢ビ系ポリv −VAGH:0.8gr
・三井東圧(’W学社製ポリウレタン NL−2448:0.8gr ・大へ化学社製リン酸エステルAP−13:0.5gr
- Salt vinyl acetate poly v manufactured by UCC - VAGH: 0.8gr
・Mitsui Toatsu (Polyurethane NL-2448 manufactured by W Gakusha: 0.8 gr ・Phosphate ester AP-13 manufactured by Daihe Kagakusha: 0.5 gr
.

・住友化学社製α、アルミナAKP−300,0,56
r。
・Sumitomo Chemical α, alumina AKP-300,0,56
r.

・溶剤 トルエン:15gr、、 MEK:15gr。・Solvent Toluene: 15gr, MEK: 15gr.

次いで、分散メディアを分離して磁性塗料とし、磁気テ
ープ仕様の精密コーターにてアプリケーターを利用して
13μ厚のトーレ社製ポリエステル・フィルム(=ルミ
ラー13W−QO6S)上に塗工した。
Next, the dispersion media was separated to obtain a magnetic paint, which was coated onto a 13 μm thick polyester film manufactured by Toray (Lumirror 13W-QO6S) using an applicator in a precision coater equipped with magnetic tape.

その後、カレンダー処理して塗膜面の平滑化処理を加え
磁気シートとした。
Thereafter, the coated film surface was smoothed by calendering to form a magnetic sheet.

該磁気シートの磁気特性及び光沢度を、既述の測定装置
にて測定し、又シートの表面荒さく中心線平均荒さ二R
a)を■小板研究所製 万能表面形状測定器MODEL
 5E−3Gにて測定した結果を表に示すこの結果より
、該磁気シートの表面平滑製は比較例−1に比較して向
上している事がわかった。
The magnetic properties and glossiness of the magnetic sheet were measured using the above-mentioned measuring device, and the surface roughness of the sheet was determined by the center line average roughness 2R.
a) ■ Universal surface shape measuring device MODEL manufactured by Koita Institute
From the results shown in the table below, it was found that the surface smoothness of the magnetic sheet was improved compared to Comparative Example-1.

比較例−1 水洗ペーストをライカイ器で混焼しながら、アンモニア
水を用いて、凝集領域をはずれた、分散領域であるpH
9,0に調整した以外は、原料粉の製造、還元鉄粉の製
造及び風乾金属鉄粉の分散製の評価は実施例−1と同様
の方法で行い、その結果を表に示す、風乾金属鉄粉を電
子顕微鏡で観察するとイメージ上の粒子間の焼結と思わ
れる束なり或いは凝集塊が観察された。又磁気シートの
表面平滑製も実施例−1〜2よりも劣る事がわかった。
Comparative Example-1 While co-firing the water-washed paste in a Raikai machine, ammonia water was used to adjust the pH to the dispersion region, which is outside the agglomeration region.
The production of raw material powder, the production of reduced iron powder, and the evaluation of dispersion of air-dried metal iron powder were performed in the same manner as in Example-1, except that the powder was adjusted to 9.0, and the results are shown in the table. When iron powder was observed under an electron microscope, bundles or agglomerates, which appeared to be sintering between particles, were observed. It was also found that the surface smoothness of the magnetic sheet was inferior to Examples 1 and 2.

実施例−3〜4 本実施例は、所謂8ミリビデオ用の、金属鉄を主要成分
とした強磁性金属鉄微粒子についての本発明の方法及び
その効果の大要を示す例である。
Examples 3 to 4 The present examples are examples showing an overview of the method of the present invention and its effects regarding ferromagnetic metallic iron fine particles containing metallic iron as a main component for so-called 8 mm video.

〈原料粉の製造〉 実施例−1と同様の方法により、co及びMn−成分を
重量比でCo/Fe−2,0/ 100、Mn/Fe=
2.0/100だけ含む針状オキシ水酸化鉄微粒子を合
成し、水洗した。
<Manufacture of raw material powder> By the same method as in Example-1, the co and Mn components were adjusted to a weight ratio of Co/Fe-2,0/100, Mn/Fe=
Acicular iron oxyhydroxide fine particles containing only 2.0/100 were synthesized and washed with water.

該微粒子の比表面積(:SA)は86.7m”/gr、
又透過電子U4′R1,鏡像から算出した軸比(:L/
D)は18であった。
The specific surface area (SA) of the fine particles is 86.7 m"/gr,
Also, the axial ratio calculated from the transmitted electron U4'R1 and the mirror image (:L/
D) was 18.

該水洗ペーストを水で希釈・攪拌し、NaOH水溶液で
pH10,0に調整した後、ヘキサメタリン酸ソーダ、
3号水ガラス、アルミン酸ソーダ、硝酸−1−7ケルを
用いて、重量比で、P/Fe=0.8/100、St/
Fe−2,0/ioo 、AI/Fe−2,0/100
及びNi/Fe=6.0/100だけ表面被着し、ろ過
、水洗した。
The washed paste was diluted with water and stirred, and after adjusting the pH to 10.0 with an aqueous NaOH solution, sodium hexametaphosphate,
Using No. 3 water glass, sodium aluminate, and 1-7 Kel of nitric acid, the weight ratio was P/Fe=0.8/100, St/
Fe-2,0/ioo, AI/Fe-2,0/100
And Ni/Fe=6.0/100 was deposited on the surface, filtered, and washed with water.

くオキシ水酸化鉄の分散・凝集〉 実施例−1と同様の方法により分散・凝集を測定した結
果を第2図に示す、この結果より、pH4,5〜8.0
付近が凝集領域である事がわかったので、該ペースト1
にgをライカイ器により混煉しながら硝酸で各pH5(
実施例3)及びpH7(実施例4)に制御(オキシ水酸
化鉄の含1120wt:)シ、更に2時間混煉し、次い
で箱型熱風乾燥器にて120’C118時間乾燥し、奈
良式自由粉砕機により粉砕し原料粉とした。
Dispersion and aggregation of iron oxyhydroxide> Figure 2 shows the results of measuring dispersion and aggregation using the same method as in Example-1.
It was found that the vicinity was a cohesive area, so paste 1
While kneading each g in a rice cooker, add nitric acid to pH 5 (
Example 3) and pH 7 (Example 4) were controlled (containing iron oxyhydroxide: 1120 wt), mixed for another 2 hours, and then dried in a box-type hot air dryer at 120'C for 118 hours. It was crushed using a crusher to obtain raw material powder.

還元鉄粉の製造に於いて原料粉を700℃にて仮焼し、
攪拌式(lrpm)還元炉を用い、流動させながら温度
425℃にて還元した事以外は実施例−1と同様の方法
で行い、その結果を表に示す、該風乾金属鉄粉は造粒等
もされず、その外観は黒色を呈し該有機溶剤スラリーは
流動性が良好であった。該風乾金属鉄粉の形状を3万乃
至9万倍の電子顕微鏡で観察すると、イメージ上は一次
原料のオキシ水酸化鉄を形状を良く継承し、破損、破壊
、更に粒子間焼結の類は殆ど見られなかった。表より、
分散の速度及び到達度も高く、また磁気シートの磁気特
性(Br/8m)も充分に高く、更に表面の平滑性(光
沢度、中心線平均荒さ)も以下に記述する比較例に比べ
て向上する事がわかった。
In the production of reduced iron powder, raw material powder is calcined at 700℃,
The process was carried out in the same manner as in Example 1, except that reduction was carried out at a temperature of 425°C with fluidization using a stirring type (lrpm) reduction furnace, and the results are shown in the table. The organic solvent slurry had a black appearance and had good fluidity. When the shape of the air-dried metallic iron powder is observed with an electron microscope at a magnification of 30,000 to 90,000 times, it appears that the shape closely follows that of the primary raw material, iron oxyhydroxide, and there is no damage, destruction, or interparticle sintering. It was hardly seen. From the table,
The dispersion speed and reach are high, and the magnetic properties of the magnetic sheet (Br/8m) are sufficiently high, and the surface smoothness (gloss, center line average roughness) is also improved compared to the comparative example described below. I found out what to do.

比較例−2 実施例−3と同様の方法により製造された水洗ペースト
(オキシ水酸化鉄として30.2X 、 pH9,0)
をそのまま乾燥・粉砕し原料粉とした事以外は実施例−
3と同様の方法で行い、その結果を表に示す。
Comparative Example-2 Water washing paste manufactured by the same method as Example-3 (30.2X as iron oxyhydroxide, pH 9.0)
Example except that it was directly dried and pulverized to make the raw material powder.
The results are shown in the table.

風乾金属鉄粉の外観は造粒され銀灰色を呈し、有8!!
溶剤に浸漬しても流動性は不良であワた。又風乾金属鉄
粉の磁気特性・被表面積は実施例−3〜4と殆どM4Q
I、た値であるが、分散連層・到達度及びシートの磁気
特性・表面平滑性が劣る事がわかまた・ 比較例−3 実施例−3と同様の方法により製造された水洗ペースト
を1Kgをライカイ器により混煉しながらアンモニア水
でその分散領域であるpH10に制御(オキシ水酸化鉄
の含量20−Lχ)し、更に2時間混煉し、次いで箱型
熱風乾燥器にて120℃、18時間乾燥し、奈良式自由
粉砕機により粉砕し原料粉とした事以外は実施例−3と
同様の方法で行い、その結果を表に示す、風乾金属鉄粉
を電子顕微鏡で観察するとイメージ上は粒子間の焼結と
思われる束なり、或いは凝集塊が観察された。又磁気シ
ートの表面平滑性も実施例−3〜4よりも劣る事がわか
った。
The appearance of the air-dried metallic iron powder is granulated and has a silvery gray color. !
Even when immersed in a solvent, the fluidity was poor. In addition, the magnetic properties and surface area of air-dried metallic iron powder are almost the same as in Examples 3 and 4.
However, it was found that the dispersion layering, reachability, magnetic properties and surface smoothness of the sheet were inferior. While kneading in a Laikai machine, control the pH to 10, which is the dispersion range, with aqueous ammonia (content of iron oxyhydroxide: 20-Lχ), kneading for another 2 hours, and then kneading at 120°C in a box-type hot air dryer. The process was carried out in the same manner as in Example 3, except that it was dried for 18 hours and then ground using a Nara-type free grinder to obtain a raw material powder.The results are shown in the table below. Bundles or agglomerates, which were thought to be caused by sintering between particles, were observed. It was also found that the surface smoothness of the magnetic sheet was inferior to Examples 3 and 4.

実施例−5〜6 特開昭56−114833号記載の方法により、 P/
Fe−0,05/100及びAI/Re−1,2/10
0だけ含む針状オキシ水酸化鉄微粒子を合成し、水洗し
た。該微粒子の被表面積(:SA)は82.6m”/g
r、又1過電子顕微鏡像から算出した軸比(: L/D
)は12であった。
Examples 5 to 6 P/
Fe-0,05/100 and AI/Re-1,2/10
Acicular iron oxyhydroxide fine particles containing only 0 were synthesized and washed with water. The surface area (SA) of the fine particles is 82.6 m”/g
r, and the axial ratio calculated from the electron microscope image (: L/D
) was 12.

更に、実施例−3と同様の方法によりSi/Fe=0.
8/100 、 AI/Fe=2.5/100及びNi
/Fe=0.6/100だけの表面被着を行なった。
Furthermore, Si/Fe=0.
8/100, AI/Fe=2.5/100 and Ni
/Fe=0.6/100 surface deposition was performed.

該懸濁液を分取し、ろ過、水洗したペーストを実施例−
1と同様の方法により分散・凝集を測定だ結果を第3図
に示す。この結果よりpH7,0〜10.0付近が凝集
領域である事がわかったので、該懸濁液を分散し、pH
8,0(実施例5)及びp)19.0(実施例6)に調
整した水で水洗を行った。
The suspension was separated, filtered, and the paste obtained by washing with water was used in Example-
Dispersion and aggregation were measured using the same method as in 1. The results are shown in Figure 3. From this result, it was found that the agglomeration region was around pH 7.0 to 10.0, so the suspension was dispersed and the pH
Washing was performed with water adjusted to p) 8.0 (Example 5) and p) 19.0 (Example 6).

還元鉄粉の製造に於いて、還元炉中で窒素ガスにより仮
焼(=温度・450℃、ガス空間速度・1ONm′−H
z/Kgr−Fe、Hr、)  L、続いて水素ガスに
よる気相接触還元反応(:4度・420℃、ガス空間速
度・2ONm’−H1/Kgr−Fe、Hr、)を行っ
た事以外は実施例−1と同様の方法で行い、その結果を
表に示す、該風乾金属粉の形状を3万乃至9万倍の電子
顕微鏡で観察すると、イメージ上は一次原料のオキシ水
酸化鉄の形状を良(継承し、破損・破壊、更に粒子間焼
結の類は殆ど見られなかった。
In the production of reduced iron powder, calcination is performed using nitrogen gas in a reducing furnace (temperature: 450°C, gas space velocity: 1ONm'-H
z/Kgr-Fe, Hr,) L, except that a gas phase catalytic reduction reaction using hydrogen gas (: 4 degrees, 420°C, gas hourly space velocity, 2ONm'-H1/Kgr-Fe, Hr,) was subsequently performed. was carried out in the same manner as in Example 1, and the results are shown in the table. When the shape of the air-dried metal powder was observed with an electron microscope at a magnification of 30,000 to 90,000 times, it appeared that the primary raw material, iron oxyhydroxide, The shape was good (inherited), and there was almost no damage, destruction, or interparticle sintering.

表より、分散の速度及び到達度も高く、また磁気シート
の磁気特性(Br/8m) も充分に高く、更に表面の
平滑性(光沢度、中心線平均荒さ)も以下に記述する比
較例に比べて向上する事がわかった実施例−7 実施例−3と同様の方法により、オキシ水酸化鉄を合成
、表面被着及びろ過し、純水で水洗した。
From the table, the speed and reach of dispersion are high, the magnetic properties of the magnetic sheet (Br/8m) are also sufficiently high, and the surface smoothness (gloss, center line average roughness) is also as good as the comparative example described below. Example 7 in which it was found that the results were improved compared to Example 7 In the same manner as in Example 3, iron oxyhydroxide was synthesized, adhered to the surface, filtered, and washed with pure water.

該水洗ペースト(オキシ水酸化鉄として25.3X、p
H7,9)を乾燥・粉砕し、次いで仮焼・還元・風乾鉄
粉の分散性の評価は実施例−5と同様の方法で行い、そ
の結果を表に示す、該風乾金属鉄粉の形状を3万乃至9
万倍の電子i!im鏡で観察すると、イメージ上は一次
原料のオキシ水酸化鉄の形状を良(継承し、破損・破壊
、更に粒子間焼結の類は殆ど見られなかった。また、分
散の速度及び到達度も高り、磁気シートの磁気特性(B
r/8m)も充分に高く、更に表面の平滑性(光沢度、
中心線平均荒さ)も以下に記述する比較例に比べて向上
する事がわかった。
The water washing paste (25.3X as iron oxyhydroxide, p
H7,9) was dried and pulverized, and then the calcined, reduced, and air-dried iron powder was evaluated for its dispersibility in the same manner as in Example-5.The results are shown in the table, and the shape of the air-dried metal iron powder was 30,000 to 9
Ten thousand times more electronic i! When observed with an IM mirror, the shape of the primary raw material iron oxyhydroxide was observed to be good (inherited), and there was almost no damage, destruction, or interparticle sintering. The magnetic properties of the magnetic sheet (B
r/8m) is sufficiently high, and the surface smoothness (gloss,
It was also found that the center line average roughness) was also improved compared to the comparative example described below.

実施例−8〜9 実施例−5と同様の方法により製造したスラリーを純水
で濾過水洗し表面被着水洗ペーストとし、実施例−1と
同様の方法によりライカイ混煉しながら、その凝集令頁
域であるPH8,0(実施例8)及びpH9,0(実施
例9)に調整し乾燥・粉砕した事以外は実施例−5と同
様の方法で行い、その結果を表に示す、該風乾金属鉄粉
の形状を3万乃至9万倍の電子顕微鏡で観察すると、イ
メージ上は一次原料のオキシ水酸化鉄の形状を良く継承
し、破損・破壊、更に粒子間焼結の類は殆ど見られなか
った。また、該風乾金属鉄粉の分散速度及び到達度も高
く、磁気シートの磁気特性も充分に高(、更に表面の平
滑性も以下に記述する比較例に比べて向上する事がわか
った。
Examples 8 to 9 Slurry produced in the same manner as in Example 5 was filtered and washed with pure water to form a surface-adhering washing paste, and the agglomeration rate was increased while mixing and kneading in the same manner as in Example 1. The same method as in Example 5 was carried out except that the pH was adjusted to pH 8.0 (Example 8) and pH 9.0 (Example 9), which is the page area, and dried and pulverized. The results are shown in the table. When the shape of air-dried metallic iron powder is observed with an electron microscope at a magnification of 30,000 to 90,000 times, it appears that it closely follows the shape of the primary raw material, iron oxyhydroxide, and there is almost no damage, destruction, or interparticle sintering. I couldn't see it. It was also found that the dispersion rate and reach of the air-dried metallic iron powder were high, and the magnetic properties of the magnetic sheet were sufficiently high (and the surface smoothness was also improved compared to the comparative example described below).

比較例−4〜5 実施例−8と同様の方法により製造した表面被着水洗ペ
ーストを実施例−1と同様の方法によりライカイ混煉し
ながら、その分散傾城であるpH4,0(比較例4)及
び6.0(比較例5)に調整し乾燥・粉砕した事以外は
実施例−8と同様の方法で行い、その結果を表に示す。
Comparative Examples 4 to 5 A surface-adhering water washing paste produced in the same manner as in Example 8 was mixed and kneaded in the same manner as in Example 1, and its dispersion slope was adjusted to pH 4.0 (Comparative Example 4). ) and 6.0 (Comparative Example 5), and the same method as in Example 8 was carried out except that drying and pulverization were performed, and the results are shown in the table.

風乾金属鉄粉を電子顕微鏡で観察するとイメージ上は粒
子間の焼結と思われる束なり、或いは凝集塊が観察され
た。又該風乾金属鉄粉の磁気特性は実施例−5〜9の風
乾金属鉄粉の値と殆ど変わらないが、磁気シートの磁気
特性及び表面平滑性は実施例−5〜9よりも劣る事がわ
かった。
When air-dried metallic iron powder was observed under an electron microscope, bundles or agglomerates, which appeared to be sintering between particles, were observed. In addition, the magnetic properties of the air-dried metallic iron powder are almost the same as those of the air-dried metallic iron powder of Examples-5 to 9, but the magnetic properties and surface smoothness of the magnetic sheet are inferior to those of Examples-5 to 9. Understood.

〔結 果〕[Results]

実施例及び比較例の結果から本発明の作用・効果をまと
めると以下の通りとなる。
The effects and effects of the present invention can be summarized as follows from the results of Examples and Comparative Examples.

即ち、高密度磁気記録に適した磁気記録素材として針状
性強磁気性金属鉄被粒子において、被着変性された針状
性オキシ水酸化鉄微粒子を凝集させて後乾燥する事によ
り、還元性ガスによる気相接触還元反応によって強磁性
還元鉄微粒子とする事によって、 11  金属鉄微粒子自体に関しては、原料であるオキ
シ水酸化鉄の形状を良く継承した針状性を示しつつ、 (2)二次凝集塊の強度が極めて弱くなり、該金属鉄微
粒子の有機溶剤スラリーの流動性が大きく改良された事
、 (3)塗料分散操作が短時間で完了し、媒体加工すると
その塗膜表面の平滑性が向上する事、が判明した。
That is, in acicular ferromagnetic metallic iron-coated particles as a magnetic recording material suitable for high-density magnetic recording, reducing properties can be improved by agglomerating and post-drying acicular iron oxyhydroxide fine particles that have been modified by adhesion. By producing ferromagnetic reduced iron fine particles through a gas phase catalytic reduction reaction with gas, (11) the metallic iron fine particles themselves exhibit an acicular shape well inheriting the shape of iron oxyhydroxide, which is the raw material; The strength of the secondary agglomerates became extremely weak, and the fluidity of the organic solvent slurry of the metallic iron fine particles was greatly improved. It has been found that sexual performance improves.

以上の碌に、本発明は従前のM造工程・設備の殆ど大部
分を変更する事なく、品質改良の著しい強磁性金属微粒
子の製造方法を提供するものである。
In addition to the above, the present invention provides a method for producing fine ferromagnetic metal particles that significantly improves quality without changing most of the conventional M manufacturing process and equipment.

特許出願人 三井東圧化学株式会社 第1図 水素イオン濃τ/ PH) 水素イオン嗅覚CPHI 手続補正書(方式) ( %式% 1、事件の表示 昭和61年特許願第149450号2
、発明の名称 磁気記録用針状鉄微粒子の製造方法 3、補正をする者 事件との関係   特許出願人 住所 東京都千代田区霞が関三丁目2番5号4、補正命
令の日付 昭和61年8月26日(発送)明細書30頁
を別紙の如く訂正する(補正の対象の欄に記載した事項
以外は内容に変更なし)。
Patent applicant Mitsui Toatsu Chemical Co., Ltd. Figure 1 Hydrogen ion concentration τ/PH) Hydrogen ion olfactory CPHI Procedural amendment (method) (% formula % 1, case indication 1985 Patent Application No. 149450 2
, Title of the invention: Method for manufacturing acicular iron fine particles for magnetic recording 3, Relationship with the person making the amendment Patent applicant address: 3-2-5-4 Kasumigaseki, Chiyoda-ku, Tokyo Date of amendment order: August 1988 On the 26th (shipment), page 30 of the statement is corrected as shown in the attached sheet (no changes are made to the contents except for the matters stated in the column subject to amendment).

:別紙) 庄磁性金属微粒子の製造方法を提供するものである。:Attachment) The present invention provides a method for producing magnetic metal fine particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はオキシ水酸化鉄の懸濁液の水素イオ
ン濃度と該懸濁液の粘度及び沈降高さの関係を示すグラ
フである。
FIGS. 1 to 3 are graphs showing the relationship between the hydrogen ion concentration of a suspension of iron oxyhydroxide, the viscosity of the suspension, and the sedimentation height.

Claims (2)

【特許請求の範囲】[Claims] (1)オキシ水酸化鉄あるいは酸化鉄を、若しくは、表
面変性したオキシ水酸化鉄あるいは酸化鉄を還元性ガス
による気相接触還元反応せしめて強磁性鉄微粒子を製造
する方法に於いて、該オキシ水酸化鉄あるいは酸化鉄を
、若しくは、表面変性したオキシ水酸化鉄あるいは酸化
鉄を、液中で凝集させた状態で乾燥する事を特徴とする
針状性の強磁性金属鉄微粒子及の製造方法。
(1) In a method for producing ferromagnetic iron fine particles by subjecting iron oxyhydroxide or iron oxide, or surface-modified iron oxyhydroxide or iron oxide, to a vapor phase catalytic reduction reaction with a reducing gas, A method for producing acicular ferromagnetic metallic iron fine particles characterized by drying iron hydroxide or iron oxide, or surface-modified iron oxyhydroxide or iron oxide in a coagulated state in a liquid. .
(2)オキシ水酸化鉄あるいは酸化鉄を、若しくは、表
面変性したオキシ水酸化鉄あるいは酸化鉄を液中に懸濁
させ、該懸濁液の水素イオン濃度を該懸濁液の凝集領域
になるよう制御して該懸濁液を凝集せしめた後乾燥し、
更に還元性ガスによる気相接触還元反応によって強磁性
鉄微粒子にする特許請求の範囲第1項記載の方法。
(2) Iron oxyhydroxide or iron oxide, or surface-modified iron oxyhydroxide or iron oxide, is suspended in a liquid, and the hydrogen ion concentration of the suspension is adjusted to a concentration area of the suspension. The suspension is agglomerated under controlled conditions, and then dried.
The method according to claim 1, wherein ferromagnetic iron particles are further produced by a gas phase catalytic reduction reaction using a reducing gas.
JP61149450A 1986-06-27 1986-06-27 Manufacture of fine particles of acicular iron for magnetic recording Pending JPS636807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61149450A JPS636807A (en) 1986-06-27 1986-06-27 Manufacture of fine particles of acicular iron for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61149450A JPS636807A (en) 1986-06-27 1986-06-27 Manufacture of fine particles of acicular iron for magnetic recording

Publications (1)

Publication Number Publication Date
JPS636807A true JPS636807A (en) 1988-01-12

Family

ID=15475383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61149450A Pending JPS636807A (en) 1986-06-27 1986-06-27 Manufacture of fine particles of acicular iron for magnetic recording

Country Status (1)

Country Link
JP (1) JPS636807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080675A (en) * 2006-09-28 2008-04-10 Tac:Kk Sleeve catch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080675A (en) * 2006-09-28 2008-04-10 Tac:Kk Sleeve catch

Similar Documents

Publication Publication Date Title
US5199983A (en) Black pigment particles
US4764300A (en) Preparation of finely divided and acicular hexagonal ferrites and their use for the production of magnetic recording media and plastoferrites
Ocaña et al. Spherical iron/silica nanocomposites from core-shell particles
JP3045207B2 (en) Production method of plate-like iron oxide particles
JPS61106414A (en) Fine powder of electroconductive titanium oxide of low oxidation state and its preparation
JPS62275027A (en) Production of ferromagnetic fine powder for magnetic recording
JPS636807A (en) Manufacture of fine particles of acicular iron for magnetic recording
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JP3412676B2 (en) Spindle-shaped goethite particle powder and method for producing the same
KR100614977B1 (en) The Preparation method of monodispersed iron oxide nanoparticles from microdroplets of ferrous? and ferric? chloride solutions generated by piezoelectric nozzle
JPS60138731A (en) Production of magnetic recording medium
JPH0559562B2 (en)
JPS5854487B2 (en) Method for producing acicular magnetic iron oxide particle powder for magnetic recording materials
JP5293946B2 (en) Method for producing nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JPH089486B2 (en) Cobalt-containing ferromagnetic iron oxide powder and method for producing the same
JP3580435B2 (en) Nitride powder and method for producing the same
JPH0791063B2 (en) Method for producing ultrafine particulate low-order titanium oxide powder having black color
JPH08325098A (en) Particulate magnetite and its production
JP3049698B2 (en) Method for producing plate-like iron oxide fine particle powder
KR940007047B1 (en) Cobalt-containing ferro-magnetic iron oxide power and process for producing the same
JPS62235220A (en) Production of ferromagnetic fine powder for magnetic recording
JP3417436B2 (en) Manufacturing method of iron-based oxide powder
JP2950892B2 (en) Method for producing hexagonal plate-like barium ferrite
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS61154013A (en) Manufacture of needle iron fine particle for magnetic recording