JP2012213383A - Iron powder for coating seed, and seed - Google Patents

Iron powder for coating seed, and seed Download PDF

Info

Publication number
JP2012213383A
JP2012213383A JP2012040980A JP2012040980A JP2012213383A JP 2012213383 A JP2012213383 A JP 2012213383A JP 2012040980 A JP2012040980 A JP 2012040980A JP 2012040980 A JP2012040980 A JP 2012040980A JP 2012213383 A JP2012213383 A JP 2012213383A
Authority
JP
Japan
Prior art keywords
iron powder
less
seed
coating
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012040980A
Other languages
Japanese (ja)
Inventor
Takashi Kono
貴史 河野
Masashi Fujinaga
政志 藤長
Tomoshige Ono
友重 尾野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012040980A priority Critical patent/JP2012213383A/en
Publication of JP2012213383A publication Critical patent/JP2012213383A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pretreatment Of Seeds And Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide iron powder for coating seeds which scarcely falls off not only during sowing but also during transportation and enables coating with less variation in seeds, and iron powder-coated seeds that are coated with the iron powder for coating seeds.SOLUTION: In the iron powder for coating seeds, that is iron powder used for coating seeds, the ratio by mass of iron particles having a particle size of 63 μm or smaller is controlled to 0-75%, the ratio by mass of iron particles having a particle size larger than 63 μm but not larger than 150 μm is controlled to 25-100%, the ratio by mass of iron particles having a particle size larger than 150 μm is controlled to 0-50%, and the content ratio of metal iron is 30.0-99.0 mass%.

Description

本発明は、稲種子被覆に好適な鉄粉および鉄粉を被覆した種子に関するものである。   The present invention relates to an iron powder suitable for rice seed coating and a seed coated with iron powder.

農業従事者の高齢化、農産物流通のグローバル化に伴い、農作業の省力化や農産物生産コストの低減が解決すべき課題となっている。これらの課題を解決するために、例えば、水稲栽培においては、育苗と移植の手間を省くことを目的として、種子を圃場に直接播く直播法が普及しつつある。その中でも、種子の比重を高めるために、鉄粉を被覆した種子を用いる手法は、水田における種子の浮遊や流出を防止し、かつ鳥害を防止するというメリットがあることで注目されている。   Along with the aging of farmers and the globalization of agricultural product distribution, labor saving in agricultural work and reduction in agricultural production costs are issues to be solved. In order to solve these problems, for example, in paddy rice cultivation, a direct sowing method in which seeds are directly sown in a field is becoming widespread for the purpose of eliminating the trouble of raising seedlings and transplanting. Among them, in order to increase the specific gravity of seeds, a technique using seeds coated with iron powder has been attracting attention because of its merit of preventing floating and outflow of seeds in paddy fields and preventing bird damage.

このように鉄粉を被覆した種子を用いて直播栽培法を活用するためには、輸送や播種の工程において被覆した鉄粉被膜が剥離しにくいことが求められる。鉄粉被膜が剥離すると、種子の比重が低下して前記のメリットが得られなくなるのみならず、剥離した被膜は輸送や播種の工程において、配管の目詰まりや回転機構部への噛み込みの原因となり、剥離した細かい鉄粉が粉塵を生じる原因にもなるからである。このようなことから、鉄粉被膜の剥離は極力抑制しなくてはならない。   Thus, in order to utilize the direct sowing cultivation method using the seed coated with iron powder, it is required that the coated iron powder film is difficult to peel off in the transportation and sowing process. When the iron powder coating peels, the specific gravity of the seeds decreases and the above-mentioned merits are not obtained. This is because the peeled fine iron powder can cause dust. For this reason, peeling of the iron powder coating must be suppressed as much as possible.

稲種子表面に鉄粉を付着、固化させる技術としては、特許文献1に鉄粉被覆稲種子の製造法として以下のような技術が提案されている。
「稲種子に、鉄粉、並びに鉄粉に対する質量比で0.5〜2%の硫酸塩(但し、硫酸カルシウムは除く)及び/又は塩化物を加え、さらに水を添加して造粒し、水と酸素を供給して金属鉄粉の酸化反応によって生成した錆びにより、鉄粉を稲種子に付着、固化させた後、乾燥させることを特徴とする鉄粉被覆稲種子の製造法。」(特許文献1の請求項1参照)
As a technique for attaching and solidifying iron powder on the surface of rice seeds, Patent Document 1 proposes the following technique as a method for producing iron powder-coated rice seeds.
“To the rice seeds, iron powder, and 0.5-2% by weight of sulfate (excluding calcium sulfate) and / or chloride in a mass ratio to the iron powder, and further granulated by adding water, An iron powder-coated rice seed production method characterized in that iron powder is attached to solidified rice seeds by rust generated by the oxidation reaction of metallic iron powder by supplying water and oxygen, and then dried. (See claim 1 of Patent Document 1)

特許文献1に記載の発明においては、稲種子が動力散布機や播種機を用いて播種されるため、機械的衝撃によって崩壊しない程度の強度特性が必要であることから、製造されたコーティング稲種子について、コーティングの崩壊程度の測定法(以下、コーティングの崩壊試験という)、すなわち1.3mの高さから厚さ3mmの鋼板に5回落下させ、機械的衝撃を与える方法で測定して、コーティングに実用的な強度が得られていることを確認している。   In the invention described in Patent Document 1, since the rice seeds are sown using a power spreader or a seeder, strength characteristics that do not collapse due to mechanical impact are necessary. The coating disintegration degree is measured by a method of measuring the degree of coating disintegration (hereinafter referred to as coating disintegration test), that is, a method of dropping a steel sheet having a thickness of 1.3 m to a steel plate with a thickness of 3 mm and giving a mechanical impact. It has been confirmed that practical strength is obtained.

なお、特許文献1においては、特に鉄粉粒度分布に着目はされていないが、以下の表1に示す粒度分布を有する鉄粉をコーティングに使用した場合には、上記の鉄粉被覆稲種子の崩壊試験において、いずれも実用的な衝撃強度を維持できるとしている。   In Patent Document 1, no particular attention is paid to the iron powder particle size distribution, but when iron powder having the particle size distribution shown in Table 1 below is used for coating, In the disintegration test, it is said that practical impact strength can be maintained.

Figure 2012213383
Figure 2012213383

特許第4441645号公報Japanese Patent No. 44441645

鉄粉被膜の付着強度に関し、特許文献1においては、特に播種工程における落下による衝撃に起因した鉄粉被覆の崩壊について検討されている。そのため、強度試験として、1.3mの高さから厚さ3mmの鋼板に5回落下させて機械的衝撃を与えるという崩壊試験が行われている。
しかしながら、稲種子は播種工程のみならず、輸送工程においても機械的な外力を受けることは前述の通りである。そして、輸送工程において稲種子が受ける機械的外力は、落下による衝撃の他、種子間もしくは種子と容器間で生じる滑りや転がりの摩擦力である。
Regarding the adhesion strength of the iron powder coating, Patent Document 1 discusses the collapse of the iron powder coating due to the impact caused by the drop in the seeding process. Therefore, as a strength test, a disintegration test is performed in which a mechanical impact is applied by dropping the steel sheet 5 times from a height of 1.3 m to a steel plate having a thickness of 3 mm.
However, rice seeds are subjected to mechanical external force not only in the sowing process but also in the transport process, as described above. And the mechanical external force which a rice seed receives in a transportation process is the frictional force of the sliding and rolling which arise between seeds or between a seed and a container other than the impact by fall.

落下による衝撃を受けた場合、鉄粉被覆は割れによって剥離するが、摩擦力を受けた場合には、磨り減りにより徐々に剥離するという形態をとる。
したがって、鉄粉被覆を播種工程のみならず輸送工程での鉄粉被膜の剥離を防止するには、摩擦力に対する強度を有する被覆が必要となる。
しかしながら、種子の滑りや転がり摩擦応力に対して十分な強度で稲種子を被覆できる鉄粉や、鉄粉を被覆した種子を実現する技術はなかった。
When receiving an impact due to dropping, the iron powder coating is peeled off by cracking, but when receiving a frictional force, it is gradually peeled off by abrasion.
Therefore, in order to prevent the iron powder coating from peeling off not only in the seeding process but also in the transportation process, a coating having strength against frictional force is required.
However, there has been no technology for realizing iron powder that can cover rice seeds with sufficient strength against sliding and rolling frictional stress of seeds or seeds coated with iron powder.

また、特許文献1に記載の鉄粉の粒度分布は、表1に示されるように、63μm以下の粒径の割合が多い。
しかし、微細な鉄粉を使用した場合には、鉄粉が空気中の酸素と急激に反応し、発熱によって鉄粉を被覆した種子がダメージを受ける可能性や、大量取扱時には火災を引き起こしたりする懸念もある。加えて、微細な鉄粉は粉塵を生じやすいため、清浄な作業環境を維持しにくいという問題もある。
Moreover, as shown in Table 1, the particle size distribution of the iron powder described in Patent Document 1 has a large proportion of particle sizes of 63 μm or less.
However, when fine iron powder is used, the iron powder reacts rapidly with oxygen in the air, and the seed coated with the iron powder may be damaged by heat generation, or cause a fire when handling a large amount of iron powder. There are also concerns. In addition, since fine iron powder tends to generate dust, there is a problem that it is difficult to maintain a clean working environment.

また、特許文献1においては、稲種子を鉄粉で被覆する方法として、「稲種子に、鉄粉、並びに鉄粉に対する質量比で0.5〜2%の硫酸塩(但し、硫酸カルシウムは除く)及び/又は塩化物を加え、さらに水を添加して造粒する」としている。
稲種子の表面を鉄粉で被覆する場合の重要な要素として、稲種子間のばらつきをなくすることが挙げられるが、特許文献1においてはこのことについて何らの開示もない。
Moreover, in patent document 1, as a method of coat | covering a rice seed with iron powder, it is "Sulfate (except calcium sulfate except 0.5-2% by mass ratio with respect to a rice seed, iron powder, and iron powder). ) And / or chloride, and then add water and granulate.
An important factor in coating the surface of rice seeds with iron powder is to eliminate variation between rice seeds, but Patent Document 1 does not disclose anything about this.

本発明はかかる課題を解決するためになされたものであり、播種工程のみならず輸送工程においても鉄粉の脱落が少ない被覆が実現できる種子被覆用鉄粉及び該種子被覆用鉄粉を被覆した鉄粉被覆種子を得ることを目的としている。
また、稲種子に対してダメージを与える可能性が少なく、さらには取り扱いも容易な稲種子被覆用鉄粉及び該稲種子被覆用鉄粉を被覆した鉄粉被覆稲種子を得ることを目的としている。
The present invention has been made to solve such a problem, and coated with the seed coating iron powder and the seed coating iron powder capable of realizing a coating with less dropping of the iron powder not only in the sowing process but also in the transport process. The purpose is to obtain iron powder coated seeds.
Another object of the present invention is to obtain a rice seed coating iron powder that is less likely to damage rice seeds and is easy to handle and an iron powder coated rice seed coated with the rice seed coating iron powder. .

発明者は稲種子の表面を観察して、如何なる鉄粉を用いることが剥離防止に効果的であるかについて検討した。
発明者が着目したのは、稲種子の表面の状態である。稲の種籾1の最外殻である籾殻3の表面には、図1に示すように、毛5が生えており、種籾1に鉄粉をコーティングする際には、毛5の弾性的作用によって毛5と毛5の間に配置された鉄粉が毛5に保持されることを通じて、付着力が高まると推察される。
「お米の微視的構造を見る(目崎孝昌 著)」の21ページにも示されているように、前記の毛5の生え方にも粗密がある。特に、毛5が密集した部位において鉄粉が毛5に保持されることによって付着力が高まると考えられるが、この部位における毛5の間隔は50〜150μmである。
このことから、発明者は、毛5による保持作用によって稲種子に強固に付着できる鉄粉の粒子径には適切な範囲があると考え、この保持作用を有効に発揮させるための鉄粉粒子径について検討したところ、粒子径が63μmを越え150μm以下のものが好ましいことを見出した。
このことから、粒子径が63μmを越え150μm以下のものをある程度含むことで、毛5による保持を期待でき、種子の転がりや滑りに伴う、被覆膜の剥離量を小さくできるとの知見を得た。
The inventor observed the surface of the rice seed and examined what kind of iron powder was effective in preventing peeling.
The inventor has focused on the condition of the surface of rice seeds. As shown in FIG. 1, hair 5 grows on the surface of rice husk 3 which is the outermost shell of rice seed pod 1, and when the seed pod 1 is coated with iron powder, the elastic action of the hair 5 causes It is presumed that the adhesion force is increased by holding the iron powder arranged between the bristles 5 to the bristles 5.
As shown on page 21 of “Seeing the Microscopic Structure of Rice (by Takamasa Mezaki)”, the way the hairs 5 grow is also dense. In particular, it is considered that the adhesion force is increased by the iron powder being held by the hairs 5 at the site where the hairs 5 are dense, and the interval between the hairs 5 at this site is 50 to 150 μm.
From this, the inventor considers that there is an appropriate range for the particle diameter of the iron powder that can be firmly attached to the rice seeds by the holding action by the hair 5, and the iron powder particle diameter for effectively exhibiting this holding action. As a result, it was found that a particle diameter of more than 63 μm and 150 μm or less is preferable.
From this, the knowledge that the particle diameter exceeds 63 μm and includes 150 μm or less to some extent can be expected to be retained by the hair 5, and the amount of peeling of the coating film caused by seed rolling or slipping can be reduced. It was.

また、発明者は、稲種子の毛5の保持力による付着の他、毛5をすり抜けて稲種子表面に直接付着する鉄粉粒径についても検討した。
一般に粉体は、粒径が小さいほど被付着物に対する付着力が高い。したがって、稲種子表面に直接付着させるという意味では鉄粉の粒径は小さいことが好ましい。
稲種子の毛5の間をすり抜けて稲種子表面への直接付着が期待できる鉄粉粒径について検討したところ、45μm以下の鉄粉を所定の量含むことが好ましいとの知見を得た。
そして、毛5によって保持される鉄粉に加えて上記微粒径の鉄粉を含有することで、稲種子の表面には微粒径の鉄粉が付着し、その上方には毛5によって鉄粉が保持され、鉄粉が二重コーティングされることになり、種子の転がりや滑りに伴う、被覆膜の剥離量を小さくできるとの知見を得た。
もっとも、微粒径の鉄粉を多量に含むと前述の問題を生ずることから所定の量以下であることも必要である。
The inventor also examined the particle size of the iron powder that passes through the hair 5 and adheres directly to the surface of the rice seed, in addition to the adhesion due to the holding power of the hair 5 of the rice seed.
In general, the smaller the particle size of the powder, the higher the adhesion to the adherend. Therefore, the particle size of the iron powder is preferably small in the sense that it is directly attached to the surface of the rice seed.
As a result of examining the iron powder particle size that can be expected to pass directly between the rice seed hairs 5 and directly adhere to the surface of the rice seed, it was found that a predetermined amount of iron powder of 45 μm or less is preferable.
And by containing the iron powder of the said fine particle size in addition to the iron powder hold | maintained by the hair 5, the iron powder of a fine particle size adheres to the surface of a rice seed, and iron above the hair 5 by iron 5 The powder was retained, and the iron powder was double-coated, and the knowledge that the amount of peeling of the coating film caused by the rolling and slipping of seeds can be reduced was obtained.
However, if the iron powder having a small particle size is contained in a large amount, the above-described problems occur, so that it is necessary to be a predetermined amount or less.

また、鉄粉の粒子径が大きすぎると毛5の間隙に入りにくくなるのみならず、鉄粉粒子に作用する重力が大きく、毛5が鉄粉粒子を保持できなくなるので、付着効果が小さくなると推定される。従って粒子径が150μm以上の鉄粉の割合は所定の量以下にするのが好ましいとの知見も得た。   Further, if the particle size of the iron powder is too large, not only does it not easily enter the gap between the hairs 5, but also the gravity acting on the iron powder particles is large and the hairs 5 cannot hold the iron powder particles, so the adhesion effect is reduced. Presumed. Accordingly, it was also found that the ratio of the iron powder having a particle size of 150 μm or more is preferably set to a predetermined amount or less.

さらに、稲種子を鉄粉で被覆する際に、鉄粉の錆びの進行を確実にし、安定した被覆を実現するための手段についても検討した。その結果、鉄粉における金属鉄の含有比率を規定することで、錆びの発生を確実にして安定した被覆が可能になることを知見した。   Furthermore, when the rice seeds were coated with iron powder, the means for ensuring the progress of rusting of the iron powder and realizing stable coating were also examined. As a result, it has been found that by defining the content ratio of metallic iron in the iron powder, rust is surely generated and stable coating becomes possible.

また、稲種子を鉄粉で被覆する際に、種子間のばらつきを少なく被覆するための要件についても検討したところ、鉄粉の流動度や鉄粉の安息角が重要な要素であるとの知見を得た。   In addition, when the rice seeds were coated with iron powder, we examined the requirements for coating with less variation between the seeds, and found that the fluidity of iron powder and the angle of repose of iron powder were important factors. Got.

本発明は上記の知見を基になされたものであり、具体的には以下の構成からなるものである。
(1)本発明に係る種子被覆用鉄粉は、種子を被覆するのに用いる鉄粉であって、
粒子径が63μm以下の鉄粉の質量比率が0%以上75%以下、かつ、粒子径が63μmを越え150μm以下の鉄粉の質量比率が25%以上100%以下、かつ粒子径が150μmを越える鉄粉の質量比率が0%以上50%以下であり、かつ金属鉄の含有比率が30.0質量%以上99.0質量%以下であることを特徴とするものである。
The present invention has been made on the basis of the above findings, and specifically comprises the following constitution.
(1) The iron powder for seed coating according to the present invention is an iron powder used for coating seeds,
The mass ratio of iron powder having a particle diameter of 63 μm or less is 0% or more and 75% or less, the mass ratio of iron powder having a particle diameter of more than 63 μm and 150 μm or less is 25% or more and 100% or less, and the particle diameter exceeds 150 μm. The mass ratio of the iron powder is 0% or more and 50% or less, and the content ratio of metallic iron is 30.0 mass% or more and 99.0 mass% or less.

(2)また、種子を被覆するのに用いる鉄粉であって、
粒子径が63μm以下の鉄粉の質量比率が0%以上75%以下、かつ、粒子径が63μmを越え150μm以下の鉄粉の質量比率が25%以上100%以下、かつ粒子径が150μmを越える鉄粉の質量比率が0%以上50%以下であり、かつ流動度が40(sec/50g)以下であることを特徴とするものである。
(2) Also, iron powder used to coat the seeds,
The mass ratio of iron powder having a particle diameter of 63 μm or less is 0% or more and 75% or less, the mass ratio of iron powder having a particle diameter of more than 63 μm and 150 μm or less is 25% or more and 100% or less, and the particle diameter exceeds 150 μm. The mass ratio of the iron powder is 0% or more and 50% or less, and the fluidity is 40 (sec / 50 g) or less.

(3)また、種子を被覆するのに用いる鉄粉であって、
粒子径が63μm以下の鉄粉の質量比率が0%以上75%以下、かつ、粒子径が63μmを越え150μm以下の鉄粉の質量比率が25%以上100%以下、かつ粒子径が150μmを越える鉄粉の質量比率が0%以上50%以下であり、安息角が45度以下であることを特徴とするものである。
(3) It is also an iron powder used to coat seeds,
The mass ratio of iron powder having a particle diameter of 63 μm or less is 0% or more and 75% or less, the mass ratio of iron powder having a particle diameter of more than 63 μm and 150 μm or less is 25% or more and 100% or less, and the particle diameter exceeds 150 μm. The mass ratio of the iron powder is 0% or more and 50% or less, and the angle of repose is 45 degrees or less.

(4)また、上記(1)乃至(3)のいずれかに記載のものにおいて、粒子径が45μm以下の鉄粉の質量比率が、0%以上30%以下であることを特徴とするものである。 (4) Moreover, in the thing in any one of said (1) thru | or (3), the mass ratio of the iron powder whose particle diameter is 45 micrometers or less is 0% or more and 30% or less, It is characterized by the above-mentioned. is there.

(5)また、上記(1)乃至(4)のいずれかに記載のものにおいて、粒子径が63μmを越え150μm以下の鉄粉の質量比率が50%以上であることを特徴とするものである。 (5) Further, in any of the above (1) to (4), the mass ratio of the iron powder having a particle diameter of more than 63 μm and 150 μm or less is 50% or more. .

(6)また、上記(1)乃至(5)のいずれかに記載のものにおいて、鉄粉が還元法もしくはアトマイズ法で製造されたことを特徴とするものである。 (6) Moreover, in the thing in any one of said (1) thru | or (5), iron powder is manufactured by the reduction method or the atomizing method.

(7)また、本発明に係る種子は、上記(1)乃至(6)のいずれかに記載の種子被覆用鉄粉を被覆してなることを特徴とするものである。 (7) Moreover, the seed which concerns on this invention coat | covers the iron powder for seed coating | coated in any one of said (1) thru | or (6), It is characterized by the above-mentioned.

(8)また、上記(7)に記載のものにおいて、種子が稲種子であることを特徴とするものである。 (8) In the above (7), the seed is a rice seed.

本発明に係る種子被覆用鉄粉は、粒子径が63μm以下の鉄粉の質量比率が0%以上75%以下、かつ、粒子径が63μmを越え150μm以下の鉄粉の質量比率が25%以上100%以下、かつ粒子径が150μmを越える鉄粉の質量比率が0%以上50%以下であり、かつ金属鉄の含有比率が31.3質量%以上98.9質量%以下であるので、種子表面に毛を有する例えば稲種子のような種子に対して毛による保持が期待でき、播種工程のみならず輸送工程においても鉄粉の脱落が少ない被覆が実現でき、また錆びの形成を確実にして安定した被覆を実現できる。
これによって、農作業の省力化や農産物生産コストの低減が可能となる。
In the iron powder for seed coating according to the present invention, the mass ratio of the iron powder having a particle diameter of 63 μm or less is 0% or more and 75% or less, and the mass ratio of the iron powder having a particle diameter of more than 63 μm and 150 μm or less is 25% or more. 100% or less and the mass ratio of the iron powder having a particle diameter exceeding 150 μm is 0% or more and 50% or less, and the content ratio of metallic iron is 31.3% or more and 98.9% or less by mass. For example, seeds such as rice seeds with hair on the surface can be expected to be retained by hair, and a coating with less iron powder falling off can be realized not only in the sowing process but also in the transport process, and the formation of rust is ensured. A stable coating can be realized.
This makes it possible to save farm work and reduce production costs.

稲種子の表面の状態を説明する説明図である。It is explanatory drawing explaining the state of the surface of a rice seed.

[実施の形態1]
本発明の一実施の形態に係る種子被覆用鉄粉は、粒子径が63μm以下の鉄粉の質量比率が0%以上75%以下、かつ、粒子径が63μmを越え150μm以下の鉄粉の質量比率が25%以上100%以下、かつ粒子径が150μmを越える鉄粉の質量比率が0%以上50%以下であり、かつ金属鉄の含有比率が30.0質量%以上99.0質量%以下であることを特徴とするものである。
以下、粒度分布と金属鉄の含有比率を上記のように規定した理由を説明する。
[Embodiment 1]
The iron powder for seed coating according to an embodiment of the present invention has a mass ratio of iron powder having a particle size of 63 μm or less and 0% or more and 75% or less, and a mass of iron powder having a particle size of more than 63 μm and 150 μm or less. The mass ratio of the iron powder having a ratio of 25% to 100% and a particle diameter exceeding 150 μm is 0% to 50%, and the content ratio of metallic iron is 30.0 mass% to 99.0 mass%. It is characterized by being.
Hereinafter, the reason why the particle size distribution and the content ratio of metallic iron are defined as described above will be described.

<粒度分布>
粒子径が63μmを越え150μm以下の鉄粉の質量比率を25%以上としたのは、粒子径が63μmを越え150μm以下の鉄粉は種子表面の毛によって保持される確率が高く、このような粒子径のものを25%以上含むことで、毛による保持が期待でき、播種工程のみならず輸送工程においても鉄粉の脱落が少ない被覆が実現できるからである。粒子径が63μmを越え150μm以下の鉄粉の質量比率は30%以上とすることが好ましく、50%以上とすることがより好ましい。
<Particle size distribution>
The reason why the iron powder having a particle diameter of more than 63 μm and not more than 150 μm is 25% or more is that the iron powder having a particle diameter of more than 63 μm and not more than 150 μm has a high probability of being held by the hair on the seed surface. By containing 25% or more of particles having a particle size, retention by hair can be expected, and a coating with less dropping of iron powder can be realized not only in the sowing process but also in the transport process. The mass ratio of the iron powder having a particle diameter of more than 63 μm and 150 μm or less is preferably 30% or more, and more preferably 50% or more.

また、粒子径が63μm以下の鉄粉の質量比率を75%以下としたのは、微粒径の鉄粉の含有量が増えると、鉄粉が空気中の酸素と急激に反応し、発熱によって鉄粉を被覆した種子がダメージを受ける可能性や、大量取扱時には火災を引き起こしたりする懸念があり、さらに、微細な鉄粉の含有量が多いと、粉塵を生じやすく清浄な作業環境を維持しにくいからである。粒子径が63μm以下の鉄粉の質量比率は70%以下とすることが好ましい。   Moreover, the mass ratio of the iron powder having a particle size of 63 μm or less was set to 75% or less because when the content of the iron powder having a small particle size increases, the iron powder reacts rapidly with oxygen in the air, resulting in heat generation. There is a possibility that the seed coated with iron powder may be damaged or cause a fire when handling a large quantity. Furthermore, if the content of fine iron powder is large, dust is easily generated and a clean working environment is maintained. It is difficult. The mass ratio of iron powder having a particle size of 63 μm or less is preferably 70% or less.

なお、粒子径が63μm以下の鉄粉のより好ましい含有量の態様としては、粒子径が45μm以下の鉄粉の質量比率が0%以上30%以下である。
粒子径が45μm以下の鉄粉は、種子の表面にある毛の間をすり抜け、種子の表面に直接付着する付着力が強いことから、所定の量を含有することで、前述した二重被覆が実現される。
In addition, as a more preferable content aspect of the iron powder having a particle diameter of 63 μm or less, the mass ratio of the iron powder having a particle diameter of 45 μm or less is 0% or more and 30% or less.
Iron powder having a particle diameter of 45 μm or less slips through the hair on the surface of the seed and has a strong adhesive force to adhere directly to the surface of the seed. Realized.

粒子径が150μmを越える鉄粉の質量比率を50%以下としたのは、粒子径が150μmを越える鉄粉は毛による保持及び種子表面への直接の付着共に期待ができないので、この粒子径のものを少なくする趣旨である。   The reason why the mass ratio of the iron powder having a particle diameter exceeding 150 μm is set to 50% or less is that the iron powder having a particle diameter exceeding 150 μm cannot be expected to be held by hair and directly attached to the seed surface. The purpose is to reduce things.

なお、鉄粉の粒度分布は、JIS Z2510−2004に定められた方法を用いてふるい分けすることによって評価できる。   In addition, the particle size distribution of iron powder can be evaluated by sieving using the method defined in JIS Z2510-2004.

本実施の形態における鉄粉の製造方法としては、還元鉄粉やアトマイズ鉄粉などが例示される。   Examples of the method for producing iron powder in the present embodiment include reduced iron powder and atomized iron powder.

<金属鉄の含有比率>
本実施の形態に係る種子被覆用鉄粉の金属鉄の含有比率は、30.0質量%以上99.0質量%以下である。
金属鉄の含有比率を30.0質量%以上にしたのは、金属鉄の含有比率が30.0質量%未満では、発生錆び量が少なく、鉄粉による被覆強度が弱くなるからである。31.3質量%以上であることが好ましい。
また、金属鉄の含有比率を99.0質量%以下にしたのは、金属鉄の含有比率が99.0質量%超では、錆び発生時の酸化反応が急激に進行し、その際の発熱量が大きく種子に対してダメージを与え、発芽率が低下するからである。98.9質量%以下であることが好ましい。
<Content ratio of metallic iron>
The content ratio of metallic iron in the iron powder for seed coating according to the present embodiment is 30.0 mass% or more and 99.0 mass% or less.
The reason why the content ratio of metallic iron is 30.0% by mass or more is that when the content ratio of metallic iron is less than 30.0% by mass, the amount of generated rust is small and the coating strength with iron powder becomes weak. It is preferable that it is 31.3 mass% or more.
Moreover, the content ratio of metallic iron was made 99.0% by mass or less because if the content ratio of metallic iron exceeds 99.0% by mass, the oxidation reaction at the time of rusting proceeds rapidly, and the calorific value at that time This greatly damages the seed and reduces the germination rate. It is preferable that it is 98.9 mass% or less.

種子被覆用鉄粉の金属鉄の含有比率の制御は以下のように行う。
鉄粉のアトマイズ工程における雰囲気中の酸素濃度、還元鉄粉製造工程中の雰囲気酸素濃度、さらには、アトマイズ鉄粉や還元鉄粉を仕上げ熱処理する際の酸素濃度や水素濃度を制御することによって、鉄粉の酸化度を制御し、ひいては鉄粉中の金属鉄の含有比率を制御することができる。
Control of the content ratio of metallic iron in the iron powder for seed coating is performed as follows.
By controlling the oxygen concentration in the atmosphere in the atomizing process of iron powder, the atmospheric oxygen concentration in the reduced iron powder manufacturing process, and further the oxygen concentration and hydrogen concentration when finishing heat treatment of atomized iron powder and reduced iron powder, The degree of oxidation of the iron powder can be controlled, and consequently the content ratio of metallic iron in the iron powder can be controlled.

なお、種子被覆用鉄粉で種子被覆する方法についは特に限定されない。
例えば「鉄コーティング湛水直播マニュアル2010(独立行政法人 農業・食品産業技術総合研究機構 近畿中国四国農業研究センター 編)」に示されているように、手作業での被覆(コーティング)をはじめ、従来から公知の混合機を用いる方法等いずれを使用してもよい。
混合機としては、例えば、攪拌翼型ミキサー(たとえばヘンシェルミキサー等)や容器回転型ミキサー(たとえばV型ミキサー,ダブルコーンミキサー、傾斜回転型パン型混合機、回転クワ型混合機等)が使用できる。
また、上記の鉄コーティング湛水直播マニュアル2010に示されているように、鉄粉コーティングに際しては焼石膏などのコーティング強化剤を使用することもできる。
The method for seed coating with the iron powder for seed coating is not particularly limited.
For example, as shown in the “Iron Coating Direct Seeding Manual 2010 (edited by the National Agricultural Research Center for Agricultural and Food Industry, Kinki Chugoku Shikoku Research Center)” Any method such as a method using a known mixer may be used.
As the mixer, for example, a stirring blade type mixer (for example, a Henschel mixer) or a container rotation type mixer (for example, a V type mixer, a double cone mixer, a tilt rotation type bread type mixer, a rotary mulberry type mixer, etc.) can be used. .
Further, as shown in the iron coating soaking direct sowing manual 2010 described above, a coating reinforcing agent such as calcined gypsum can be used for iron powder coating.

本実施の形態の種子被覆用鉄粉によれば、種子表面に毛を有する例えば稲種子のような種子に対して毛による保持が期待でき、播種工程のみならず輸送工程においても鉄粉の脱落が少ない被覆が実現でき、また錆びの形成を確実にして安定した被覆を実現できる。
なお、本実施の形態に係る種子被覆用鉄粉の上記効果は後述する実施例1において確認している。
According to the iron powder for seed coating of the present embodiment, retention by hair can be expected, for example, seeds such as rice seeds having hair on the seed surface, and iron powder is removed not only in the sowing process but also in the transport process. It is possible to realize a coating with a small amount of rust, and to realize a stable coating by ensuring the formation of rust.
In addition, the said effect of the iron powder for seed coating | coated which concerns on this Embodiment has been confirmed in Example 1 mentioned later.

[実施の形態2]
本実施の形態に係る種子被覆用鉄粉は、粒子径が63μm以下の鉄粉の質量比率が0%以上75%以下、かつ、粒子径が63μmを越え150μm以下の鉄粉の質量比率が25%以上100%以下、かつ粒子径が150μmを越える鉄粉の質量比率が0%以上50%以下であり、かつ流動度が40(sec/50g)以下であることを特徴とするものである。
粒度分布は実施の形態1と同様であり、粒度分布を規定した理由は実施の形態と同様である。以下においては、本実施の形態の特徴である流動度を規定した理由について説明する。
[Embodiment 2]
In the iron powder for seed coating according to the present embodiment, the mass ratio of iron powder having a particle diameter of 63 μm or less is 0% or more and 75% or less, and the mass ratio of iron powder having a particle diameter of more than 63 μm and 150 μm or less is 25. % Or more and 100% or less, the mass ratio of the iron powder having a particle diameter exceeding 150 μm is 0% or more and 50% or less, and the fluidity is 40 (sec / 50 g) or less.
The particle size distribution is the same as in the first embodiment, and the reason for defining the particle size distribution is the same as in the first embodiment. In the following, the reason for defining the fluidity that is a feature of the present embodiment will be described.

<流動度>
本実施の形態に係る種子被覆用鉄粉の流動度は40(sec/50g)以下に設定されている。
流動度は、金属の流動性を評価する方法として、JIS Z2502:2000に規定されたものである。
JIS Z2502:2000によると、流動計は、漏斗、漏斗支持器、支持棒及び支持台から構成され、各寸漏斗の形状、寸法は規定されている。105±5℃で乾燥した金属粉末50gを漏斗に移し、漏斗下部のオリフィスを開いて、オリフィスを開いた瞬間から最後の粉末がオリフィスを離れるまでの時間を測定する。上記の時間が短い程、流動性が良好であると評価する。
流動度の定義は、50gの粉体が上記のオリフィス通過に要した時間(sec)であり単位は(sec/50g)である。
<Fluidity>
The fluidity of the seed coating iron powder according to the present embodiment is set to 40 (sec / 50 g) or less.
The fluidity is defined in JIS Z2502: 2000 as a method for evaluating the fluidity of metals.
According to JIS Z2502: 2000, the rheometer is composed of a funnel, a funnel support, a support bar, and a support base, and the shape and dimensions of each dimension funnel are defined. Transfer 50 g of metal powder dried at 105 ± 5 ° C. to the funnel, open the orifice at the bottom of the funnel, and measure the time from the moment the orifice is opened until the last powder leaves the orifice. It evaluates that fluidity | liquidity is so favorable that said time is short.
The definition of fluidity is the time (sec) required for 50 g of powder to pass through the orifice, and the unit is (sec / 50 g).

種子被覆用鉄粉の流動度を40(sec/50g)以下に設定した理由は、種子間における種子被覆用鉄粉の被覆のばらつきを少なくするためである。
被覆のばらつきと流動度の関係を以下に説明する。
種子に種子被覆用鉄粉を被覆する方法として、種子被覆用鉄粉と焼石膏(硫酸カルシウム水和物)と種子を回転容器中に投入して、水スプレーしながら種子表面に鉄粉と石膏をコーティングする。このような工程で、種子被覆用鉄粉の流動度が大きいと付着ムラが発生して種子間における種子被覆用鉄粉の被覆のばらつきが大きくなる。逆に種子被覆用鉄粉の流動度が小さいと、付着ムラが生じず、種子間の被覆のばらつきが小さくなる。
The reason why the fluidity of the seed coating iron powder is set to 40 (sec / 50 g) or less is to reduce variation in the coating of the seed coating iron powder among the seeds.
The relationship between coating variation and fluidity will be described below.
As a method of coating seeds with iron powder for seed coating, iron powder for seed coating, calcined gypsum (calcium sulfate hydrate) and seeds are put into a rotating container, and iron powder and gypsum are sprayed on the seed surface while spraying water. Coating. In such a process, when the fluidity of the seed coating iron powder is large, adhesion unevenness occurs, and the variation in the coating of the seed coating iron powder among the seeds increases. Conversely, if the fluidity of the seed coating iron powder is small, adhesion unevenness does not occur, and the variation in coating between seeds is reduced.

種子被覆鉄粉の流動度の制御方法は以下のように行う。
鉄粉の粒度分布や粒子形状は流動度に大きな影響を与える。そのため、例えば、水アトマイズ鉄粉について流動度を制御するには、ノズルから落下させる溶鋼流の流速および直径、噴霧水の流量、流速および噴霧角度によって鉄粉の粒度分布や粒子形状を制御し、その結果として流動度を制御することができる。
また、還元鉄粉については、還元前の原料酸化鉄や還元後の製品の粉砕方法を選択することによって鉄粉の粒度分布や粒子形状を制御することができ、その結果として鉄粉の流動度を制御することができる。
The method for controlling the fluidity of the seed-coated iron powder is performed as follows.
The particle size distribution and shape of the iron powder have a great influence on the fluidity. Therefore, for example, to control the fluidity of water atomized iron powder, the particle size distribution and particle shape of the iron powder are controlled by the flow rate and diameter of the molten steel flow dropped from the nozzle, the flow rate of spray water, the flow rate and the spray angle, As a result, the fluidity can be controlled.
For reduced iron powder, the particle size distribution and particle shape of the iron powder can be controlled by selecting the raw iron oxide before reduction and the grinding method of the product after reduction. Can be controlled.

本実施の形態の種子被覆用鉄粉によれば、種子表面に毛を有する例えば稲種子のような種子に対して毛による保持が期待でき、播種工程のみならず輸送工程においても鉄粉の脱落が少ない被覆が実現でき、また種子間における被覆のばらつきを防止して安定した被覆を実現できる。
なお、本実施の形態に係る種子被覆用鉄粉の上記効果は後述する実施例2において確認している。
According to the iron powder for seed coating of the present embodiment, retention by hair can be expected, for example, seeds such as rice seeds having hair on the seed surface, and iron powder is removed not only in the sowing process but also in the transport process. Therefore, a stable coating can be realized by preventing variation in coating between seeds.
In addition, the said effect of the iron powder for seed coating | coated which concerns on this Embodiment has been confirmed in Example 2 mentioned later.

[実施の形態3]
本実施の形態に係る種子被覆用鉄粉は、粒子径が63μm以下の鉄粉の質量比率が0%以上75%以下、かつ、粒子径が63μmを越え150μm以下の鉄粉の質量比率が25%以上100%以下、かつ粒子径が150μmを越える鉄粉の質量比率が0%以上50%以下であり、安息角が45度以下であることを特徴とするものである。
粒度分布は実施の形態1と同様であり、粒度分布を規定した理由は実施の形態と同様である。以下においては、本実施の形態の特徴である安息角を規定した理由について説明する。
[Embodiment 3]
In the iron powder for seed coating according to the present embodiment, the mass ratio of iron powder having a particle diameter of 63 μm or less is 0% or more and 75% or less, and the mass ratio of iron powder having a particle diameter of more than 63 μm and 150 μm or less is 25. % To 100% and the mass ratio of the iron powder having a particle diameter exceeding 150 μm is 0% to 50%, and the angle of repose is 45 degrees or less.
The particle size distribution is the same as in the first embodiment, and the reason for defining the particle size distribution is the same as in the first embodiment. In the following, the reason for defining the angle of repose, which is a feature of the present embodiment, will be described.

<安息角>
本実施の形態に係る種子被覆用鉄粉の安息角は45度以下に設定されている。
安息角は、種子被覆用鉄粉を積み上げたときに自発的に崩れることなく安定を保つ斜面の角度であり、流動性が高いほど安息角は小さくなる。
種子被覆用鉄粉の安息角を45度以下に設定した理由は、種子間における種子被覆用鉄粉の被覆のばらつきを少なくするためである。
<Repose angle>
The angle of repose of the iron powder for seed coating according to the present embodiment is set to 45 degrees or less.
The angle of repose is the angle of the slope that maintains stability without spontaneous collapse when the seed coating iron powder is stacked, and the higher the fluidity, the smaller the angle of repose.
The reason why the angle of repose of the iron powder for seed coating is set to 45 degrees or less is to reduce the variation in the coating of the iron powder for seed coating between the seeds.

被覆のばらつきと安息角の関係を以下に説明する。
種子に種子被覆用鉄粉を被覆する方法として、種子被覆用鉄粉と焼石膏(硫酸カルシウム水和物)と種子を回転容器中に投入して、水スプレーしながら種子表面に鉄粉と石膏をコーティングする。このような工程で、種子被覆用鉄粉の安息角が大きく流動性が低いと付着ムラが発生して種子間における種子被覆用鉄粉の被覆のばらつきが大きくなる。逆に種子被覆用鉄粉の安息角が小さく流動性が高いと付着ムラが生じず、種子間の被覆のばらつきが小さくなる。
The relationship between the coating variation and the angle of repose will be described below.
As a method of coating seeds with iron powder for seed coating, iron powder for seed coating, calcined gypsum (calcium sulfate hydrate) and seeds are put into a rotating container, and iron powder and gypsum are sprayed on the seed surface while spraying water. Coating. In such a process, if the angle of repose of the iron powder for seed coating is large and the fluidity is low, uneven adhesion occurs, and the dispersion of the coating of the iron powder for seed coating between the seeds increases. Conversely, if the angle of repose of the iron powder for seed coating is small and the fluidity is high, uneven adhesion does not occur and the variation in coating between seeds is reduced.

種子被覆用鉄粉の安息角の制御方法は以下のように行う。
鉄粉の粒度分布や粒子形状は安息角に大きな影響を与える。そのため、例えば、水アトマイズ鉄粉について安息角を制御するには、ノズルから落下させる溶鋼流の流速および直径、噴霧水の流量、流速および噴霧角度によって鉄粉の粒度分布や粒子形状を制御し、その結果として鉄粉の安息角を制御することができる。
また、還元鉄粉については、還元前の原料酸化鉄や還元後の製品の粉砕方法を選択することによって鉄粉の粒度分布や粒子形状を制御することができ、その結果として鉄粉の安息角を制御することができる。
The method for controlling the angle of repose of the iron powder for seed coating is as follows.
The particle size distribution and shape of the iron powder have a great influence on the angle of repose. Therefore, for example, in order to control the angle of repose for water atomized iron powder, the particle size distribution and particle shape of iron powder are controlled by the flow velocity and diameter of the molten steel flow dropped from the nozzle, the flow rate of spray water, the flow velocity and the spray angle, As a result, the angle of repose of the iron powder can be controlled.
For reduced iron powder, the particle size distribution and particle shape of the iron powder can be controlled by selecting the raw iron oxide before reduction and the grinding method of the product after reduction. As a result, the angle of repose of the iron powder is controlled. Can be controlled.

本実施の形態の種子被覆用鉄粉によれば、種子表面に毛を有する例えば稲種子のような種子に対して毛による保持が期待でき、播種工程のみならず輸送工程においても鉄粉の脱落が少ない被覆が実現でき、また種子間における被覆のばらつきを防止して安定した被覆を実現できる。
なお、本実施の形態に係る種子被覆用鉄粉の上記効果は後述する実施例3において確認している。
According to the iron powder for seed coating of the present embodiment, retention by hair can be expected, for example, seeds such as rice seeds having hair on the seed surface, and iron powder is removed not only in the sowing process but also in the transport process. Therefore, a stable coating can be realized by preventing variation in coating between seeds.
In addition, the said effect of the iron powder for seed coating | coated which concerns on this Embodiment has been confirmed in Example 3 mentioned later.

本実施の形態1〜3に示した種子被覆用鉄粉の効果を確認する実験を行ったので、以下の実施例1〜3において説明する。   Since the experiment which confirms the effect of the iron powder for seed coating | coated shown to this Embodiment 1-3 was demonstrated in the following Examples 1-3.

実施の形態1に係る種子被覆用鉄粉に関し、特に粒度分布の効果を確認する実験を行った。
発明例として種々の粒度分布の鉄粉である発明例1〜9を用いて稲種子の被覆を行った。また、比較例として、本発明の粒度分布の範囲を外れる粒度分布の鉄粉である比較例1〜4を用いて稲種子の被覆を行った。
なお、発明例1〜9及び比較例1〜4の金属鉄含有比率はほぼ一定の88質量%になるように制御した。
Regarding the iron powder for seed coating according to the first embodiment, an experiment for confirming the effect of the particle size distribution was conducted.
Rice seeds were coated using Invention Examples 1 to 9, which are iron powders having various particle size distributions as Invention Examples. Moreover, as a comparative example, rice seeds were coated using Comparative Examples 1 to 4 which are iron powders having a particle size distribution outside the range of the particle size distribution of the present invention.
In addition, the metal iron content ratios of Invention Examples 1 to 9 and Comparative Examples 1 to 4 were controlled to be substantially constant 88% by mass.

鉄粉の被覆(コーティング)は、前述した「鉄コーティング湛水直播マニュアル2010」に記載された方法に準じて行った。具体的には以下の通りである。
はじめに種籾と焼石膏と数種の鉄粉を準備した。次に、傾斜回転型パン型混合機を用いて、適量の水を噴霧しながら種子(種籾)10kgに対して鉄粉5kgと0.5kgの焼石膏をコーティングし、さらに0.25kgの焼石膏を仕上げにコーティングした。
鉄粉を被覆(コーティング)された種子の転がり摩擦や滑り摩擦に対するコーティング被膜の強度評価方法は確立されていない。
そこで、JPMA P 11−1992 「金属圧粉体のラトラ値測定方法」に記載された試験方法に準じて被膜強度を調査した。なお、本試験方法をラトラ試験と称することとする。
Iron powder coating (coating) was performed according to the method described in the above-mentioned “Iron Coating Direct Sowing Manual 2010”. Specifically, it is as follows.
First, seed candy, calcined gypsum and several types of iron powder were prepared. Next, 5 kg of iron powder and 0.5 kg of calcined gypsum are coated on 10 kg of seed (seed seed) while spraying an appropriate amount of water using an inclined rotary type bread mixer, and further 0.25 kg of calcined gypsum Coated to finish.
A method for evaluating the strength of the coating film against rolling friction and sliding friction of seed coated with iron powder has not been established.
Therefore, the coating strength was investigated in accordance with the test method described in JPMA P 11-1992 “Method for measuring the Latra value of metal compact”. This test method will be referred to as a ratra test.

ラトラ試験においては、鉄粉をコーティングした種子20±0.05gをラトラ試験器のかごに封入し、そのかごを87±10rpmの回転速度で1000回転させた。この方法によれば、かご内で種子が転がりながら流動することによって種子間および種子とかご容器内面との間で、転がりや滑りの摩擦力が負荷される。
したがって、本方法を適用すれば、転がり摩擦力と滑り摩擦力が複合的に負荷された場合の、コーティング被膜の強度を評価することができる。
表2に鉄粉の粒度分布とラトラ試験での重量減少率を示す。なお、重量減少率は以下の計算式から求めた。
重量減少率=(ラトラ試験で剥離した被膜の質量)/(試験前の種子質量)×100(%)
したがって、重量減少率が小さいほど、被膜の強度が高いと判定することができる。
In the ratra test, 20 ± 0.05 g of seed coated with iron powder was enclosed in a rattle tester cage, and the cage was rotated 1000 times at a rotation speed of 87 ± 10 rpm. According to this method, rolling and sliding frictional forces are applied between the seeds and between the seeds and the inner surface of the basket container as the seeds flow while rolling in the basket.
Therefore, when this method is applied, the strength of the coating film when the rolling friction force and the sliding friction force are applied in combination can be evaluated.
Table 2 shows the particle size distribution of the iron powder and the weight reduction rate in the ratra test. The weight reduction rate was obtained from the following calculation formula.
Weight reduction rate = (mass of coating peeled off in ratra test) / (mass of seed before test) × 100 (%)
Therefore, it can be determined that the smaller the weight reduction rate, the higher the strength of the coating.

Figure 2012213383
Figure 2012213383

表2に示されるように、発明例1〜9に記載のものは全て、「粒子径が63μm以下の鉄粉の質量比率が0%以上75%以下、かつ、粒子径が63μmを越え150μm以下の鉄粉の質量比率が25%以上100%以下、かつ粒子径が150μmを越える鉄粉の質量比率が0%以上50%以下」という本発明の粒度分布の範囲内であり、ラトラ試験での重量減少率が4%未満となっている。
他方、上記の粒度分布の範囲を外れる比較例1〜4では、ラトラ試験での重量減少率が4%以上である。
このことから、鉄粉の粒度分布を本発明の範囲内にすることで重量減少率を大幅に抑制できることが実証された。
なお、表2において比較例1〜4における粒度分布が本発明の範囲を外れる数字には下線を付してある。
As shown in Table 2, all of the examples described in Invention Examples 1 to 9 are “the mass ratio of the iron powder having a particle diameter of 63 μm or less is 0% or more and 75% or less, and the particle diameter is more than 63 μm and 150 μm or less. Is within the range of the particle size distribution of the present invention, wherein the mass ratio of the iron powder is 25% or more and 100% or less and the mass ratio of the iron powder having a particle diameter of more than 150 μm is 0% or more and 50% or less. The weight reduction rate is less than 4%.
On the other hand, in Comparative Examples 1 to 4 outside the above range of the particle size distribution, the weight reduction rate in the ratra test is 4% or more.
From this, it was demonstrated that the weight reduction rate can be significantly suppressed by making the particle size distribution of the iron powder within the range of the present invention.
In Table 2, the numbers whose particle size distributions in Comparative Examples 1 to 4 are outside the scope of the present invention are underlined.

また、発明例1,2,3,4,6では、粒子径が63μmを越え150μm以下の鉄粉の質量比率が50%以上かつ45μm以下の鉄粉の質量比率が30%以下であり、これらのラトラ試験での重量減少率は、3.5%以下と低くなっていることから、粒子径が63μmを越え150μm以下の鉄粉の質量比率を大きくし、かつ粒子径が45μm以下の鉄粉の質量比率を小さくすることで鉄粉の付着力を高めることができることが分かる。   In Invention Examples 1, 2, 3, 4, and 6, the mass ratio of the iron powder having a particle diameter of more than 63 μm and 150 μm or less is 50% or more and the mass ratio of the iron powder of 45 μm or less is 30% or less. Since the weight reduction rate in the ratra test is as low as 3.5% or less, the mass ratio of the iron powder having a particle diameter exceeding 63 μm and 150 μm or less is increased, and the iron powder having a particle diameter of 45 μm or less. It can be seen that the adhesion of the iron powder can be increased by reducing the mass ratio.

次に、実施の形態1に係る種子被覆用鉄粉の金属鉄含有比率を所定値に規定した効果を確認するために、発明例として、粒度分布が本発明範囲内で、かつ金属鉄含有比率が30.0質量%〜99.0質量%である発明例10〜14を用いて稲種子の被覆を行った。
また、比較例として、粒度分布については本発明範囲内であるが、金属鉄含有比率が発明範囲外の20.8質量%の比較例5と、99.3質量%の比較例6を用いて稲種子の被覆を行った。
なお、この実験では金属鉄含有比率に関する効果確認に主眼を置いているため、粒度分布はほぼ同じになるように制御した。
種子被覆用鉄粉の粒度分布、金属鉄含有比率、及びラトラ試験での重量減少率、発芽率を表3に示す。
なお、発芽率は前記の鉄コーティング湛水直播マニュアル2010に記載の「発芽テスト」に準じて評価した。具体的には、直径9cmのシャーレーに、種子をおよそ100粒と、水を20mLとを入れ、25℃で1週間放置後、発芽した種子としなかった種子を数え、発芽率を計算した。
Next, in order to confirm the effect of defining the metal iron content ratio of the seed coating iron powder according to Embodiment 1 to a predetermined value, as an example of the invention, the particle size distribution is within the scope of the present invention, and the metal iron content ratio Rice seeds were coated using Invention Examples 10 to 14 having an amount of 30.0% by mass to 99.0% by mass.
Further, as comparative examples, the particle size distribution is within the scope of the present invention, but the ratio of metallic iron outside the scope of the invention is 20.8% by mass of comparative example 5 and 99.3% by mass of comparative example 6. Rice seeds were coated.
In this experiment, since the main purpose was to confirm the effect on the content ratio of metallic iron, the particle size distribution was controlled to be almost the same.
Table 3 shows the particle size distribution of the iron powder for seed coating, the metal iron content ratio, the weight reduction rate in the ratra test, and the germination rate.
In addition, the germination rate was evaluated according to the “germination test” described in the iron-coated flooded direct seeding manual 2010 described above. Specifically, about 100 seeds and 20 mL of water were placed in a 9 cm diameter petri dish, and the seeds that were not germinated seeds were counted after standing at 25 ° C. for 1 week, and the germination rate was calculated.

Figure 2012213383
Figure 2012213383

発明例10〜14において金属鉄含有比率が大きいものから順に並べると発明例11、10、14、12、13となるが、これらのラトラ試験での重量減少率を見ると前記の順が重量減少率が少ないものからの順になっている。このことから、金属鉄含有比率を大きくすることで、錆びの発生を確実にでき、被膜の強度を高くできたものと推察される。   In Invention Examples 10-14, when the metal iron content ratio is arranged in descending order, Invention Examples 11, 10, 14, 12, 13 are obtained. When the weight reduction rate in these ratra tests is seen, the above order is the weight reduction. The order is from the one with the lowest rate. From this, it can be inferred that by increasing the content ratio of metallic iron, the occurrence of rust could be ensured and the strength of the coating could be increased.

他方、比較例5では金属鉄含有比率が20.8質量%と小さく、その結果、ラトラ試験での重量減少率が21.3%と高くなっている。このことから、金属鉄含有比率が発明範囲を外れて低いために錆び発生が不十分となり、被膜強度が低くなったものと推察される。
また、金属鉄含有比率が99.3質量%の比較例6では、ラトラ試験での重量減少率は3.2%と高くはないが、発芽率が63%と低くなっている。これは、錆び発生時の酸化反応が急激に進行し、その際の発熱量が大きく種子に対してダメージを与えたものと推察される。
On the other hand, in Comparative Example 5, the content ratio of metallic iron is as small as 20.8% by mass, and as a result, the weight reduction rate in the Latra test is as high as 21.3%. From this, it is surmised that since the metal iron content ratio is low outside the scope of the invention, the occurrence of rust is insufficient and the coating strength is lowered.
Moreover, in the comparative example 6 whose metal iron content rate is 99.3% by mass, the weight reduction rate in the ratra test is not as high as 3.2%, but the germination rate is as low as 63%. This is presumed that the oxidation reaction at the time of the occurrence of rust progresses rapidly, and the amount of heat generated at that time is large, causing damage to the seeds.

以上のように、種子被覆用鉄粉の金属鉄含有比率を30.0質量%以上99.0質量%以下にすることで、種子に対するダメージを与えることなく被覆強度の高い被覆を実現できることが確認された。   As described above, it is confirmed that the coating with high coating strength can be realized without damaging the seeds by setting the metal iron content ratio of the iron powder for seed coating to 30.0 mass% or more and 99.0 mass% or less. It was done.

実施の形態2に係る種子被覆用鉄粉について流動度を発明範囲内とし、粒度分布を実施例1と同様に変化させた場合についての実験を行った。
表4に鉄粉の粒度分布とラトラ試験での重量減少率を示す。
Experiments were conducted for the case where the fluidity of the iron powder for seed coating according to Embodiment 2 was within the scope of the invention and the particle size distribution was changed in the same manner as in Example 1.
Table 4 shows the particle size distribution of the iron powder and the weight reduction rate in the ratra test.

Figure 2012213383
Figure 2012213383

発明例15〜23における粒度分布は、実施例1の発明例1〜9とほぼ同様であり、比較例7〜10における粒度分布は、実施例1の比較例1〜4とほぼ同様である。
また、流動度に関しては、発明例、比較例共に発明範囲である40(sec/50g)以下に制御し、具体的には26.5(sec/50g)〜39.5(sec/50g)とした。
鉄粉による稲種子被覆方法、ラトラ試験方法等は実施例1で示したものと同様である。
The particle size distribution in Invention Examples 15 to 23 is substantially the same as that of Invention Examples 1 to 9 of Example 1, and the particle size distribution in Comparative Examples 7 to 10 is substantially the same as that of Comparative Examples 1 to 4 of Example 1.
Regarding the fluidity, both the inventive example and the comparative example were controlled to 40 (sec / 50 g) or less, which is the scope of the invention, specifically, 26.5 (sec / 50 g) to 39.5 (sec / 50 g). did.
The rice seed coating method with iron powder, the ratra test method and the like are the same as those shown in Example 1.

表4に示されるように、重量減少率は実施例1の表2に示した結果と同様であり、重量減少率に関しては、粒度分布の影響が大きいことが確認された。つまり、粒度分布が発明範囲内にあることで、稲種子に対する鉄粉の付着力を高めることができる。   As shown in Table 4, the weight reduction rate was the same as the result shown in Table 2 of Example 1, and it was confirmed that the influence of the particle size distribution was large on the weight reduction rate. That is, when the particle size distribution is within the scope of the invention, the adhesion of iron powder to rice seeds can be increased.

次に、本発明に係る種子被覆用鉄粉の流動度の効果を確認するために、本発明の発明例として、粒度分布が本発明範囲内で、かつ流動度が30.5(sec/50g)、35.0(sec/50g)、40.0(sec/50g)である発明例24〜26を用いて稲種子の被覆を行った。
また、比較例として、粒度分布については本発明範囲内であるが、流動度が極めて大きい比較例11、鉄粉被覆をしないものを比較例12とした。
種子被覆用鉄粉の粒度分布、流動度に対応した、鉄粉被覆種子質量(100粒)の平均質量(mg)及び標準偏差(mg)、さらには発芽率(%)を表5に示す。発芽率の評価方法等は実施例1で示したものと同様である。
Next, in order to confirm the effect of the fluidity of the iron powder for seed coating according to the present invention, as an example of the present invention, the particle size distribution is within the scope of the present invention and the fluidity is 30.5 (sec / 50 g). ) Rice seeds were coated using Invention Examples 24-26 of 35.0 (sec / 50 g) and 40.0 (sec / 50 g).
Further, as comparative examples, the particle size distribution is within the scope of the present invention, but the comparative example 11 has a very high fluidity, and the comparative example 12 has no iron powder coating.
Table 5 shows the average mass (mg) and standard deviation (mg) of the iron powder-coated seed mass (100 grains) and the germination rate (%) corresponding to the particle size distribution and fluidity of the seed-coated iron powder. The method for evaluating the germination rate is the same as that shown in Example 1.

Figure 2012213383
Figure 2012213383

表5に示されるように、発明例24〜26に記載のものは鉄粉被覆種子質量(100粒)の標準偏差(mg)が11(mg)より小さくなっている。また、流動度が小さいものほど標準偏差が小さくなっていることが分かる。そして、発明例24〜26のものは発芽率が95%以上でありかなり高くなっている。特に、流動度が35(sec/50g)以下であれば、標準偏差は7.2(mg)以下で発芽率が99%以上である。
これに対して、比較例11のものは、標準偏差が15(mg)を超え、発芽率が85%と低くなっている。
以上のことから、種子被覆用鉄粉の流動度を小さくすることで、種子被覆用鉄粉の種子に対する被覆のばらつきが小さくなり、発芽率が高くなることが分かる。
また、流動度が40(sec/50g)以下であれば発芽率が95%以上となるので好ましく、さらには流動度が35(sec/50g)以下であれば発芽率が99%以上となるのでより好ましいことが分かる。
As Table 5 shows, the thing of invention example 24-26 has the standard deviation (mg) of iron powder coating seed mass (100 grains) smaller than 11 (mg). It can also be seen that the smaller the fluidity, the smaller the standard deviation. And the thing of invention examples 24-26 has a germination rate of 95% or more, and is quite high. In particular, when the fluidity is 35 (sec / 50 g) or less, the standard deviation is 7.2 (mg) or less and the germination rate is 99% or more.
On the other hand, the thing of the comparative example 11 has a standard deviation exceeding 15 (mg), and the germination rate is as low as 85%.
From the above, it can be seen that by reducing the fluidity of the seed coating iron powder, the variation in coating of the seed coating iron powder on the seed is reduced, and the germination rate is increased.
Further, if the fluidity is 40 (sec / 50g) or less, the germination rate is preferably 95% or more, and if the fluidity is 35 (sec / 50g) or less, the germination rate is 99% or more. It turns out that it is more preferable.

実施の形態3に係る種子被覆用鉄粉について安息角を発明範囲内とし、粒度分布を実施例1と同様に変化させた場合についての実験を行った。
表6に鉄粉の粒度分布とラトラ試験での重量減少率を示す。
Experiments were conducted for the case where the repose angle of the iron powder for seed coating according to Embodiment 3 was within the invention range and the particle size distribution was changed in the same manner as in Example 1.
Table 6 shows the particle size distribution of the iron powder and the weight reduction rate in the ratra test.

Figure 2012213383
Figure 2012213383

発明例27〜35における粒度分布は、実施例1の発明例1〜9とほぼ同様であり、比較例13〜16における粒度分布は、実施例1の比較例1〜4とほぼ同様である。
また、安息角に関しては、発明例、比較例共に発明範囲である45度以下に制御し、具体的には31〜45度とした。
鉄粉による稲種子被覆方法、ラトラ試験方法等は実施例1で示したものと同様である。
The particle size distribution in Invention Examples 27 to 35 is substantially the same as that of Invention Examples 1 to 9 of Example 1, and the particle size distribution in Comparative Examples 13 to 16 is substantially the same as that of Comparative Examples 1 to 4 of Example 1.
In addition, the angle of repose was controlled to 45 degrees or less, which is the scope of the invention in both the inventive example and the comparative example, specifically 31 to 45 degrees.
The rice seed coating method with iron powder, the ratra test method and the like are the same as those shown in Example 1.

表6に示されるように、重量減少率は実施例1の表2に示した結果と同様であり、重量減少率に関しては、粒度分布の影響が大きいことが確認された。つまり、粒度分布が発明範囲内にあることで、稲種子に対する鉄粉の付着力を高めることができる。   As shown in Table 6, the weight reduction rate was the same as the result shown in Table 2 of Example 1, and it was confirmed that the influence of the particle size distribution was large regarding the weight reduction rate. That is, when the particle size distribution is within the scope of the invention, the adhesion of iron powder to rice seeds can be increased.

次に、本発明に係る種子被覆用鉄粉の安息角を規定した効果を確認するために、本発明の発明例として、粒度分布が本発明範囲内で、かつ安息角が34度、40度、45度である発明例36〜38を用いて稲種子の被覆を行った。
また、比較例として、粒度分布については本発明範囲内であるが、安息角が47度の比較例17、鉄粉被覆をしないものを比較例18とした。
種子被覆用鉄粉の粒度分布、安息角に対応した、鉄粉被覆種子質量(100粒)の平均質量(mg)及び標準偏差(mg)、さらには発芽率(%)を表7に示す。発芽率の評価方法等は実施例1で示したものと同様である。
Next, in order to confirm the effect of defining the angle of repose of the iron powder for seed coating according to the present invention, as an example of the present invention, the particle size distribution is within the range of the present invention, and the angle of repose is 34 degrees and 40 degrees. The rice seeds were coated using Inventive Examples 36 to 38 at 45 degrees.
Further, as comparative examples, the particle size distribution is within the scope of the present invention, but comparative example 17 having an angle of repose of 47 degrees and comparative example 18 without iron powder coating were used.
Table 7 shows the average particle size (mg) and standard deviation (mg) of the iron powder-coated seed mass (100 grains) and the germination rate (%) corresponding to the particle size distribution and angle of repose of the seed-coated iron powder. The method for evaluating the germination rate is the same as that shown in Example 1.

Figure 2012213383
Figure 2012213383

表7に示されるように、発明例36〜38に記載のものは鉄粉被覆種子質量(100粒)の標準偏差(mg)が11(mg)より小さくなっている。また、安息角が小さいものほど標準偏差が小さくなっていることが分かる。そして、発明例36〜38のものは発芽率が95%以上でありかなり高くなっている。特に、安息角が40度以下であれば、標準偏差は7.2(mg)以下で発芽率が99%以上である。
これに対して、比較例17のものは、標準偏差が15(mg)を超え、発芽率が85%と低くなっている。
以上のことから、種子被覆用鉄粉の安息角を小さくすることで、種子被覆用鉄粉の種子に対する被覆のばらつきが小さくなり、発芽率が高くなることが分かる。
また、安息角が45度以下であれば発芽率が95%以上となるので好ましく、さらには安息角が40度以下であれば発芽率が99%以上となるのでより好ましいことが分かる。
As shown in Table 7, those described in Invention Examples 36 to 38 have a standard deviation (mg) of the iron powder-coated seed mass (100 grains) smaller than 11 (mg). It can also be seen that the smaller the angle of repose, the smaller the standard deviation. And the thing of invention examples 36-38 has a germination rate of 95% or more, and is quite high. In particular, if the angle of repose is 40 degrees or less, the standard deviation is 7.2 (mg) or less and the germination rate is 99% or more.
In contrast, in Comparative Example 17, the standard deviation exceeds 15 (mg) and the germination rate is as low as 85%.
From the above, it can be seen that by reducing the angle of repose of the iron powder for seed coating, the variation of the coating of the iron powder for seed coating on the seed is reduced and the germination rate is increased.
In addition, it can be seen that if the angle of repose is 45 degrees or less, the germination rate is 95% or more, and more preferably if the angle of repose is 40 degrees or less, the germination rate is 99% or more.

1 種籾
3 籾殻
5 毛
1 seed rice 3 rice husk 5 hair

Claims (8)

種子を被覆するのに用いる鉄粉であって、
粒子径が63μm以下の鉄粉の質量比率が0%以上75%以下、かつ、粒子径が63μmを越え150μm以下の鉄粉の質量比率が25%以上100%以下、かつ粒子径が150μmを越える鉄粉の質量比率が0%以上50%以下であり、かつ金属鉄の含有比率が30.0質量%以上99.0質量%以下であることを特徴とする種子被覆用鉄粉。
Iron powder used to coat seeds,
The mass ratio of iron powder having a particle diameter of 63 μm or less is 0% or more and 75% or less, the mass ratio of iron powder having a particle diameter of more than 63 μm and 150 μm or less is 25% or more and 100% or less, and the particle diameter exceeds 150 μm. An iron powder for seed coating, wherein the mass ratio of iron powder is 0% or more and 50% or less, and the content ratio of metallic iron is 30.0 mass% or more and 99.0 mass% or less.
種子を被覆するのに用いる鉄粉であって、
粒子径が63μm以下の鉄粉の質量比率が0%以上75%以下、かつ、粒子径が63μmを越え150μm以下の鉄粉の質量比率が25%以上100%以下、かつ粒子径が150μmを越える鉄粉の質量比率が0%以上50%以下であり、かつ流動度が40(sec/50g)以下であることを特徴とする種子被覆用鉄粉。
Iron powder used to coat seeds,
The mass ratio of iron powder having a particle diameter of 63 μm or less is 0% or more and 75% or less, the mass ratio of iron powder having a particle diameter of more than 63 μm and 150 μm or less is 25% or more and 100% or less, and the particle diameter exceeds 150 μm. An iron powder for seed coating, wherein the mass ratio of the iron powder is 0% or more and 50% or less and the fluidity is 40 (sec / 50 g) or less.
種子を被覆するのに用いる鉄粉であって、
粒子径が63μm以下の鉄粉の質量比率が0%以上75%以下、かつ、粒子径が63μmを越え150μm以下の鉄粉の質量比率が25%以上100%以下、かつ粒子径が150μmを越える鉄粉の質量比率が0%以上50%以下であり、安息角が45度以下であることを特徴とする種子被覆用鉄粉。
Iron powder used to coat seeds,
The mass ratio of iron powder having a particle diameter of 63 μm or less is 0% or more and 75% or less, the mass ratio of iron powder having a particle diameter of more than 63 μm and 150 μm or less is 25% or more and 100% or less, and the particle diameter exceeds 150 μm. An iron powder for seed coating, wherein the mass ratio of the iron powder is 0% or more and 50% or less, and the angle of repose is 45 degrees or less.
粒子径が45μm以下の鉄粉の質量比率が、0%以上30%以下であることを特徴とする請求項1乃至3のいずれか一項に記載の種子被覆用鉄粉。   The iron powder for seed coating according to any one of claims 1 to 3, wherein a mass ratio of iron powder having a particle diameter of 45 µm or less is 0% or more and 30% or less. 粒子径が63μmを越え150μm以下の鉄粉の質量比率が50%以上であることを特徴とする請求項1乃至4のいずれか一項に記載の種子被覆用鉄粉。   The iron powder for seed coating according to any one of claims 1 to 4, wherein a mass ratio of the iron powder having a particle diameter of more than 63 µm and not more than 150 µm is 50% or more. 鉄粉が還元法もしくはアトマイズ法で製造されたことを特徴とする請求項1乃至5のいずれか一項に記載の種子被覆用鉄粉。   The iron powder for seed coating according to any one of claims 1 to 5, wherein the iron powder is produced by a reduction method or an atomization method. 請求項1乃至6のいずれか一項に記載の種子被覆用鉄粉を種子に被覆してなることを特徴とする種子。   A seed obtained by coating a seed with the iron powder for seed coating according to any one of claims 1 to 6. 種子が稲種子であることを特徴とする請求項7記載の種子。   The seed according to claim 7, wherein the seed is a rice seed.
JP2012040980A 2011-03-28 2012-02-28 Iron powder for coating seed, and seed Pending JP2012213383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040980A JP2012213383A (en) 2011-03-28 2012-02-28 Iron powder for coating seed, and seed

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2011069403 2011-03-28
JP2011069400 2011-03-28
JP2011069401 2011-03-28
JP2011069403 2011-03-28
JP2011069400 2011-03-28
JP2011069401 2011-03-28
JP2012040980A JP2012213383A (en) 2011-03-28 2012-02-28 Iron powder for coating seed, and seed

Publications (1)

Publication Number Publication Date
JP2012213383A true JP2012213383A (en) 2012-11-08

Family

ID=47266851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040980A Pending JP2012213383A (en) 2011-03-28 2012-02-28 Iron powder for coating seed, and seed

Country Status (1)

Country Link
JP (1) JP2012213383A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016202174A (en) * 2015-04-17 2016-12-08 住友化学株式会社 Coated rice seed and method for producing same
JP2017046674A (en) * 2015-09-04 2017-03-09 産業振興株式会社 Steel-making slag-coated seed and manufacturing method thereof
JP2020124141A (en) * 2019-02-04 2020-08-20 Jfeスチール株式会社 Seed coating agent, coated seed and seed coating method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100897A (en) * 1980-12-15 1982-06-23 Kobe Steel Ltd Production of coated arc welding electrode
JPS62275028A (en) * 1986-01-30 1987-11-30 Ishihara Sangyo Kaisha Ltd Ferromagnetic iron oxide powder containing cobalt and its production
JP2002105501A (en) * 2000-09-26 2002-04-10 Hoganas Ab Spherical porous iron powder and its manufacturing method
JP2004190051A (en) * 2002-12-06 2004-07-08 Jfe Steel Kk Iron based powdery mixture for power metallurgy, and production method therefor
JP2005192458A (en) * 2004-01-06 2005-07-21 National Agriculture & Bio-Oriented Research Organization Method for producing iron powder coated rice plant seed
JP2006232690A (en) * 2005-02-23 2006-09-07 National Agriculture & Food Research Organization Method for preventing rice plant from bacterial disease
WO2012108512A1 (en) * 2011-02-10 2012-08-16 Dowaエレクトロニクス株式会社 Metal coating material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100897A (en) * 1980-12-15 1982-06-23 Kobe Steel Ltd Production of coated arc welding electrode
JPS62275028A (en) * 1986-01-30 1987-11-30 Ishihara Sangyo Kaisha Ltd Ferromagnetic iron oxide powder containing cobalt and its production
JP2002105501A (en) * 2000-09-26 2002-04-10 Hoganas Ab Spherical porous iron powder and its manufacturing method
JP2004190051A (en) * 2002-12-06 2004-07-08 Jfe Steel Kk Iron based powdery mixture for power metallurgy, and production method therefor
JP2005192458A (en) * 2004-01-06 2005-07-21 National Agriculture & Bio-Oriented Research Organization Method for producing iron powder coated rice plant seed
JP2006232690A (en) * 2005-02-23 2006-09-07 National Agriculture & Food Research Organization Method for preventing rice plant from bacterial disease
WO2012108512A1 (en) * 2011-02-10 2012-08-16 Dowaエレクトロニクス株式会社 Metal coating material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山内 稔, 鉄コーティング湛水直播マニュアル2010, JPN6014021041, 1 March 2010 (2010-03-01), JP, ISSN: 0003081807 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016202174A (en) * 2015-04-17 2016-12-08 住友化学株式会社 Coated rice seed and method for producing same
JP2017046674A (en) * 2015-09-04 2017-03-09 産業振興株式会社 Steel-making slag-coated seed and manufacturing method thereof
JP2020124141A (en) * 2019-02-04 2020-08-20 Jfeスチール株式会社 Seed coating agent, coated seed and seed coating method

Similar Documents

Publication Publication Date Title
JP4957859B2 (en) Iron powder for seed coating and seed
JP5071577B2 (en) Seed coating agent and seed coated with the seed coating agent
JP5895770B2 (en) Seed coating material, coating material-coated seed coated with the seed coating material
JP5403030B2 (en) Seed coating agent, seed coating agent
JP6954317B2 (en) Seed dressing, coated seeds and seed coating method
JP2012213383A (en) Iron powder for coating seed, and seed
JP5842471B2 (en) Auxiliary seed-coated iron powder, seed-coated alloy steel powder, and seed coated with secondary-material-attached seed coated iron powder or seed coated alloy steel powder
JP6108002B2 (en) Iron powder for rice seed coating and rice seed
JP6108003B2 (en) Iron powder for rice seed coating and rice seed
JP4957861B1 (en) Auxiliary material-containing seed coating iron powder, secondary material-attached seed coating iron powder, seed coating alloy steel powder and secondary material-containing seed coating iron powder, secondary material-attached seed coating iron powder or seed coating alloy steel powder Seeds coated with
JP5403031B2 (en) Seed coating agent, seed coating agent
JP5678755B2 (en) Iron powder for seed coating, iron powder coated seed
JP5842470B2 (en) Auxiliary seed-coated iron powder, seed-coated alloy steel powder, and seed coated with secondary-material-attached seed coated iron powder or seed coated alloy steel powder
JP7459825B2 (en) Seed Coating Method
WO2012063967A1 (en) Seed coating agent, and seed coated using seed coating agent
WO2012063966A1 (en) Seed coating agent and seeds coated with seed coating agent
KR20130088868A (en) Seed coating agent, and seed coated using seed coating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160119