JPS5860624A - Ferromagnetic powder and its preparation - Google Patents

Ferromagnetic powder and its preparation

Info

Publication number
JPS5860624A
JPS5860624A JP56157138A JP15713881A JPS5860624A JP S5860624 A JPS5860624 A JP S5860624A JP 56157138 A JP56157138 A JP 56157138A JP 15713881 A JP15713881 A JP 15713881A JP S5860624 A JPS5860624 A JP S5860624A
Authority
JP
Japan
Prior art keywords
powder
cobalt
aqueous solution
iron oxide
ferromagnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56157138A
Other languages
Japanese (ja)
Other versions
JPS6018609B2 (en
Inventor
Soichiro Nobuoka
信岡 聡一郎
Takashi Asai
浅井 孝
Kazuaki Ato
和明 阿度
Mikio Kishimoto
幹雄 岸本
Susumu Kitaoka
北岡 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Maxell Ltd
Original Assignee
Agency of Industrial Science and Technology
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Hitachi Maxell Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP56157138A priority Critical patent/JPS6018609B2/en
Priority to EP19820109003 priority patent/EP0076462B2/en
Priority to DE8282109003T priority patent/DE3274777D1/en
Priority to CA000412570A priority patent/CA1246321A/en
Publication of JPS5860624A publication Critical patent/JPS5860624A/en
Publication of JPS6018609B2 publication Critical patent/JPS6018609B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prepare ferromagnetic powder having particular particle shape, by using ferromagnetic iron oxide powder produced by a specific method as seed crystal, dispersing the crystal in a solution containing a cobalt salt and a ferrous salt, and adding an alkaline solution to the dispersion. CONSTITUTION:Ferric hydroxide is prepared by adding an aqueous solution containing trivalent iron ions to more than equivalent amount of an alkaline aqueous solution at <=30 deg.C. After aging at about <=100 deg.C for about >=10min, the ferric hydroxide is subjected to the hydrothermal reaction at about 120-250 deg.C in an autoclave to form the powder of iron alpha-oxyhydroxide, which is filtered, dried, reduced in hydrogen stream at about 250-400 deg.C, and oxidized in air at about >=200 deg.C. The produced gamma-Fe2O3 powder is dispersed in an aqueous solution of a cobalt salt and a ferrous salt, and an alkaline aqueous solution is added to the dispersion to obtain ferromagnetic powder having a surface layer composed mainly of cobalt. The powder has a major diameter of <=300nm, an aspect ratio of <=5, a specific surface area of <=40m<2>/g, and a coercive force of >=23.9KA/m.

Description

【発明の詳細な説明】 この発DBは強磁性粉末およびその製造方法に関し、そ
の目的とするところは保磁力分布が良好で熱的安定性に
優れ廠コバルト含有酸化鉄強磁性粉末を提供することに
ある〇 コバルト含有酸化鉄強磁性粉末は高保磁力を有するなど
優れた磁気特性を有しているため、高性能磁気記録媒体
の記録素子として広く使用され、また磁石材料等として
も使用されている。
Detailed Description of the Invention This DB relates to a ferromagnetic powder and a method for producing the same, and its purpose is to provide a cobalt-containing iron oxide ferromagnetic powder with good coercive force distribution and excellent thermal stability. 〇 Cobalt-containing iron oxide ferromagnetic powder has excellent magnetic properties such as high coercive force, so it is widely used as a recording element in high-performance magnetic recording media, and is also used as a magnet material. .

このようなコバルト含有酸化鉄強磁性粉末の製放方法は
、これまで種々のものが提案されており、そのなかでも
有用な方法の一つとして、r−Fe203粉末を核晶と
し、これをコバルト塩と第一鉄塩とを含有する溶液に分
散させた後、これにアルカリ溶液を加え、核晶上にコバ
ルFを主体的に含む酸化鉄層を形成させる方法が提案さ
れている。
Various methods for producing and releasing such cobalt-containing iron oxide ferromagnetic powder have been proposed so far, and one of the most useful methods is to use r-Fe203 powder as a nucleus crystal, A method has been proposed in which iron oxide is dispersed in a solution containing a salt and a ferrous salt, and then an alkaline solution is added thereto to form an iron oxide layer containing mainly cobal F on the core crystals.

ところが、この方法で使用されるγ−Fe205粉末は
、通常、第一鉄塩とアルカリ水溶液とを30〜60°C
の湿度で混合し反応させるとと本にこれを酸化して得ら
れるα−オキシ水酸化鉄粉末を原料とし、これを加熱還
元しさらに酸化して得られるものである。しかしながら
、このよりなγ−Fe205粉末は、軸比が大きく、か
つ粒度分布が不均一であるために、保磁力分布も広く、
微細なものを鞠ようとする場合、転写、加熱減磁等の熱
的安定性に欠け、これを核晶として使用したコバルト含
有酸化鉄の特性も満足し得るものではなかった。
However, the γ-Fe205 powder used in this method is usually prepared by heating a ferrous salt and an alkaline aqueous solution at 30 to 60°C.
The raw material is α-iron oxyhydroxide powder, which is obtained by mixing and reacting at a humidity of about 100 mL, and is then heated to reduce and further oxidized. However, this stiff γ-Fe205 powder has a large axial ratio and uneven particle size distribution, so the coercive force distribution is wide.
When attempting to drill minute objects, it lacks thermal stability in transfer, heating demagnetization, etc., and the properties of cobalt-containing iron oxide using this as a nucleus crystal were also unsatisfactory.

この発明者らはかかる欠点を改善するため種々検討を行
なった結果、コバルトを主体的に含有する表面層を形成
する前のγ−Fe20.強磁性粉末を製造するに当たり
、3価の鉄イオンを含有する水溶液相を前記鉄イオンに
対し当量以上のアルカリ水溶液中に30°C以下の温度
で添加し反応させて水酸化第二鉄を生成し、これを熟成
した後、オートクレーブ中で水熱反応させてα−オキシ
水酸化鉄粉末を生成し、ろ過、乾燥後この生成粉末を加
熱還元、さらに酸化してγ−Fe20.強磁性粉末とす
ると、微細で軸比、の小さなかつ粒度分布の均一なγ−
Fe206強磁性粉末が得られ、このr−Fe205強
併性粉末をコバルト塩を含む溶液中に分散させ、さらに
これにアルカリ水溶液を加えてr−Fe20゜粉末の表
面にコバルトを主体的に含む表面層を形成させると、長
軸径が300 nm以下、軸比が5以下で、かつBET
法による比表面積が40−/り以下、保磁力か23.9
KA/m以上の粒度分布が均一で保磁力分布が狭く、熱
安定性も良好で転写および加熱減磁の少ないコバルト含
有酸化鉄強磁性粉末が得られることを見いだし、この発
明をなすに至った。
The inventors conducted various studies to improve this drawback, and as a result, they found that γ-Fe20. In producing ferromagnetic powder, an aqueous solution phase containing trivalent iron ions is added to an alkaline aqueous solution in an amount equivalent to or more than the iron ions at a temperature of 30°C or less and reacted to produce ferric hydroxide. After aging, this is subjected to a hydrothermal reaction in an autoclave to produce α-iron oxyhydroxide powder. After filtering and drying, the resulting powder is reduced by heating and further oxidized to produce γ-Fe20. When it comes to ferromagnetic powder, it is fine, has a small axial ratio, and has a uniform particle size distribution.
Fe206 ferromagnetic powder is obtained, and this r-Fe205 ferromagnetic powder is dispersed in a solution containing a cobalt salt, and an alkaline aqueous solution is added to this to form a surface containing mainly cobalt on the surface of the r-Fe20° powder. When the layer is formed, the major axis diameter is 300 nm or less, the axial ratio is 5 or less, and the BET
Specific surface area by method is 40-/L or less, coercive force is 23.9
We have discovered that it is possible to obtain a cobalt-containing iron oxide ferromagnetic powder that has a uniform particle size distribution of KA/m or more, a narrow coercive force distribution, good thermal stability, and little transfer and heat demagnetization, and has led to the creation of this invention. .

この発明において3価の鉄イオンを含有する水溶液をア
ルカリ水溶液中に加えて水酸化第二鉄を生成する際の反
応温度は、30″C以上で行なうと水酸化第二鉄の成長
を適度に調整できず粒度分布が均一で、微細なα−オキ
シ水酸化鉄が得られにくいため30°C以下の温度で行
なうのが好ましく、低温になるほど水酸化第二鉄の成長
の調整が容易であるため20°C以下の温度で行なうの
がより好ましい。また熟成は100°C以下で10分以
上、通常は常温で30分以上好ましくは3〜70時間行
なうのがよく、熟成時間が短かすぎると水増化第二鉄の
成長が不充分であり、長ずざると成長が過度に進み、粒
度分布の均一なものが得られにくい傾向にある。
In this invention, when adding an aqueous solution containing trivalent iron ions to an alkaline aqueous solution to produce ferric hydroxide, the reaction temperature is 30"C or higher to moderate the growth of ferric hydroxide. Since it is difficult to obtain fine α-ferric oxyhydroxide due to a uniform particle size distribution, it is preferable to carry out the process at a temperature below 30°C, and the lower the temperature, the easier it is to control the growth of ferric hydroxide. Therefore, it is more preferable to carry out the aging at a temperature of 20°C or lower.Furthermore, the aging is preferably carried out at a temperature of 100°C or lower for 10 minutes or more, usually at room temperature for 30 minutes or more, preferably for 3 to 70 hours, and the aging time is too short. The growth of the hydrated ferric iron is insufficient, and if it is not allowed to grow for a long time, the growth will proceed excessively, making it difficult to obtain a uniform particle size distribution.

3価の鉄イオンを含有する水溶液は、環化第二鉄、硫酸
第二鉄、硝酸第二鉄などの各種可溶性の第二鉄塩の内か
ら1種もしくは2種以上を水に溶解するか、あるいl’
i’蝮化第−鉄、硫酸第一鉄、硝酸第一鉄などの各種可
溶性の第一鉄塩の内から1種もしくけ2種以、I−,を
水に溶解した後酸化剤等で酸化して調製され、3価の鉄
イオンが含有された状態で使用される。これらの鉄塩は
濃度0.5モル/!!以下の水溶液で使用するのがよい
The aqueous solution containing trivalent iron ions may be prepared by dissolving one or more of various soluble ferric salts such as ferric cyclization, ferric sulfate, and ferric nitrate in water. , or l'
i' Dissolve one or two or more of various soluble ferrous salts such as ferrous salts, ferrous sulfates, and ferrous nitrates in water, and then use an oxidizing agent etc. It is prepared by oxidation and used in a state containing trivalent iron ions. These iron salts have a concentration of 0.5 mol/! ! It is best to use the following aqueous solution.

この3価の鉄イオンを含有する水溶液を添加するアルカ
リ水溶液は、水酸化ナトリウム、水酸化カリウム等の苛
性アルカリ水溶液が好適なものとして使用され、使用量
は水酸化第二鉄を良好に生成させ、かつ水酸化第二鉄の
粒径を適度なものとするため3価の鉄イオンに対して当
量以上であれば充分であり、反対にアルカリ濃度が所定
濃度以上で反応させると、生成物が不均質となり、粒度
分布を拡げるので、遊離のアルカリ濃度が1モル/l以
下となるような範囲で使用するのが好ましいO このように3価の鉄イオンを含有する水溶液を当量以上
のアルカリ水溶液中に30″C以下の温度で添加し反応
させて水酸化第二鉄を生成し、さらに常温で熟成を行な
うと水酸化第二鉄の成長が適度に調整された懸濁液が得
られ、この懸濁液をオートクレーブ中に入れて水熱反応
を行なうと粒度分布が均一でかつ軸比の小さい微細なσ
−オキシ水酸化鉄粉末が得られる。そして次いでこのα
−オキシ水酸化鉄粉末を水洗、ろ過、乾蓋した後、還元
ガス、たとえば水素気流中で250〜400°Cの温度
で加熱還元し、さらにたとえば空気中で200°C以上
の温度で酸化すると軸比が小さくかつ粒度分布が均一で
微細な針状のγ−F e 20 s強磁性粉末が得られ
る。
The alkaline aqueous solution to which the aqueous solution containing trivalent iron ions is added is preferably a caustic alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, and the amount used is such that ferric hydroxide is produced well. , and in order to make the particle size of ferric hydroxide appropriate, it is sufficient that the amount is equivalent to or more than the trivalent iron ion; Since it becomes heterogeneous and expands the particle size distribution, it is preferable to use it within a range where the free alkali concentration is 1 mol/l or less. In this way, an aqueous solution containing trivalent iron ions is mixed with an aqueous alkali solution containing an equivalent amount or more. When added to the liquid at a temperature of 30"C or less and reacted to produce ferric hydroxide, and further aged at room temperature, a suspension in which the growth of ferric hydroxide is appropriately controlled is obtained. When this suspension is placed in an autoclave and subjected to a hydrothermal reaction, the particle size distribution is uniform and fine σ particles with a small axial ratio are produced.
- Iron oxyhydroxide powder is obtained. And then this α
- After the iron oxyhydroxide powder is washed with water, filtered, and dried, it is reduced by heating at a temperature of 250 to 400°C in a stream of reducing gas, such as hydrogen, and further oxidized, for example, at a temperature of 200°C or higher in air. A fine needle-shaped γ-F e 20 s ferromagnetic powder with a small axial ratio and a uniform particle size distribution is obtained.

α−オキシ水酸化鉄粉末を生成する際のオートクレーブ
中での水熱反応は、120℃以下の温度て行なうと結晶
化に長時間を要し、250°C以上の温度で行なうとび
−Fe20.粉末が混在してくるため120〜250°
Cの範囲の温度で行なうのが好ましく、150〜220
°Cの範囲内で行なうのがより好ましい。
In the hydrothermal reaction in an autoclave to produce α-iron oxyhydroxide powder, crystallization takes a long time if the reaction is carried out at a temperature of 120°C or lower, while -Fe20. 120-250° as powder is mixed in.
It is preferable to carry out at a temperature in the range of 150 to 220 C.
It is more preferable to carry out the reaction within the range of °C.

また加熱還元する際の温度は250℃以上で行なうと有
効な磁気特性を有するものが得られ、加熱温度の上昇と
ともに還元が促進されるが、400℃以上に加熱すると
焼結が起り保磁力が低下するため250〜400°Cの
範囲内で行なうのが好ましい。また加熱還元後酸化する
際の温度は低温では酸化が不充分となったり、長時間を
要するなどのため200℃以上の温度で行なうのが好ま
しい。
In addition, when heating and reducing the temperature at 250°C or higher, a product with effective magnetic properties can be obtained, and the reduction is accelerated as the heating temperature increases, but when heated to 400°C or higher, sintering occurs and the coercive force decreases. It is preferable to carry out the temperature within the range of 250 to 400°C. Further, the temperature at which the oxidation is performed after heating reduction is preferably 200° C. or higher, since at low temperatures the oxidation becomes insufficient or takes a long time.

このようにして得られたγ−Fe205強硼性粉末は、
次にコバルト塩と第一鉄塩を含む溶液中に分散させ、さ
らにこれにアルカリ水溶液を加えて反応させると長軸径
が300 nm以下、軸比が5以下でかつBET法によ
る比表面積が40m’/!7以下、保磁力が23.9K
A/m以上の粒度分布の均一なコバルト含有酸イに鉄強
磁性粉末が得られる。
The γ-Fe205 boron powder thus obtained is
Next, by dispersing it in a solution containing a cobalt salt and a ferrous salt, and further adding an alkaline aqueous solution to this and reacting it, the resultant material has a major axis diameter of 300 nm or less, an axial ratio of 5 or less, and a specific surface area of 40 m by the BET method. '/! 7 or less, coercive force is 23.9K
Iron ferromagnetic powder is obtained from cobalt-containing acid with a uniform particle size distribution of A/m or more.

コバルト塩としては硫酸第一コバルト、塩化第一コバル
ト、硫酸第一コバルト等がまた第一鉄塩としては硫酸第
一鉄、塩化第一鉄、硝酸第−鉄等が好適なものとして使
用され、アルカリ水溶液としては水酸化ナトリウム、水
酸化カリウム等の苛性アルカリ水溶液が好適なものとし
て使用される。
Suitable cobalt salts include cobaltous sulfate, cobaltous chloride, cobaltous sulfate, etc., and ferrous salts include ferrous sulfate, ferrous chloride, ferrous nitrate, etc. As the alkaline aqueous solution, a caustic alkali aqueous solution such as sodium hydroxide or potassium hydroxide is preferably used.

アルカリ水溶液の濃度は少なくともコバルトおよび第一
鉄の水酸化物が沈澱する濃度であることが必要で、反応
温度は反応を均一に進行させるなめ、50°C以下であ
ることが好ましい。
The concentration of the alkaline aqueous solution must be such that at least cobalt and ferrous hydroxides precipitate, and the reaction temperature is preferably 50° C. or lower in order to allow the reaction to proceed uniformly.

以上のようにして得られるコバルト含有酸化鉄強磁性粉
末は、長軸径が300 nm以下、軸比が5以下でかつ
BET法による比表面積が40−/り以下、保磁力1y
Z 23.9 KA / m以上で、粒度分布が均一な
ため保硼力分布が狭く熱安定性もよくて転写特性に優れ
、加熱減磁が少ない。
The cobalt-containing iron oxide ferromagnetic powder obtained in the above manner has a major axis diameter of 300 nm or less, an axial ratio of 5 or less, a specific surface area of 40 -/- or less by the BET method, and a coercive force of 1y.
Z of 23.9 KA/m or more, the particle size distribution is uniform, the retention force distribution is narrow, the thermal stability is good, the transfer characteristics are excellent, and there is little heating demagnetization.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 塩化第二鉄(FeC1,−6H20)10モルを水30
1に溶解した塩化第二鉄水溶液と、水酸化す) IJウ
ム60モルを水60/に溶解した水酸化ナトリウム水溶
液を調製し、湿度10°Cで塩化第二鉄水溶液を水酸化
ナトリウム水溶液中に加え褐色の沈lqlを得た。次い
でこれを常温で18時間熟成した後、この懸濁液をオー
トクレーブ中に入れ180°Cで1時間水熱反応を行な
った。反応終了後生成した黄色の沈澱物を水洗、ろ過、
乾(1てσ−オキシ水酸化鉄粉末を得た。
Example 1 10 mol of ferric chloride (FeC1, -6H20) was added to 30 mol of water.
Prepare an aqueous solution of ferric chloride dissolved in 1 and 60 moles of sodium hydroxide dissolved in 60 moles of water, and add the aqueous ferric chloride solution to the aqueous sodium hydroxide solution at a humidity of 10°C. In addition, 1ql of brown precipitate was obtained. After aging this at room temperature for 18 hours, this suspension was placed in an autoclave and subjected to a hydrothermal reaction at 180°C for 1 hour. After the reaction is complete, wash the yellow precipitate with water, filter it,
After drying (1), σ-iron oxyhydroxide powder was obtained.

次に、得られたα−オキシ水酸化鉄粉末を空気中、60
0°Cで1時間加熱してα−Fe20.粉末を牛成し、
このα−Fe205粉末800gを石英ボード中に展開
し、管状電気炉内に載置して水素ガスを5//分の速度
で通気し、300℃で還元してF e 504粉末を得
、さらにこれを空気中で250°Cの温度で酸化し長軸
径200 nm %軸比4、BET法による比表面積2
5−/り、保磁力23.9KA/ m N飽和磁化量(
σs ) 9.11 X 10−’Wb1m/ )Qi
’のγ−Fe20.粉末を得た。
Next, the obtained α-iron oxyhydroxide powder was placed in air for 60 min.
Heated at 0°C for 1 hour to form α-Fe20. Grind the powder,
800 g of this α-Fe205 powder was spread on a quartz board, placed in a tubular electric furnace, hydrogen gas was passed through at a rate of 5/min, and reduced at 300°C to obtain Fe 504 powder. This was oxidized in air at a temperature of 250°C to obtain a major axis diameter of 200 nm, a % axial ratio of 4, and a specific surface area of 2 by the BET method.
5-/ri, coercive force 23.9KA/m N saturation magnetization (
σs) 9.11 X 10-'Wb1m/)Qi
γ-Fe20. A powder was obtained.

次いでこのγ−Fe20.粉末soogを硫酸コバルト
0.4モルと硫酸第一鉄1.2モルとが溶解された水溶
液3t!巾に分散させ、これに16モルの水酸化ナトリ
ウムを溶解させた水酸化ナトリウム水溶液31を加えた
。この分散液の湛麿を45°Cまで昇温し、この温度を
保持したままで6時間攪拌を続けた。次いで、磁性粉末
を取り出し、充分に水洗して反応溶液を除去した後、乾
燥し、コバルト含有酸化鉄強磁性粉末を得た。。
Next, this γ-Fe20. 3 tons of an aqueous solution in which 0.4 mol of cobalt sulfate and 1.2 mol of ferrous sulfate are dissolved in powdered soog! An aqueous sodium hydroxide solution 31 in which 16 mol of sodium hydroxide was dissolved was added. The temperature of this dispersion was raised to 45°C, and stirring was continued for 6 hours while maintaining this temperature. Next, the magnetic powder was taken out, thoroughly washed with water to remove the reaction solution, and then dried to obtain a cobalt-containing iron oxide ferromagnetic powder. .

このようにして得られたコバルト含有酸化鉄強磁性粉末
(−!、長袖径が20’ Onm %短軸径が501m
 %軸比が4、BET法による比表面M22.1rrf
/り、保磁力が51.7KA/mでコバルト原子の含有
鱗は2.57重量%であった。
The thus obtained cobalt-containing iron oxide ferromagnetic powder (-!, long axis diameter is 20' Onm, short axis diameter is 501 m
% axial ratio is 4, specific surface M22.1rrf by BET method
/, coercive force was 51.7 KA/m, and scales containing cobalt atoms were 2.57% by weight.

このようにして得られたコバルト含有γ−Fe205粉
末を使用し、 Co含有r−Fe、、05粉末      sof<i
部VAGH(米LE&lt3.C,C社製、塩化  1
1 〃ビニルー酢酸ビニルービニルアル コール共重合体) バンデツクスT−5250(大日本   7 〃インギ
礼製、ウレタンエラストマー) コロネートL(日本ポリウレタンエ   2重量部柴祉
製、三官能性低分子量イソシ アネート化合物) シクロヘキサノン         60 lトルエン
            60 〃の組成からなる組成
物をボールミル中で72時時間分分散して磁性塗料を調
製した。この磁性塗料を厚さ12μmのポリエステルベ
ースフィルム上に乾燥厚が4μmとなるように塗布、乾
燥し、表面処理を行なった後所定の巾に截断して磁気テ
ープをつくった。
Using the cobalt-containing γ-Fe205 powder thus obtained, Co-containing r-Fe,,05 powder sof<i
Part VAGH (manufactured by LE&lt3.C, C, USA, chloride 1
1 Vinyl-vinyl acetate-vinyl alcohol copolymer) Bandex T-5250 (Dainippon 7 Ingi Rei, urethane elastomer) Coronate L (Nippon Polyurethane 2 parts by weight, Saiki, trifunctional low molecular weight isocyanate compound) Cyclohexanone A magnetic paint was prepared by dispersing a composition consisting of 60 liters of toluene and 60 liters of toluene for 72 hours in a ball mill. This magnetic paint was applied onto a 12 μm thick polyester base film to a dry thickness of 4 μm, dried, surface treated, and then cut to a predetermined width to produce a magnetic tape.

実施例2 実施例1において塩化第二鉄水溶液を水酸化ナトリウム
水溶液中に加える時の湿度を0°Cとして、褐色の沈澱
を得、この懸濁液をオートクレーブ中に入れ180°C
で1時間水熱反応を行なって、α−オキシ水酸化鉄を得
た以外は実施例1と同様にして、長軸径120nms短
軸径30 nm 1軸比4、BET法ニヨる比表面fv
!12B、7rrf/9、保磁力50.IKA/mでコ
バルト原子の含有it 5.90重量略のコバルト含有
γ−Fe20.粉末を得、さらにこのコバルト含有γ−
Fe203粉末を使用して実施例1と同様にして磁気テ
ープをつくった。
Example 2 In Example 1, the humidity when adding the ferric chloride aqueous solution to the sodium hydroxide aqueous solution was set to 0°C to obtain a brown precipitate, and this suspension was placed in an autoclave and heated at 180°C.
The procedure was the same as in Example 1 except that a hydrothermal reaction was carried out for 1 hour to obtain α-iron oxyhydroxide.The major axis diameter was 120 nm, the minor axis diameter was 30 nm, the uniaxial ratio was 4, and the specific surface fv was determined by the BET method.
! 12B, 7rrf/9, coercive force 50. Cobalt-containing γ-Fe20. A powder is obtained, and this cobalt-containing γ-
A magnetic tape was made in the same manner as in Example 1 using Fe203 powder.

実施例3 実施例2においてコバルト含有酸化鉄粉末を了りろ過程
において、硫酸コバルトの使用量を0.8モル、硫醜第
−鉄の使用量を2.4モルとした以外は実施例2と同様
にして、長軸径120nmq短軸径30 nm s軸比
4、BET法による比表面積28.1m’/り、保磁カ
フ5.6KA/mでコバルト原子の含有f)!4.57
重量%のコバルト含有γ−Fe20!、粉末を荷、さら
にこのコバルト含有γ−Fe 203粉末を使用して実
施例2と同様にして磁気テープをつくった。
Example 3 Example 2 except that in the process of dissolving the cobalt-containing iron oxide powder in Example 2, the amount of cobalt sulfate used was 0.8 mol and the amount of ferric sulfate was 2.4 mol. Similarly, the major axis diameter is 120 nm, the minor axis diameter is 30 nm, the s axis ratio is 4, the specific surface area is 28.1 m'/m by the BET method, the cobalt atom content is f)! with a coercive cuff of 5.6 KA/m! 4.57
wt% cobalt-containing γ-Fe20! A magnetic tape was prepared in the same manner as in Example 2 using the cobalt-containing γ-Fe 203 powder.

比較例 硫酸iR’it (FeSO4,7H2O) 10モル
を水401に溶解し念硫酸第−鉄水溶液と、水酸化ナト
リウム70モルを水40/に溶解した水酸化ナトリウム
水溶液を調製し、温度25°Cで硫酸第一鉄水溶液中に
水酸化す) リウム水溶液を加え淡緑色の沈澱を得た。
Comparative Example A ferrous sulfate aqueous solution was prepared by dissolving 10 moles of sulfuric acid iR'it (FeSO4,7H2O) in 40 parts of water, and an aqueous sodium hydroxide solution was prepared by dissolving 70 moles of sodium hydroxide in 40 parts of water, and the temperature was 25°. A lithium aqueous solution was added to obtain a pale green precipitate.

次いでこの懸濁液を恒温水槽中で40°Cに加温しなが
ら毎分lOlの空気をa!濁液中に吹き込み、6時間酸
化反応を行なって黄色沈澱物を得、水洗、ろイIへ、乾
燥してα−オキシ水酸化鉄粉末を得た。
This suspension was then heated to 40°C in a constant temperature water bath while 1Ol of air was pumped in a! The mixture was blown into the cloudy liquid and subjected to an oxidation reaction for 6 hours to obtain a yellow precipitate, which was washed with water, transferred to filtration I, and dried to obtain α-iron oxyhydroxide powder.

次に、とのα−オキシ水酸化鉄を実施例1と同様にして
加熱還元しさらに酸化してγ−Fe205粉末を得、次
いでコバルト被着処理を行なって長軸径200 nm−
1短軸径3 Onm s軸比6.7、BET法による比
表[Ti積39,5yrs’/9、保磁力39.8KA
/mでコバルトIば子の含有量2.55重il哄のコバ
ルト含有γ−Fe20.粉末を得た。さらにこのコバル
ト含有r−Fe203粉末を使用して実施例1と同様に
して磁気テープをつくった。
Next, α-iron oxyhydroxide was heated and reduced in the same manner as in Example 1, and further oxidized to obtain γ-Fe205 powder, which was then subjected to cobalt deposition treatment to obtain a powder with a major axis diameter of 200 nm.
1 minor axis diameter 3 Onm s axis ratio 6.7, ratio table by BET method [Ti product 39.5yrs'/9, coercive force 39.8KA
cobalt-containing γ-Fe20. A powder was obtained. Furthermore, a magnetic tape was produced in the same manner as in Example 1 using this cobalt-containing r-Fe203 powder.

実施例1および比較例で得られたコバルト含有酸化鉄強
磁性粉末の保磁力分布を調べるため試料振動型磁力計を
使って異方性磁界分布を測定した。
In order to investigate the coercive force distribution of the cobalt-containing iron oxide ferromagnetic powders obtained in Example 1 and Comparative Example, the anisotropic magnetic field distribution was measured using a sample vibrating magnetometer.

第1図はこの結果をグラフで表わしたもので、グラフA
I″i実施例1で得られた磁性粉末の異方性磁界分布を
示し、グラフBけ比較例で得られた磁性粉末の異方性磁
界分布を示す。このグラフから明らかなよう疋この発明
で得られたコバルト含有酸化鉄強磁性粉末は比較例で得
られたものよりも異方性磁界分布が狭く、このことから
この発明によって得られるコバルト含有酸化鉄弾磁性粉
末は保磁力分布が良好なことがわかる。
Figure 1 shows this result graphically, and graph A
Graph B shows the anisotropic magnetic field distribution of the magnetic powder obtained in Example 1, and graph B shows the anisotropic magnetic field distribution of the magnetic powder obtained in Comparative Example. The cobalt-containing iron oxide ferromagnetic powder obtained in this invention has a narrower anisotropic magnetic field distribution than that obtained in the comparative example, and from this, the cobalt-containing iron oxide elastomagnetic powder obtained by this invention has a good coercive force distribution. I understand that.

また、各実施例および比較例で得られたコバルト含有酸
化鉄強磁性粉末について熱的安定性を調ぺZ5ため、加
配減鹸を測定し、転写特性を試験した。加熱域磁はW径
5 mm 、高さ3mmの容器に得られた磁性粉末を充
填し、これを室温で796KA / m磁界で飽和磁(
tし、飽和残留磁化計Irsを測定した後、次いでこの
飽和磁化した試料を60°Cで2時間保持し、室温で取
り出して残留磁化量Trを測定し、ユ扛”−X 100
力・ら加熱減磁量sr を百分率で計算して測定した。また転写特性試験は直径
6mm 、高さ3PIIの容器に得られた磁性粉末を充
填し、これを60°Cで3.2KA/mの磁界中に1時
間保持した後室温で残留磁化量Ira、zを測定し、次
いで796KA/mの磁界で飽和磁化からデシベルで計
算して行なった。
Furthermore, in order to investigate the thermal stability of the cobalt-containing iron oxide ferromagnetic powders obtained in each of the Examples and Comparative Examples, the addition and depletion ratio was measured and the transfer characteristics were tested. For the heating zone magnet, a container with a W diameter of 5 mm and a height of 3 mm was filled with the obtained magnetic powder, and it was saturated with a magnetic field of 796 KA/m at room temperature (
After measuring the saturation residual magnetization meter Irs, the saturated magnetized sample was held at 60°C for 2 hours, taken out at room temperature, and the residual magnetization amount Tr was measured.
The force/rather heating demagnetization amount sr was calculated and measured as a percentage. In addition, in the transfer property test, a container with a diameter of 6 mm and a height of 3 PII was filled with the obtained magnetic powder, and after being held in a magnetic field of 3.2 KA/m at 60°C for 1 hour, the residual magnetization amount Ira was measured at room temperature. z was measured and then calculated in decibels from the saturation magnetization in a magnetic field of 796 KA/m.

下記第1表はその結果である。Table 1 below shows the results.

第   1   表 上表から明らかなように、この究明で得られたコバルト
含有酸化鉄強磁性粉末(実施例1〜3)は従来のコバル
ト含有陣化鉄強礎性粉末(比較例)に比し、いずれも加
熱減磁および転写が少なく、このことからこの発明によ
って得られるコバルト含有酸化鉄強磁性粉末は熱的安定
性に優れていることがわかる。
As is clear from the above Table 1, the cobalt-containing iron oxide ferromagnetic powders (Examples 1 to 3) obtained in this investigation are superior to the conventional cobalt-containing iron oxide reinforced powders (comparative examples). , all of them showed little thermal demagnetization and transfer, which shows that the cobalt-containing iron oxide ferromagnetic powder obtained by the present invention has excellent thermal stability.

さらに各実施例および比較例で得られた磁気テープにつ
いて、保磁力(Hc)、残留磁束密度(Br)、角型(
Br/Bs)、DC5/NおよびAC5/Nを測定し、
消去特性を試験した。消去特性試験は磁気テープに+5
dBの人力でIKHz の信号を記録し、基準テープ(
BASF C401R)の消去特性が05dBとなる消
去電流の20嘴増の消去電流で消去した時の消去前後の
再生出力信号の差を測定し、dBで示した。
Furthermore, regarding the magnetic tapes obtained in each example and comparative example, coercive force (Hc), residual magnetic flux density (Br), square shape (
Br/Bs), DC5/N and AC5/N,
The erasure properties were tested. Erasing property test is +5 for magnetic tape
Record the IKHz signal with dB manual power and record it on a reference tape (
The difference between the reproduced output signals before and after erasing was measured when erasing was performed using an erase current that was 20 times higher than the erase current that gave the erase characteristic of BASF C401R 05 dB, and was expressed in dB.

下記第2表はその結果である。Table 2 below shows the results.

第    2    表 上表から明らかなように、この発明のコバルト含有酸化
鉄強磁性粉末を使用して得られる磁気テープ(実施例1
〜3)は従来の磁気テープ(比較例)に比し、いずれも
保磁力、残留磁束密度、角型が高くてDC5/Nおよび
AC5/Nが低く、また消去特性が良好で、このことか
らこの発明のコバルト含有酸化鉄強磁性粉末を使用して
得られる磁気記録媒体は磁気特性に優れ、またノイズが
少なくて消去特性も改善されることがわかる。
As is clear from Table 2, the magnetic tape obtained using the cobalt-containing iron oxide ferromagnetic powder of the present invention (Example 1)
-3) have higher coercive force, higher residual magnetic flux density, higher squareness, lower DC5/N and AC5/N, and better erasing characteristics than conventional magnetic tapes (comparative example). It can be seen that the magnetic recording medium obtained using the cobalt-containing iron oxide ferromagnetic powder of the present invention has excellent magnetic properties, has less noise, and has improved erasing properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明で得られたコバルト含有酸化鉄強磁性
粉末の異方性磁界と、粉末粒子の体積パーセントとの関
係図である。 特許出願人 工業技術院長  石 坂 誠 −特許出願
人  日立マクセル株式会社 代表者 水弁 厚 指定代理人 工柴技術院大阪工業技術試験所長内藤−男
FIG. 1 is a diagram showing the relationship between the anisotropic magnetic field of the cobalt-containing iron oxide ferromagnetic powder obtained by the present invention and the volume percent of the powder particles. Patent applicant: Makoto Ishizaka, Director of the Institute of Industrial Science and Technology - Patent applicant: Representative of Hitachi Maxell Co., Ltd. Atsushi Mizuben Designated representative: Director of the Osaka Institute of Technology, Koshiba Institute of Technology Osaka Naito

Claims (1)

【特許請求の範囲】[Claims] 1、酸化鉄強磁性粉末を核晶とし、この核晶上にコバル
トを主体的に含有する表面層を有する長軸径が300 
nm以下、軸比が5以下でかつBET法による比表面積
が4O−nf/り以下、保磁力が23.9KA/m以上
の強磁性粉末2.3価の鉄イオンを含有する水溶液を当
量以上のアルカリ水溶液中に30°C以下の温度で添加
し反応させて水酸化第二鉄を生成し、さらに熟成した後
、この水酸化第二鉄をオートクレーブ中で水熱反応させ
てα−オキシ水酸化鉄粉末を生成し、ろ過、乾燥後この
生成粉末を加熱還元しさらに酸化してγ−F e 20
 x、粉末とした後、このγ−Fe205粉末をコバル
ト塩と第一鉄塩を含む溶液中に分散させ、さらにこれに
アルカリ水、溶液を加えてγ−Fe203粉末の表面に
コバルトを主体的に含む表面層を形成させることを特徴
とする強磁性粉末の製造方法
1. Iron oxide ferromagnetic powder is used as a core crystal, and the major axis diameter is 300 mm with a surface layer containing mainly cobalt on the core crystal.
ferromagnetic powder having an axial ratio of 5 or less, a specific surface area of 4 O-nf/m or less by the BET method, and a coercive force of 23.9 KA/m or more. is added to an alkaline aqueous solution at a temperature below 30°C and reacted to produce ferric hydroxide. After further aging, this ferric hydroxide was hydrothermally reacted in an autoclave to form α-oxyhydroxide. After producing iron oxide powder, filtering and drying, the produced powder is reduced by heating and further oxidized to obtain γ-Fe 20
x, After powdering, this γ-Fe205 powder is dispersed in a solution containing cobalt salt and ferrous salt, and alkaline water and solution are added to this to mainly coat cobalt on the surface of the γ-Fe203 powder. A method for producing a ferromagnetic powder characterized by forming a surface layer containing
JP56157138A 1981-10-01 1981-10-01 Ferromagnetic powder and its manufacturing method Expired JPS6018609B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56157138A JPS6018609B2 (en) 1981-10-01 1981-10-01 Ferromagnetic powder and its manufacturing method
EP19820109003 EP0076462B2 (en) 1981-10-01 1982-09-29 Method of production of magnetic particles
DE8282109003T DE3274777D1 (en) 1981-10-01 1982-09-29 Magnetic particles and method of production thereof
CA000412570A CA1246321A (en) 1981-10-01 1982-09-30 Magnetic particles and method of production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56157138A JPS6018609B2 (en) 1981-10-01 1981-10-01 Ferromagnetic powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5860624A true JPS5860624A (en) 1983-04-11
JPS6018609B2 JPS6018609B2 (en) 1985-05-11

Family

ID=15643023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56157138A Expired JPS6018609B2 (en) 1981-10-01 1981-10-01 Ferromagnetic powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6018609B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255627A (en) * 1984-06-01 1985-12-17 Ube Ind Ltd Prduction of ferromagnetic powder
JPS61227921A (en) * 1985-04-01 1986-10-11 Fuji Photo Film Co Ltd Ferromagnetic fine powder and its production
JPS62275028A (en) * 1986-01-30 1987-11-30 Ishihara Sangyo Kaisha Ltd Ferromagnetic iron oxide powder containing cobalt and its production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205224U (en) * 1985-05-20 1986-12-24

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949475A (en) * 1972-05-24 1974-05-14
JPS49113199A (en) * 1973-03-05 1974-10-29
JPS50115698A (en) * 1974-02-22 1975-09-10
JPS5145506A (en) * 1974-10-17 1976-04-19 Fuji Photo Film Co Ltd
JPS5233319A (en) * 1975-09-09 1977-03-14 Rokude Sangiyou Kk Structure pillar in stainless steel plate
JPS5233320A (en) * 1975-09-09 1977-03-14 Keisuke Shimizu Umbrellaashaped ridge
JPS545519A (en) * 1977-06-15 1979-01-17 Hitachi Ltd Voltage controller for ac generator
JPS55162430A (en) * 1979-06-02 1980-12-17 Hitachi Maxell Ltd Manufacture of ferromagnetic powder
JPS567403A (en) * 1979-06-30 1981-01-26 Toda Kogyo Corp Preparation of acicular crystalline magnetic iron oxide grain powder
JPS5732408A (en) * 1980-08-06 1982-02-22 Chinon Kk Focusing controller

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949475A (en) * 1972-05-24 1974-05-14
JPS49113199A (en) * 1973-03-05 1974-10-29
JPS50115698A (en) * 1974-02-22 1975-09-10
JPS5145506A (en) * 1974-10-17 1976-04-19 Fuji Photo Film Co Ltd
JPS5233319A (en) * 1975-09-09 1977-03-14 Rokude Sangiyou Kk Structure pillar in stainless steel plate
JPS5233320A (en) * 1975-09-09 1977-03-14 Keisuke Shimizu Umbrellaashaped ridge
JPS545519A (en) * 1977-06-15 1979-01-17 Hitachi Ltd Voltage controller for ac generator
JPS55162430A (en) * 1979-06-02 1980-12-17 Hitachi Maxell Ltd Manufacture of ferromagnetic powder
JPS567403A (en) * 1979-06-30 1981-01-26 Toda Kogyo Corp Preparation of acicular crystalline magnetic iron oxide grain powder
JPS5732408A (en) * 1980-08-06 1982-02-22 Chinon Kk Focusing controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255627A (en) * 1984-06-01 1985-12-17 Ube Ind Ltd Prduction of ferromagnetic powder
JPS61227921A (en) * 1985-04-01 1986-10-11 Fuji Photo Film Co Ltd Ferromagnetic fine powder and its production
JPS62275028A (en) * 1986-01-30 1987-11-30 Ishihara Sangyo Kaisha Ltd Ferromagnetic iron oxide powder containing cobalt and its production

Also Published As

Publication number Publication date
JPS6018609B2 (en) 1985-05-11

Similar Documents

Publication Publication Date Title
KR860000485B1 (en) Process for producing ferromagnetic metallic particles
JPS5860624A (en) Ferromagnetic powder and its preparation
JPS62287604A (en) Magnetic material and manufacture of the same and magnetic recording medium
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JPH0271502A (en) Needle-shaped feromagnetic metallic particle mainly composed of iron and its manufacture
JPS6135135B2 (en)
JPS6051243B2 (en) Method for producing magnetic iron oxide particles for magnetic recording materials
EP0076462B2 (en) Method of production of magnetic particles
JPS5857708A (en) Magnetic recording medium
JPS5857709A (en) Magnetic recording medium
JPS5850005B2 (en) Jikikirokuyouji Seifun Matsuno Seizouhou
JP2970706B2 (en) Method for producing acicular magnetic iron oxide particles
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JP2002050508A (en) Method of manufacturing magnetic powder
JPS5941453A (en) Needle crystal iron alloy magnetic particulate powder for magnetic recording and preparation thereof
JPS5853495B2 (en) magnetic recording medium
JPS59169937A (en) Production of magnetic powder
JP2935292B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6051242B2 (en) Method for producing magnetic iron oxide particles for magnetic recording materials
JPS5928965B2 (en) pine tree
JPS60196905A (en) Manufacture of cobalt denatured ferrite magnetic powder
JPS61139922A (en) Magnetic recording medium
JPS58110432A (en) Manufacture of sr ferrite
JPS6093629A (en) Ferromagnetic iron oxide powder for magnetic recording medium and its production