JPS5853495B2 - magnetic recording medium - Google Patents

magnetic recording medium

Info

Publication number
JPS5853495B2
JPS5853495B2 JP52074993A JP7499377A JPS5853495B2 JP S5853495 B2 JPS5853495 B2 JP S5853495B2 JP 52074993 A JP52074993 A JP 52074993A JP 7499377 A JP7499377 A JP 7499377A JP S5853495 B2 JPS5853495 B2 JP S5853495B2
Authority
JP
Japan
Prior art keywords
cobalt
powder
iron oxide
magnetic powder
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52074993A
Other languages
Japanese (ja)
Other versions
JPS549798A (en
Inventor
進 北岡
晴夫 安藤
純一 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP52074993A priority Critical patent/JPS5853495B2/en
Priority to GB15201/78A priority patent/GB1603213A/en
Priority to DE19782817410 priority patent/DE2817410A1/en
Priority to FR7811737A priority patent/FR2387912A1/en
Publication of JPS549798A publication Critical patent/JPS549798A/en
Publication of JPS5853495B2 publication Critical patent/JPS5853495B2/en
Priority to US06/858,575 priority patent/US4741921A/en
Priority to US07/141,073 priority patent/US4857417A/en
Expired legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】 この発明は、記録素子としてコバルト含有酸化鉄磁性粉
末を用いた磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium using cobalt-containing iron oxide magnetic powder as a recording element.

コバルト含有酸化鉄磁性粉末は、従来汎用されているγ
−Fe2O3などのコバルトを含まない酸化鉄磁性粉末
に比べて高保磁力を有しており、これを磁気記録媒体に
使用すると高密度記録ができる、高周波領域における感
度が高いなど種々の利点を有している。
Cobalt-containing iron oxide magnetic powder is a conventionally widely used γ
-It has a higher coercive force than cobalt-free iron oxide magnetic powder such as Fe2O3, and when used in magnetic recording media, it has various advantages such as high density recording and high sensitivity in high frequency range. ing.

このようなコバルト含有酸化鉄磁性粉末はこれまで種々
のものが提案されており、その代表的なものとしてはコ
バルト原子を酸化鉄の結晶格子中に固溶させたものがあ
る。
Various types of such cobalt-containing iron oxide magnetic powders have been proposed so far, and a typical example is one in which cobalt atoms are dissolved in the crystal lattice of iron oxide.

ところが、このコバルトを固溶させた酸化鉄粉末では、
コバルト原子の固溶によって熱安定性が非常に悪くなり
、これを磁気記録媒体の記録素子として用いた場合には
転写または加熱減磁が生起するという欠点があった。
However, with iron oxide powder containing cobalt as a solid solution,
The solid solution of cobalt atoms causes very poor thermal stability, and when this is used as a recording element of a magnetic recording medium, there is a drawback that transfer or heating demagnetization occurs.

このような欠点を解消するものとして、本出願人は特公
昭49−49475号公報に記載されている方法即ち、
強磁性酸化鉄粉末を核晶とし、これを鉄塩または鉄塩と
コバルト塩を含む金属塩溶液と少なくともコバルト水酸
化物が沈澱する濃度のアルカリ溶液との混合溶液中に分
散させ、この溶液中で酸化性ガスにより酸化反応を行な
わせて核晶上に亜鉄酸金属をエピタキシャル成長させて
なるコバルト含有酸化鉄磁性粉末を提案した。
In order to overcome these drawbacks, the present applicant proposed the method described in Japanese Patent Publication No. 49-49475, namely:
A ferromagnetic iron oxide powder is used as a nucleus crystal, and this is dispersed in a mixed solution of an iron salt or a metal salt solution containing an iron salt and a cobalt salt, and an alkaline solution having a concentration such that at least cobalt hydroxide precipitates. proposed a cobalt-containing iron oxide magnetic powder made by epitaxially growing ferrite metal on the core crystals through an oxidation reaction using an oxidizing gas.

しかしながら、上記の如くして得られたコバルト含有酸
化鉄磁性粉末は、その製造工程中に酸化性ガスによる酸
化を行なうため、核晶上に成長したコバルト含有酸化鉄
層中には二価の鉄が殆んど存在しないため、たとえ二価
の鉄含量の多いFe3O4を核晶として用いたとしても
、得られたコバルト含有酸化鉄粉末は表面電気抵抗の大
きいものとなり、従って、これを記録素子として用いた
磁気記録媒体ではその表面電気抵抗が大きくなり、これ
がため記録再生時における磁気記録媒体の帯電量が増大
する傾向がある。
However, since the cobalt-containing iron oxide magnetic powder obtained as described above is oxidized by oxidizing gas during the manufacturing process, divalent iron is present in the cobalt-containing iron oxide layer grown on the nuclear crystals. Even if Fe3O4, which has a high content of divalent iron, is used as a nucleus crystal, the resulting cobalt-containing iron oxide powder will have a large surface electrical resistance, and therefore it cannot be used as a recording element. The magnetic recording medium used has a large surface electrical resistance, which tends to increase the amount of charge on the magnetic recording medium during recording and reproduction.

この帯電を防止するためにカーボンブラックなどの導電
材料を磁性層に添加するという手段を採用することが考
えられるが、このような非磁性材料成分を多くすること
は磁気記録媒体の特性上好ましくない。
In order to prevent this charging, it may be possible to add a conductive material such as carbon black to the magnetic layer, but increasing the amount of such non-magnetic material is not desirable due to the characteristics of the magnetic recording medium. .

この発明の目的は、上記の欠点を解消するとともに転写
特性などの熱安定性に優れ、しかも良好な電気伝導性を
有するコバルト含有酸化鉄磁性粉末を用いた磁気記録媒
体を提供することにある。
An object of the present invention is to provide a magnetic recording medium using a cobalt-containing iron oxide magnetic powder that eliminates the above-mentioned drawbacks, has excellent thermal stability such as transfer characteristics, and has good electrical conductivity.

この発明の磁気記録媒体は、粉末内部が強磁性酸化鉄か
らなりかつ表面層として二価の鉄とコバルトを含ませた
酸化鉄層を有すると共に、粉末全体の二価の鉄と三価の
鉄との比(Fe2/Fe3+)が0.10〜0,13の
範囲にあってしかも粉末内部に較べて粉末表面の二価の
鉄含量が多くされたコバルト含有酸化鉄磁性粉末と、こ
の粉末を分散結着するバインダとを含有することを特徴
としたものである。
The magnetic recording medium of the present invention has an inner part of the powder made of ferromagnetic iron oxide and a surface layer of an iron oxide layer containing divalent iron and cobalt, and a powder containing divalent iron and trivalent iron throughout the powder. A cobalt-containing iron oxide magnetic powder whose ratio (Fe2/Fe3+) is in the range of 0.10 to 0.13 and a higher divalent iron content on the powder surface than inside the powder, and this powder. It is characterized by containing a binder that disperses and binds.

この発明において使用する上記のコバルト含有酸化鉄磁
性粉末を製造するには、例えば、強磁性酸化鉄粉末を、
コバルト塩と第一鉄塩とを含む金属塩溶液中に分散させ
、これに前記金属塩溶液中に含まれる金属塩に対して当
量以上のアルカリを溶解させた水溶液を加え、溶液の沸
点以下の温度に保ちつつ溶液中の第一鉄イオンが空気に
よる酸化を殆んど受けることのない条件下で処理して前
記強磁性酸化鉄粉末の表面に二価の鉄とコバルトを主体
的に含む酸化鉄層を形成する。
In order to produce the above cobalt-containing iron oxide magnetic powder used in this invention, for example, ferromagnetic iron oxide powder is
A cobalt salt and a ferrous salt are dispersed in a metal salt solution, and an aqueous solution containing an alkali in an amount equivalent to or more than the metal salt contained in the metal salt solution is added to the solution. The ferrous iron oxide powder is treated under conditions where the ferrous ions in the solution are hardly oxidized by air while maintaining the temperature, so that the surface of the ferromagnetic iron oxide powder is oxidized mainly containing divalent iron and cobalt. Forms an iron layer.

このようにして得られるこの発明のコバルト含有酸化鉄
粉末は粒子表面に二価の鉄を多く含んでいるので、一般
に電気伝導性が低いとされているγ−F e 203を
出発原料として用いた場合でも、粒子全体として同程度
の二価の鉄を含む他のものに比べて電気伝導性に優れた
ものとなり、これを磁気記録媒体の記録素子として用い
ると極めて低い表面抵抗を有する磁気記録媒体を製造す
ることができる。
Since the cobalt-containing iron oxide powder of the present invention obtained in this manner contains a large amount of divalent iron on the particle surface, γ-Fe 203, which is generally considered to have low electrical conductivity, was used as a starting material. Even if the particles as a whole contain the same amount of divalent iron, they have superior electrical conductivity compared to other particles, and when used as a recording element of a magnetic recording medium, a magnetic recording medium with extremely low surface resistance can be obtained. can be manufactured.

この表面電気抵抗は、粒子の表面層中の二価の鉄の含量
に依存し、その量の増大とともに表面電気抵抗は低くな
る。
This surface electrical resistance depends on the content of divalent iron in the surface layer of the particles, and as the amount increases, the surface electrical resistance decreases.

粒子表面層中の二価の鉄の含量を増大させるには、たと
えば上記の方法では反応に使用する第一鉄塩の量を多く
すればよい。
In order to increase the content of divalent iron in the particle surface layer, for example, in the above method, the amount of ferrous salt used in the reaction may be increased.

この第一鉄塩としては硫酸第一鉄、塩化第一鉄、硝酸第
一鉄などが用いられるが、これらを出発原料たる強磁性
酸化鉄粉末に対し通常0.1モル以上使用すれば上記の
如き効果が得られる。
As this ferrous salt, ferrous sulfate, ferrous chloride, ferrous nitrate, etc. are used, but if they are used in an amount of 0.1 mole or more based on the ferromagnetic iron oxide powder that is the starting material, the above-mentioned results can be achieved. A similar effect can be obtained.

上記の方法によりこの発明のコバルト含有酸化鉄磁性粉
末を製造する場合、得られる強磁性粉末の保磁力は、反
応に使用する硫酸コバルトなどのコバルト塩と第一鉄塩
の量、アルカリ添加量および処理温度と相関があり、コ
バルト塩と第一鉄塩の量が増大するにつれて、またはア
ルカリ添加量を反応系中の金属塩の当量以上とするとき
、或いは処理温度を高くするにつれて保磁力が増大する
When producing the cobalt-containing iron oxide magnetic powder of the present invention by the above method, the coercive force of the obtained ferromagnetic powder depends on the amount of cobalt salt such as cobalt sulfate and ferrous salt used in the reaction, the amount of alkali added, and There is a correlation with the processing temperature, and the coercive force increases as the amount of cobalt salt and ferrous salt increases, or as the amount of alkali added is greater than the equivalent of the metal salt in the reaction system, or as the processing temperature increases. do.

従って、これらの条件を適宜選定することにより所望の
保磁力を有するコバルト含有酸化鉄磁性粉末を得ること
ができる。
Therefore, by appropriately selecting these conditions, a cobalt-containing iron oxide magnetic powder having a desired coercive force can be obtained.

この発明のコバルト含有酸化鉄磁性粉末の粒子内部を構
成する強磁性酸化鉄としては、保磁力および熱安定性の
点から考えると、酸化鉄中の二価の鉄と三価の鉄の比F
e2/Fe3+が0.05〜約0.10の範囲にあるよ
うな中間酸化状態の酸化鉄であるときに、その保磁力が
一段と高くなりまた熱安定性の面でも好結果が得られる
ことが認められるので、例えば上記方法でこの発明の強
磁性粉末を製造する場合、出発原料にそのような中間酸
化状態の酸化鉄粉末を用いるとよい。
In terms of coercive force and thermal stability, the ratio of divalent iron to trivalent iron in the iron oxide is F.
It has been found that when iron oxide is in an intermediate oxidation state with e2/Fe3+ in the range of 0.05 to about 0.10, its coercive force becomes even higher and good results are obtained in terms of thermal stability. Therefore, for example, when producing the ferromagnetic powder of the present invention by the above method, iron oxide powder in such an intermediate oxidation state may be used as the starting material.

このような中間酸化状態の酸化鉄粉末を得るには、例え
ばγ−Fe203粉末を水素ガスなどの還元性気体中で
粒子中のFe2/Fe3+が上記範囲になるまで部分還
元する方法を採用すればよい。
In order to obtain iron oxide powder in such an intermediate oxidation state, for example, a method is adopted in which γ-Fe203 powder is partially reduced in a reducing gas such as hydrogen gas until the Fe2/Fe3+ in the particles falls within the above range. good.

この方法によれば、粒子表面に二価の鉄を多く分布させ
ることができるので、これを出発原料として用いれば表
面電気抵抗の一層低いものが得られる。
According to this method, it is possible to distribute a large amount of divalent iron on the particle surface, so if this is used as a starting material, a product with even lower surface electrical resistance can be obtained.

一方、熱安定性をとくに高度に改善する点から考えれば
、γ−Fe2O3で粒子内部を構成したものは転写特性
などがより優れているといえるので、目的に応じて適宜
選択すればよい。
On the other hand, from the point of view of improving thermal stability to a particularly high degree, it can be said that particles whose insides are made of γ-Fe2O3 have better transfer characteristics, so they may be selected as appropriate depending on the purpose.

以上述べた通り1、この発明において使用するコバルト
含有酸化鉄磁性粉末は、強磁性酸化鉄の表面に二価の鉄
とコバルトを主体とする酸化鉄層を形成したものである
から、従来のコバルトを固溶させた酸化鉄磁性粉末に比
べて転写特性や加熱減磁などの熱的安定性が格段に優れ
ているとともに、粒子表面に二価の鉄を多く含んでいる
ので電気伝導性に優れており、これを磁気記録媒体の記
録素子として用いると、転写および加熱減磁が少なく且
つ表面電気抵抗の低い高密度記録用磁気記録媒体が得ら
れる。
As stated above, 1. The cobalt-containing iron oxide magnetic powder used in this invention has an iron oxide layer mainly composed of divalent iron and cobalt formed on the surface of ferromagnetic iron oxide. Compared to iron oxide magnetic powder, which is a solid solution of iron oxide, it has much better thermal stability such as transfer characteristics and thermal demagnetization, and it also has excellent electrical conductivity because the particle surface contains a large amount of divalent iron. When this is used as a recording element of a magnetic recording medium, a magnetic recording medium for high-density recording with less transfer and heating demagnetization and low surface electrical resistance can be obtained.

次に、実施例によりこの発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実施例 1 粒径的0.3μ、軸比(長軸/短軸)約10.保磁力(
以下、Hcという)330エルステツド、飽和磁化(以
下、σSという)74emu/gの針状γ−Fe203
粉末を水素気流中、230℃の温度で3時間還元処理し
てHc = 370エルステツド、 σs = 78
emu/g、 Fe2/Fe”= 0.10の酸化鉄
磁性粉末を得た。
Example 1 Particle diameter: 0.3μ, axial ratio (major axis/minor axis): approximately 10. Coercive force (
Acicular γ-Fe203 with a saturation magnetization (hereinafter referred to as σ) of 74 emu/g and 330 oersted (hereinafter referred to as Hc).
The powder was reduced in a hydrogen stream at a temperature of 230°C for 3 hours to obtain Hc = 370 oersted, σs = 78
Iron oxide magnetic powder with emu/g and Fe2/Fe''=0.10 was obtained.

硫酸第一鉄2.4モルと硫酸コバルト1.2モルを溶解
させた水溶液101中に上記で得られた磁性粉末3kg
を加え、充分に分散させた後、これに21.6モルのN
aOHが溶存する水溶液101を加えた。
3 kg of the magnetic powder obtained above was placed in aqueous solution 101 in which 2.4 moles of ferrous sulfate and 1.2 moles of cobalt sulfate were dissolved.
was added and thoroughly dispersed, and then 21.6 mol of N was added.
An aqueous solution 101 containing dissolved aOH was added.

この分散液の温度を80℃まで昇温し、空気の混入をで
きるだけ防止しながら、この温度で6時間撹拌を続けた
The temperature of this dispersion was raised to 80° C., and stirring was continued at this temperature for 6 hours while preventing air from entering as much as possible.

次いで、この分散液を濾過して磁性粉末を取り出し、充
分な水洗後乾燥した。
Next, the dispersion was filtered to remove the magnetic powder, which was thoroughly washed with water and dried.

このようにして得られたコバルト含有酸化鉄磁性粉末は
、Hcが640エルステツド、σSが79.5emu/
gであった。
The cobalt-containing iron oxide magnetic powder thus obtained has an Hc of 640 oersted and a σS of 79.5 emu/
It was g.

また、化学分析の結果、Fe2:/Fe3+は0.13
0であり、原子吸光分析の結果、コバルトを2.35原
子%含有していた。
Also, as a result of chemical analysis, Fe2:/Fe3+ is 0.13
As a result of atomic absorption spectrometry, it contained 2.35 at.% of cobalt.

次に、上記のコバルト含有酸化鉄磁性粉末を使用して下
記組成からなる磁性塗料を調製した。
Next, a magnetic paint having the following composition was prepared using the above cobalt-containing iron oxide magnetic powder.

コバルト含有酸化鉄磁性粉末 75重量部塩化ビニ
ル−酢酸ビニル共重合体 25 〃ジオクチルフタレー
ト 5 〃トルエン
100 〃メチルイソブチルケトン 100
〃この磁性塗料を厚さ12μのポリエステルフィルム
上に乾燥厚が約6μとなるように塗布、乾燥した後、所
定の幅に裁断して磁気テープを製造した。
Cobalt-containing iron oxide magnetic powder 75 parts by weight Vinyl chloride-vinyl acetate copolymer 25 Dioctyl phthalate 5 Toluene
100 〃Methyl isobutyl ketone 100
This magnetic paint was applied onto a polyester film with a thickness of 12 μm to a dry thickness of about 6 μm, dried, and then cut into a predetermined width to produce a magnetic tape.

実施例 2 硫酸第一鉄3.8モルと硫酸コバルト1.5モルが溶存
する水溶液101中に、実施例1で用いたと同一の斜伏
γ−Fe203粉末3kgを加え、充分に撹拌分散させ
た後、これに31.8モルのNaOHを溶解させた水溶
液101を加えた。
Example 2 3 kg of the same slanted γ-Fe203 powder used in Example 1 was added to an aqueous solution 101 in which 3.8 moles of ferrous sulfate and 1.5 moles of cobalt sulfate were dissolved, and the mixture was thoroughly stirred and dispersed. Thereafter, an aqueous solution 101 in which 31.8 mol of NaOH was dissolved was added.

この分散液を100℃まで昇温し、空気の混入をできる
だけ防止しながら、この温度で6時間撹拌を続けた。
The temperature of this dispersion was raised to 100° C., and stirring was continued at this temperature for 6 hours while preventing the incorporation of air as much as possible.

次いで、磁性粉末をp別、水洗した後乾燥した。Next, the magnetic powder was separated, washed with water, and then dried.

このようにして得られたコバルト含有酸化鉄磁性粉末は
、Hcが640エルステツド、σSが77.8emu/
gであった。
The cobalt-containing iron oxide magnetic powder thus obtained has an Hc of 640 oersted and a σS of 77.8 emu/
It was g.

また、化学分析の結果、Fe”/Fe3+は0.101
であり、原子吸光分析の結果、コバルトを2.95原子
%含有していた。
In addition, as a result of chemical analysis, Fe”/Fe3+ is 0.101
As a result of atomic absorption spectrometry, it contained 2.95 at.% of cobalt.

この磁性粉末を用いて以下実施例1と同様にして磁気テ
ープを製造した。
A magnetic tape was manufactured in the same manner as in Example 1 using this magnetic powder.

比較例 1 実施例1で用いた同じ針状γ−F e 203粉末を水
素気流中において、300℃で3時間加熱処理した。
Comparative Example 1 The same acicular γ-F e 203 powder used in Example 1 was heat-treated at 300° C. for 3 hours in a hydrogen stream.

この還元処理した酸化鉄粉末について化学分析を行なっ
たところFe2/Fe3+が0.350であった。
Chemical analysis of this reduced iron oxide powder revealed that Fe2/Fe3+ was 0.350.

この磁性粉末を用い、磁性粉末を分散させた混合溶液中
に、毎分31の空気を吹き込んで酸化反応を行なわせな
がら表面層の形成を行なった以外は実施例1と同様にし
てコバルト含有酸化鉄磁性粉末を得た。
This magnetic powder was used in the same manner as in Example 1 except that 31 air per minute was blown into the mixed solution in which the magnetic powder was dispersed to cause an oxidation reaction and to form a surface layer. Iron magnetic powder was obtained.

このようにして得られた磁性粉末は、Hcが590エル
ステツド、σSが86.Oemu/gであった。
The magnetic powder thus obtained had an Hc of 590 oersted and a σS of 86. It was Oemu/g.

また、化学分析の結果、Fe2/Fe3+は0.340
であり、原子吸光分析の結果、コバルトを3.73原子
%含有していた。
Also, as a result of chemical analysis, Fe2/Fe3+ is 0.340
As a result of atomic absorption spectrometry, it contained 3.73 at.% of cobalt.

この磁性粉末を用いて以下実施例1と同様にして磁気テ
ープを製造した。
A magnetic tape was manufactured in the same manner as in Example 1 using this magnetic powder.

比較例 2 この比較例2では、下記の方法により、コバルト原子を
酸化鉄粉末中に均一に固溶させたコバルト含有酸化鉄磁
性粉末を製造した。
Comparative Example 2 In Comparative Example 2, a cobalt-containing iron oxide magnetic powder in which cobalt atoms were uniformly dissolved in iron oxide powder was produced by the following method.

硫酸コバルトo、sモル(252g)とクエン酸ナトリ
ウム1.5kgとを溶解した61の水溶液中に、実施例
1で用いたと同一の針状γ−Fe203粉末3−を加え
、充分に撹拌分散させた後、2規定の水酸化ナトリウム
水溶液でこの分散液のpHを9.5に調整した。
The same acicular γ-Fe203 powder 3- as used in Example 1 was added to an aqueous solution of No. 61 in which o, s mol (252 g) of cobalt sulfate and 1.5 kg of sodium citrate were dissolved, and the mixture was thoroughly stirred and dispersed. After that, the pH of this dispersion was adjusted to 9.5 with a 2N aqueous sodium hydroxide solution.

次いで、この分散液をオートクレーブ中に入れ、200
℃で3時間水熱反応させた。
Next, this dispersion was placed in an autoclave and heated to 200
A hydrothermal reaction was carried out at ℃ for 3 hours.

反応終了後、生成した沈澱物を水洗、乾燥して針状の磁
性粉末を得た。
After the reaction was completed, the resulting precipitate was washed with water and dried to obtain acicular magnetic powder.

このようにして得られたコバルト含有酸化鉄磁性粉末の
Hcは600エルステツド、σSは78,5e rn
u/gであった。
The thus obtained cobalt-containing iron oxide magnetic powder has an Hc of 600 oersted and a σS of 78.5 ern.
It was u/g.

また、化学分析の結果、Fe2/Fe3+は0.110
であり、原子吸光分析の結果、コバルトを1.57原子
%含有していた。
Also, as a result of chemical analysis, Fe2/Fe3+ is 0.110
As a result of atomic absorption spectrometry, it contained 1.57 at.% of cobalt.

この磁性粉末を用いて以下実施例1と同様にして磁気テ
ープを製造した。
A magnetic tape was manufactured in the same manner as in Example 1 using this magnetic powder.

比較例 3 比較例1で得たFe2/Fe”+が0.350の酸化鉄
磁性粉末を核晶とし、これを実施例1と同様に処理して
コバルト含有酸化鉄磁性粉末を得た。
Comparative Example 3 The iron oxide magnetic powder with Fe2/Fe"+ of 0.350 obtained in Comparative Example 1 was used as a nucleus crystal, and was treated in the same manner as in Example 1 to obtain cobalt-containing iron oxide magnetic powder.

この粉末のHcは620エルステツド、σ5は87em
u/g1Fe”/);’e”+は0.380、コバルト
含量は2.35原子%であった。
The Hc of this powder is 620 oersted, and the σ5 is 87 em.
u/g1Fe"/);'e"+ was 0.380, and the cobalt content was 2.35 at.%.

この磁性粉末を用いて以下実施例1と同様にして磁気テ
ープを製造した。
A magnetic tape was manufactured in the same manner as in Example 1 using this magnetic powder.

上記各実施例および各比較例のコバルト含有酸化鉄粉末
を1規定の塩酸溶液中に浸漬して粒子表面より徐々に溶
解させ、一定時間毎に磁性粉末を取り出してその保磁力
とコバルト含量を測定したところ、比較例2の磁性粉末
では溶解が進んでも保磁力およびコバルト含量の値が殆
んど変化しなかったのに対し、実施例1および2ならび
に比較例1および3では溶解量の増大とともに保磁力お
よびコバルト含量が著しく減少するのが認められた。
The cobalt-containing iron oxide powders of each of the above examples and comparative examples were immersed in a 1N hydrochloric acid solution to gradually dissolve from the particle surface, and the magnetic powder was taken out at regular intervals to measure its coercive force and cobalt content. As a result, in the magnetic powder of Comparative Example 2, the coercive force and cobalt content hardly changed even as the dissolution progressed, whereas in Examples 1 and 2 and Comparative Examples 1 and 3, as the amount of dissolution increased, A significant decrease in coercive force and cobalt content was observed.

これは、比較例2ではコバルトが酸化鉄の結晶格子中に
均一に固溶しているのに対し、実施例1および2ならび
に比較例1および3ではコバルトを含む酸化鉄層が粒子
表面に形成されていることを示している。
This is because in Comparative Example 2, cobalt is uniformly dissolved in the iron oxide crystal lattice, whereas in Examples 1 and 2 and Comparative Examples 1 and 3, an iron oxide layer containing cobalt is formed on the particle surface. It shows that

次に、各磁気テープの表面電気抵抗および転写特性を測
定したところ、次表に示すような結果が得られた。
Next, the surface electrical resistance and transfer characteristics of each magnetic tape were measured, and the results shown in the following table were obtained.

上記の結果より明らかな如く、この発明の磁性粉末を用
いた磁気テープは、転写特性に優れ、しかも表面電気抵
抗が非常に低いことが判る。
As is clear from the above results, the magnetic tape using the magnetic powder of the present invention has excellent transfer characteristics and has a very low surface electrical resistance.

これは、この発明の磁性粉末ではFe2/Fe3+の値
が比較的小さいにも拘らず、二価の鉄が粒子表面に多く
存在しているためである。
This is because, although the magnetic powder of the present invention has a relatively small value of Fe2/Fe3+, a large amount of divalent iron exists on the particle surface.

比較例1の磁性粉末では、Fe2/Fe3+の値がこの
発明の実施例のいずれよりも太きいが、比較例1の磁性
粉末では粒子表面に二価の鉄が殆んど存在しないため、
これを用いた磁気テープの表面電気抵抗が大きくなって
いるものと考えられる。
In the magnetic powder of Comparative Example 1, the value of Fe2/Fe3+ is larger than in any of the examples of this invention, but in the magnetic powder of Comparative Example 1, there is almost no divalent iron on the particle surface.
It is thought that the surface electrical resistance of the magnetic tape using this material is increased.

また比較例3の磁性粉末では、粒子表面に二価の鉄が多
く存在しているために磁気テープの表面電気抵抗の面で
は好結果が得られているが、Fe2/Fe3+の値が比
較例1の場合と同様に高すぎるため、転写特性を満足さ
せることができない。
In addition, in the magnetic powder of Comparative Example 3, good results were obtained in terms of surface electrical resistance of the magnetic tape due to the presence of a large amount of divalent iron on the particle surface, but the value of Fe2/Fe3+ was lower than that of the comparative example. As in case 1, it is too high and the transfer characteristics cannot be satisfied.

Claims (1)

【特許請求の範囲】[Claims] 1 粉末内部が強磁性酸化鉄からなりかつ表面層として
二価の鉄とコバルトを含ませた酸化鉄層を有すると共に
、粉末全体の二価の鉄と三価の鉄との比(Fe 2 /
F e 3 ” )が0.10〜0.13の範囲にあっ
てしかも粉末内部に較べて粉末表面の二価の鉄含量が多
くされたコバルト含有酸化鉄磁性粉末と、この粉末を分
散結着するバインダとを含有する磁気記録媒体。
1 The inside of the powder is made of ferromagnetic iron oxide and has an iron oxide layer containing divalent iron and cobalt as a surface layer, and the ratio of divalent iron to trivalent iron of the entire powder (Fe 2 /
This powder is dispersed and bound with a cobalt-containing iron oxide magnetic powder whose F e 3 ”) is in the range of 0.10 to 0.13 and has a higher divalent iron content on the surface of the powder than inside the powder. A magnetic recording medium containing a binder.
JP52074993A 1977-04-20 1977-06-23 magnetic recording medium Expired JPS5853495B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP52074993A JPS5853495B2 (en) 1977-06-23 1977-06-23 magnetic recording medium
GB15201/78A GB1603213A (en) 1977-04-20 1978-04-18 Cobalt containing iron oxide magnetic particles and method for the preparation of the same
DE19782817410 DE2817410A1 (en) 1977-04-20 1978-04-20 MAGNETIC IRON OXYDE PARTICLES CONTAINING COBALT AND METHOD FOR MANUFACTURING THE SAME
FR7811737A FR2387912A1 (en) 1977-04-20 1978-04-20 MAGNETIC PARTICLES OF IRON OXIDE CONTAINING COBALT AND THEIR PREPARATION PROCESS
US06/858,575 US4741921A (en) 1977-04-20 1986-04-24 Method for preparing cobalt-containing iron oxide magnetic particles
US07/141,073 US4857417A (en) 1977-04-20 1988-01-05 Cobalt-containing iron oxide magnetic particles and method for the preparation of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52074993A JPS5853495B2 (en) 1977-06-23 1977-06-23 magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS549798A JPS549798A (en) 1979-01-24
JPS5853495B2 true JPS5853495B2 (en) 1983-11-29

Family

ID=13563302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52074993A Expired JPS5853495B2 (en) 1977-04-20 1977-06-23 magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5853495B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1208000B (en) * 1986-07-31 1989-06-01 Franco Solari PROPULSION FOR AIR JET VESSELS IN PAIR OF LONGITUDINAL CHANNELS UNDER THE HULL.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037667A (en) * 1973-08-07 1975-04-08
JPS5217696A (en) * 1975-08-01 1977-02-09 Fuji Photo Film Co Ltd Manufacturing process of ferromagnetic grit
JPS5275700A (en) * 1975-12-19 1977-06-24 Sony Corp Production of magnetic iron oxide powder including co

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037667A (en) * 1973-08-07 1975-04-08
JPS5217696A (en) * 1975-08-01 1977-02-09 Fuji Photo Film Co Ltd Manufacturing process of ferromagnetic grit
JPS5275700A (en) * 1975-12-19 1977-06-24 Sony Corp Production of magnetic iron oxide powder including co

Also Published As

Publication number Publication date
JPS549798A (en) 1979-01-24

Similar Documents

Publication Publication Date Title
JPS5814729B2 (en) Kiyoji Seifun Matsuno Seizou Hohou
GB1585419A (en) Process of producing cobalt-containing feromagnetic iron oxide powder
US4296149A (en) Manufacture of acicular cobalt-containing magnetic iron oxide
US4857417A (en) Cobalt-containing iron oxide magnetic particles and method for the preparation of the same
US4122216A (en) Ferro-magnetic acicular particles for recording medium and process for preparing the same
US4303699A (en) Method of manufacturing magnetic powder
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JPH0352500B2 (en)
JPH0544163B2 (en)
JPS5853495B2 (en) magnetic recording medium
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JPS6242858B2 (en)
EP0076462B2 (en) Method of production of magnetic particles
JPS6018609B2 (en) Ferromagnetic powder and its manufacturing method
JPS5853494B2 (en) Method for producing ferromagnetic powder for magnetic recording
JPS5931961B2 (en) Manufacturing method of ferromagnetic powder
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JPS6334609B2 (en)
JPS609321B2 (en) Magnetic recording medium and its manufacturing method
JPS6012763B2 (en) Manufacturing method of ferromagnetic powder
JPS6151401B2 (en)
JPS6149252B2 (en)
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPS6124805B2 (en)