JPS6093629A - Ferromagnetic iron oxide powder for magnetic recording medium and its production - Google Patents

Ferromagnetic iron oxide powder for magnetic recording medium and its production

Info

Publication number
JPS6093629A
JPS6093629A JP58201249A JP20124983A JPS6093629A JP S6093629 A JPS6093629 A JP S6093629A JP 58201249 A JP58201249 A JP 58201249A JP 20124983 A JP20124983 A JP 20124983A JP S6093629 A JPS6093629 A JP S6093629A
Authority
JP
Japan
Prior art keywords
iron oxide
cobalt
iron
coercive force
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58201249A
Other languages
Japanese (ja)
Inventor
Mikio Kishimoto
幹雄 岸本
Susumu Kitaoka
北岡 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58201249A priority Critical patent/JPS6093629A/en
Publication of JPS6093629A publication Critical patent/JPS6093629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain vertically magnetized recording medium magnetic powder having proper coercive force and reduced in demagnetization due to heating by forming a coat consisting of Co-containing iron oxide containing Co at a specific rate to Fe uniformly to the surface of Co-containing iron oxide nuclear crystal. CONSTITUTION:The cost consisting of Co-containing iron oxide containing 15wt% or more Co to Fe is formed on the Co-containing iron oxide nuclear crystal containing 5wt% or less Co to Fe uniformly inside the iron oxide so as to be uniform thickness to obtain a magnetic layer. In the production of the magnetic powder, ions adjusted at the additional ratio of Fe ions to Co ions are precipitated into an alkaline solution so that Co/Fe is set to 5wt% or less at the composition of gamma-FeOOH and the gamma-FeOOH containing Co uniformly is dehydrated, deoxidized and then oxidized to obtain Co-containing gamma-Fe2O3. Then the Co-containing Fe2O3 is used for the nuclear crystal and a Co-containing iron oxide coat is formed on the surface of the nuclear crystal so that Co/Fe is set up to 15wt% or more, so that Co-containing iron oxide having optional coercive force can be obtained.

Description

【発明の詳細な説明】 本発明は、磁気記録媒体用強磁性醸化鉄粉末に関し等方
的な磁気異方性成分を有し、かつ磁気特性の熱的安定性
にすぐれた高密度記録媒体に適したものを提供すること
を目的とする。
Detailed Description of the Invention The present invention relates to ferromagnetic fermented iron powder for magnetic recording media, and provides high-density recording media having an isotropic magnetic anisotropic component and having excellent thermal stability of magnetic properties. The purpose is to provide something suitable for the.

コバルトが酸化鉄内部に均一に同容したコバルトドープ
酸化鉄は、結晶磁気異方性に基づく等方的な磁気異方性
を有しており、かつ保磁力が400〜20QQO,の粉
末が容易に得られることから、近年、垂直磁化成分を利
用した高缶度媒体用の磁性粉として注目されてきている
。一方、この磁性粉は、磁気特性が熱的に不安定で、特
に加熱減磁が極めて大きいため、信号を記録した媒体が
熱にさらされたとき、出力の低下が生じるという欠点を
有している。この加熱減磁は、鉄に対するコバルトの含
有量が15重量%以下において観察され、特にコバルト
含有量が5〜10重量%の範囲で顕著である。したがっ
て加熱減磁をすくなくするためには、コバルト含有量を
15重量%以上にふやすか、あるいは5重11%以下に
へらすことが考えられるが、コバルトドープ酸化鉄の保
磁力は、コバルト含有量にほぼ比例するため、コバルト
含有量が15重t%以上になると保磁力は15000e
以上にもなり、一方コバルト含有量が5重量%以下にな
ると保磁力が7000e以下に低下してしまい、高密度
磁気記録媒体に必要な700〜15000eの保磁力が
得られなくなる。このように、コバルトドープ量は、粒
子の保磁力と加熱減磁をともに直接左右する因子である
ため、その量の調整だけでは、高密度記録媒体に必要な
保磁力レンジを濶たし、かつ加熱減磁のすくない粒子を
得ることは小川能であった。
Cobalt-doped iron oxide, in which cobalt is uniformly contained within the iron oxide, has isotropic magnetic anisotropy based on magnetocrystalline anisotropy, and can easily be made into powder with a coercive force of 400 to 20QQO. In recent years, it has been attracting attention as a magnetic powder for high-strength media that utilizes a perpendicular magnetization component. On the other hand, the magnetic properties of this magnetic powder are thermally unstable, and in particular, heating demagnetization is extremely large, so when the medium on which the signal is recorded is exposed to heat, it has the disadvantage of causing a decrease in output. There is. This thermal demagnetization is observed when the cobalt content relative to iron is 15% by weight or less, and is particularly noticeable when the cobalt content is in the range of 5 to 10% by weight. Therefore, in order to reduce thermal demagnetization, it is possible to increase the cobalt content to 15% by weight or more, or reduce it to 5% by weight or less, but the coercive force of cobalt-doped iron oxide depends on the cobalt content. Since it is almost proportional, when the cobalt content is 15wt% or more, the coercive force is 15000e.
On the other hand, if the cobalt content is 5% by weight or less, the coercive force decreases to 7000 e or less, making it impossible to obtain the coercive force of 700 to 15000 e required for a high-density magnetic recording medium. In this way, the amount of cobalt doping is a factor that directly affects both the coercive force and heating demagnetization of the particles, so adjusting the amount alone will not satisfy the coercive force range required for high-density recording media and Noh Ogawa was able to obtain particles that were less likely to be demagnetized by heating.

そこで本発明者らは、適正な保磁力の値を有し、しかも
加熱減磁のきわめてすくない、垂直磁化成分を利用する
高密度記録媒体用の磁性粉な得るため一種々検討した結
果、従来から行われてきた、粒子内にコバルトを均一に
ドープさせるという技術では、目的とする磁性粉が得ら
れないことに気付き、さらに探究した結果、■加熱減磁
をすくなくするには、コバルトイオンを酸化鉄の内部に
位置させるよりも、粒子の表面近傍に位置させる方がよ
いこと、■保磁力を左右する因子としてのコバルト量は
、粒子中の位置に関係がなく、粒子に含まれる全体量で
決まること、■垂直磁化成分の発生には、粒子の内部に
コバルトイオンを位置させる必要があることを見い出し
、かかる知見に基づき本発明をなしたものである。そこ
で、鉄に対して、5重量%以下のコバルトを酸化鉄内部
に均一に含有するコバルト含有酸化鉄核晶上に、鉄に対
して15重重景以上のコバルトを含有するコバルト含有
酸化鉄の被膜を均一な厚さで形成させた酸化鉄磁性粉末
は、前記の適切な保磁力を有するだけでなく、加熱減磁
もすくなく、垂直磁化成分を利用する高密度記録媒体用
の磁性粉として満足すべき特性を有していることがわか
った。しがち、かかる磁性粉は、■全体のコバルト含有
量を調整することにより、全体の保磁力を調整でき、■
核晶におけるコバルト含有量と、表面の被膜におけるコ
バルト含有量との比を調整することによって、垂直磁化
成分の強さを調整できるという特徴を有している。
Therefore, the present inventors conducted various studies to obtain a magnetic powder for high-density recording media that utilizes a perpendicular magnetization component, which has an appropriate coercive force value, and has extremely low thermal demagnetization. They realized that the conventional technique of uniformly doping cobalt into particles could not produce the desired magnetic powder, and as a result of further investigation, they discovered that ■ In order to reduce heating demagnetization, cobalt ions should be oxidized. It is better to locate it near the surface of the particle than to locate it inside the iron; ■The amount of cobalt, which is a factor that affects coercive force, is not related to its position in the particle, but is the total amount contained in the particle. The present invention was based on the discovery that cobalt ions must be located inside the particles in order to generate a perpendicular magnetization component. Therefore, a coating of cobalt-containing iron oxide containing cobalt of 15 weight percent or more relative to iron is applied on a cobalt-containing iron oxide core crystal that uniformly contains cobalt within the iron oxide in an amount of 5% by weight or less relative to iron. The iron oxide magnetic powder formed with a uniform thickness not only has the above-mentioned appropriate coercive force, but also has low thermal demagnetization, making it a satisfactory magnetic powder for high-density recording media that utilize perpendicular magnetization components. It was found that it has the following characteristics. However, the overall coercive force of such magnetic powders can be adjusted by adjusting the overall cobalt content;
It has the characteristic that the strength of the perpendicular magnetization component can be adjusted by adjusting the ratio of the cobalt content in the core crystal to the cobalt content in the surface coating.

かかる磁性粉末を製造するにけ、種々の方法が考えられ
るが、特に、添加するコバルト浮子の効率的運用、経済
性、生産性等の諸観点からすれば、以下に述べる如き方
法が最も好ましい。すなわち、まず、アルファオキシ水
酸化鉄(α−FeOOH)を合成時に、鉄に対するコバ
ルトの含有量が5重量%以下になるように、鉄イオンと
コバルトイオンとの添加量の比を1llK−した鉄イオ
ンとコバルトイオンをアルカリ溶液中で共沈させて、u
D熱反応させることにより、コバルトを均一&C含有し
たα−ys00Hを脱水、還元、磁化してコバルト含有
T−Fe。
Various methods can be used to produce such magnetic powder, but the method described below is the most preferred from the viewpoint of efficient use of the cobalt float added, economy, productivity, etc. That is, first, when synthesizing alpha iron oxyhydroxide (α-FeOOH), the ratio of the amount of iron ions to cobalt ions added was adjusted to 11K- so that the content of cobalt to iron was 5% by weight or less. ion and cobalt ion are co-precipitated in an alkaline solution, and u
By carrying out a thermal reaction, α-ys00H uniformly containing cobalt &C is dehydrated, reduced, and magnetized to produce cobalt-containing T-Fe.

03とする。このコバルト含有T k’ e 204 
、等方的な出猟異方性を有し、磁気記録媒体の垂直磁化
成分に寄与する。このコバルト含有T F e、O,ハ
、”バルト含有量が5重量%以下と小さいため、保磁力
は通常70002以下で、これ以上の保磁力を得ること
は困IIIである。そこで次に、コバルト含有T−Fe
、O,を核晶に用いて、その表面に1鉄に対するコバル
トの含有量が15重社%以上となるようなコバルト含有
酸化鉄被膜を形成させることにより、任意の保磁力のコ
バルト含有酸化鉄を得ることができる。前記の700〜
1soooeの保磁力のものを得るには、全体のコバル
ト添加量が5〜15重量%となるようにすることで足り
る。表面に形成されたコバルト含有酸化鉄は、コバルト
含有量が15重量%以上であるため、以下にのべるよう
に加熱減磁は極めて小さい。以下本発明を実施例により
詳述する。
03. This cobalt-containing T k' e 204
, has isotropic outgoing anisotropy and contributes to the perpendicular magnetization component of the magnetic recording medium. Since the cobalt-containing T Fe, O, C, "balt content is as small as 5% by weight or less, the coercive force is usually less than 70002, and it is difficult to obtain a coercive force higher than this. Therefore, next, Cobalt-containing T-Fe
, O, as a nucleus crystal, and by forming a cobalt-containing iron oxide coating on the surface of which the content of cobalt is 15% or more per iron, cobalt-containing iron oxide with an arbitrary coercive force can be produced. can be obtained. 700~
In order to obtain a coercive force of 1 soooe, it is sufficient to adjust the total amount of cobalt added to 5 to 15% by weight. Since the cobalt-containing iron oxide formed on the surface has a cobalt content of 15% by weight or more, heating demagnetization is extremely small as described below. The present invention will be explained in detail below with reference to Examples.

実施例1 (1)核晶の製造 濃度5モル/lの水酸化ナトリウム水溶液20g中に室
温でかく拌しながら濃度叩モル/lの硫酸第一鉄と濃度
0.03%WEの硫酸コバルト水溶液20dを加えて反
応させ、水酸化第一鉄と水酸化コバルトを共沈させる。
Example 1 (1) Production of Nucleic Crystals Into 20 g of an aqueous sodium hydroxide solution with a concentration of 5 mol/l, while stirring at room temperature, ferrous sulfate with a concentration of mol/l and 20 d of an aqueous cobalt sulfate solution with a concentration of 0.03% WE. is added and reacted to co-precipitate ferrous hydroxide and cobalt hydroxide.

次に、このけんだく液を50°Cに保ちながら301/
分の速度で空気を吹込み8時間かくはんして、コバルト
を含有したα−FeOOH粉末を得た。このコバルト含
有α−?eOOHを水溶、乾燥した後、空気中500℃
で2時間、脱水焼成く、コバルト含有α−1・、0.を
得た。このコバルト含有α−Pa、O,を電気炉を用い
て、1m″/h rの水紫気流ダ550°Cで3時間環
元してコバルト含有Fe、04として、さらに空気中2
50°Cで1時間酸化してコバルト含有T−Fe2C%
核晶とした。このコパル)含有T−Fe。
Next, while keeping this suspension at 50°C, 301/
Air was blown into the mixture at a rate of 1 minute and the mixture was stirred for 8 hours to obtain cobalt-containing α-FeOOH powder. This cobalt-containing α-? After dissolving eOOH in water and drying, in air at 500℃
The cobalt-containing α-1.,0. I got it. Using an electric furnace, this cobalt-containing α-Pa, O, was reduced for 3 hours at 550°C in a 1 m″/hr water-purple airflow to obtain cobalt-containing Fe, 04, and further in air.
Cobalt-containing T-Fe2C% by oxidation at 50°C for 1 hour
It was used as a nuclear crystal. This copal) containing T-Fe.

03核晶は、長軸径がo、spmc、軸比(長軸径/短
軸径)が8であった。コバルト含有量(00/F・)は
6.6重量%であり、保磁力は6900θで飽和磁化は
72.0 m−4,角型はo、71であった〇(2)核
晶への00含有醐化鉄の被覆 法にこのコバルト含有T−Fe20.核晶1000gを
水10eK分散させ、これに硫酸コバルト75gと硫酸
第一鉄220gとを加えて混合溶解し、次いで苛性ソー
ダ12009を溶解した苛性ソーダ水溶液51を加えて
45゛Cで8時間反応させ00含有酸化鉄による被覆を
行った。水洗、ろ過、乾燥後得られた酸化鉄は1長軸径
0.3pIIL、軸比8で、保磁力は8100es飽和
磁化は76.2e=u7り、角型は0.70であった。
The 03 nucleus had a major axis diameter of o, spmc, and an axial ratio (major axis diameter/minor axis diameter) of 8. The cobalt content (00/F・) was 6.6% by weight, the coercive force was 6900θ, the saturation magnetization was 72.0 m−4, and the square shape was o, 71. This cobalt-containing T-Fe20. 1000 g of nuclear crystals were dispersed in water at 10 eK, 75 g of cobalt sulfate and 220 g of ferrous sulfate were added thereto, mixed and dissolved, and then an aqueous solution of caustic soda 51 in which caustic soda 12009 was dissolved was added and reacted at 45°C for 8 hours to obtain a solution containing 00. Coating with iron oxide was performed. The iron oxide obtained after washing with water, filtration, and drying had a major axis diameter of 0.3 pIIL, an axial ratio of 8, a coercive force of 8100 es, a saturation magnetization of 76.2 e=u7, and a square shape of 0.70.

実施例2 実施例1の核晶の製造工程において、α−7600合成
時における硫酸コバルトの添加量を、0.03%/1か
ら0.02%lL/lに変更した以外は実施例1と同様
の方法により、コバルト含有量が2.4重量%で、保磁
力5850s、飽和磁化722 e、、t /9 、角
型o、67のコ/<ル)含有T−IFe、O,核晶を得
た。このコバルト含有T−Fe20.核晶を用いさらに
実施例1にOOo含有酸化鉄被覆工程における硫酸コバ
ルトの添加量を759から1209VC,硫酸第一鉄の
添加量を2209から350gに、苛性ソーダを120
0gから1300gに変更した以外は、実施例1と同様
にして、最終的に保磁力81508%飽和磁化76.4
0#−ゾq1角型0.65の酸化鉄を得た。
Example 2 Same as Example 1 except that the amount of cobalt sulfate added during α-7600 synthesis was changed from 0.03%/1 to 0.02% lL/l in the manufacturing process of the nucleus crystals of Example 1. By a similar method, T-IFe, O, and nuclear crystals containing cobalt content of 2.4% by weight, coercive force of 5850 s, saturation magnetization of 722 e, t /9, square shape o, and 67 cores were obtained. I got it. This cobalt-containing T-Fe20. Using the nuclear crystals, the amount of cobalt sulfate added in the OOo-containing iron oxide coating step was changed from 759 to 1209 VC, the amount of ferrous sulfate added was changed from 2209 to 350 g, and the amount of caustic soda was changed to 120 g in Example 1.
The final result was coercive force of 81,508% and saturation magnetization of 76.4 in the same manner as in Example 1 except for changing from 0g to 1300g.
Iron oxide of 0#-zoq1 square shape 0.65 was obtained.

比較例1 実施例1の核晶製造工程において、コバルト含有α−F
eOOH合成時における硫酸コグルトの添加量を0.0
5e/11から0.45Mに変更した以外は実施例1と
同様の方法により、コバルト含有量が5.1重量%葛保
磁力が81008、飽和磁化が722e−、s/9、角
型が0.71のコバルト含有T−Fll、O,を得、こ
れ以後の工程は、省略した。
Comparative Example 1 In the nucleus crystal production process of Example 1, cobalt-containing α-F
The amount of sulfate cogluto added during eOOH synthesis was set to 0.0.
The same method as in Example 1 was used except that 5e/11 was changed to 0.45M, and the cobalt content was 5.1% by weight. The coercive force was 81008, the saturation magnetization was 722e-, s/9, and the square shape was 0. A cobalt-containing T-Fll,O, of .71 was obtained, and the subsequent steps were omitted.

比較例2 実施例1の核晶製造工程において、コバルト含有α−’
PgOOH合成時において硫酸コバルトを添加せずに反
応させて、α−Felonのみを合成し、実施例1と同
様の工程を経て、長軸径0.35/””、軸比8、保磁
力5700 e−、飽和磁化721 smu/9 、角
型0.44のT−Fe、O,粉末を得た。このT−Fe
、O,を用いて、実施例1の00酸化鉄の被覆工程にお
いて、硫酸コバルトの添加量を752から24 o 9
 vc N硫酸第一鉄の添加量を710gに、苛性ソー
ダを12009から12509Vc莢更した以外は、実
施例1と同様にして、保磁力8150e 、飽和磁化7
6.11e−臂、角型0.51のは化鉄を得た。
Comparative Example 2 In the nucleus crystal manufacturing process of Example 1, cobalt-containing α-'
During PgOOH synthesis, only α-Felon was synthesized by reacting without adding cobalt sulfate, and through the same process as in Example 1, the major axis diameter was 0.35/'', the axial ratio was 8, and the coercive force was 5700. A T-Fe, O, powder with a saturation magnetization of 721 smu/9 and a square shape of 0.44 was obtained. This T-Fe
, O, in the 00 iron oxide coating step of Example 1, the amount of cobalt sulfate added was increased from 752 to 24 o 9
Coercive force 8150e, saturation magnetization 7
6.11e-arm, square 0.51 iron oxide was obtained.

実施例1〜2および比較例1〜2で得られた酸化鉄粉末
を使用い下記の組成からなる組成物00含有酸化鉄粉末
 750重量部 VAGH125・− バンデックスT−5250100、。
Composition 00-containing iron oxide powder 750 parts by weight VAGH125 - Vandex T-5250100, using the iron oxide powders obtained in Examples 1 and 2 and Comparative Examples 1 and 2, and having the following composition.

コロネート L 25 、。Coronate L 25.

ステアリン酸−n−ブチル 15 ・・メチル・rツブ
チルケトン 600 −。
n-butyl stearate 15 . . . methyl r-butyl ketone 600 -.

トルエン 60Ott部 を3日間混合分散して磁性塗料を調整した。この磁性塗
料を厚さ12/Iのポリエステルベースフィルム上に乾
燥厚が4fiとなるように塗布、乾燥し、表面処理を行
った後、所定の巾に裁断して磁気テープを作った。これ
らの磁気テープについて、長手方向の保磁力、飽和磁束
密度、および角型と磁性層面に垂直な方向の保磁力およ
び角型を測定した結果を下表に示す。また記録波長0,
8声における最大出力レベルCM、、01、U、)をお
よび加熱減磁を測定した。加熱減磁は、テープを飽和磁
化して、その時の飽和残留磁化Barを測定したのち、
このテープを60°Cで2時間保持し、室温で再び残留
磁化Brを測定して、この時の残留磁化の減少量(Bs
r−Br)/Barからめた。下表はその結果である。
A magnetic paint was prepared by mixing and dispersing 60 ott parts of toluene for 3 days. This magnetic paint was applied onto a polyester base film having a thickness of 12/I to a dry thickness of 4 fi, dried, surface treated, and then cut to a predetermined width to produce a magnetic tape. For these magnetic tapes, the coercive force in the longitudinal direction, the saturation magnetic flux density, the rectangular shape, the coercive force in the direction perpendicular to the magnetic layer surface, and the rectangular shape were measured, and the results are shown in the table below. Also, the recording wavelength is 0,
The maximum output level CM, 01, U,) and heating demagnetization in 8 voices were measured. For heating demagnetization, after saturated magnetizing the tape and measuring the saturated residual magnetization Bar at that time,
This tape was held at 60°C for 2 hours, the residual magnetization Br was measured again at room temperature, and the amount of decrease in residual magnetization (Bs
r-Br)/Bar. The table below shows the results.

また垂直方向の角型は、反磁界係数を4と考えて、ヒス
テリシス曲線上で作図して、反磁界の影響を補正した後
の値である。
Further, the square shape in the vertical direction is a value obtained after correcting the influence of the demagnetizing field by plotting it on a hysteresis curve, assuming that the demagnetizing field coefficient is 4.

第 1 表 上表から明らかなように、この発明で得られた磁気テー
プは、従来の一軸員方性を有する磁性粉を用いたテープ
(比1例2)K比べて、0.8μの短長でM、O,Lが
大きく、また、従来のコバルト含有T−Fe、O,を用
いたテープ(比較例1)に比べて、加熱減磁が小さい。
As is clear from Table 1, the magnetic tape obtained by the present invention is 0.8μ shorter than the conventional tape (Ratio 1 Example 2) K using magnetic powder with uniaxial orientation. The tape has large lengths, M, O, and L, and thermal demagnetization is small compared to the conventional tape using cobalt-containing T-Fe, O (Comparative Example 1).

このことから、本発明で得られた磁性粉を用いることに
より、加熱減磁が少ない、高密度媒体を得ることができ
る。
From this, by using the magnetic powder obtained in the present invention, a high-density medium that undergoes less thermal demagnetization can be obtained.

出願人 日立マクセル株式会社 イ制永井 厚Applicant: Hitachi Maxell, Ltd. Atsushi Nagai

Claims (2)

【特許請求の範囲】[Claims] (1)鉄に対して5重量%以下のコバルトを含有するコ
バルト含有酸化鉄核晶の表面に、鉄に対して15重量%
以上のコバル上を含有するコバルト含有酸化鉄よりなる
被膜を一体に形成させたことを特徴とする磁気記録媒体
用強磁性酸化鉄粉末粉末。
(1) On the surface of cobalt-containing iron oxide core crystals containing 5% by weight or less of cobalt based on iron, 15% by weight based on iron
A ferromagnetic iron oxide powder for a magnetic recording medium, characterized in that a coating made of cobalt-containing iron oxide containing cobal as described above is integrally formed.
(2)鉄に対して5JijL%以下のコバルトを含有す
るコバルト含有オキシ水酸化鉄を生成し、これを加熱還
元および酸化して、5重量%以下のコバルトを含有した
酸化鉄核晶を生成し、この核晶をyJ”イオンと、この
Fe”(オンに対して15重重量以上の00 を含むア
ルカリ溶液中で加熱処理して、粉末粒子の表面に鉄に対
するコバルトの含有量が15重量%以上のコバルト含有
酸化鉄被膜を形成させたことを特徴とする磁気記録媒体
用強磁性酸化鉄粉末の整造方法。
(2) Cobalt-containing iron oxyhydroxide containing 5 JijL% or less of cobalt based on iron is produced, and this is thermally reduced and oxidized to produce iron oxide core crystals containing 5 wt% or less of cobalt. , this core crystal is heat-treated in an alkaline solution containing yJ" ion and this Fe" (00 of 15 weight% or more with respect to ion), so that the content of cobalt relative to iron is 15% by weight on the surface of the powder particles. A method for preparing ferromagnetic iron oxide powder for magnetic recording media, characterized in that the above cobalt-containing iron oxide coating is formed.
JP58201249A 1983-10-26 1983-10-26 Ferromagnetic iron oxide powder for magnetic recording medium and its production Pending JPS6093629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201249A JPS6093629A (en) 1983-10-26 1983-10-26 Ferromagnetic iron oxide powder for magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201249A JPS6093629A (en) 1983-10-26 1983-10-26 Ferromagnetic iron oxide powder for magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS6093629A true JPS6093629A (en) 1985-05-25

Family

ID=16437805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201249A Pending JPS6093629A (en) 1983-10-26 1983-10-26 Ferromagnetic iron oxide powder for magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS6093629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080233A (en) * 1993-06-14 2000-06-27 Toda Kogyo Corporation Cobalt-containing iron oxide pigments, process for producing the same and magnetic recording medium containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080233A (en) * 1993-06-14 2000-06-27 Toda Kogyo Corporation Cobalt-containing iron oxide pigments, process for producing the same and magnetic recording medium containing the same

Similar Documents

Publication Publication Date Title
JPH0624062B2 (en) Magnetic recording medium
Kishimoto et al. Coercivity of γ‐Fe2O3 particles growing iron‐cobalt ferrite
US3770500A (en) Magnetic materials and method of making same
US4010310A (en) Magnetic powder
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JPS6093629A (en) Ferromagnetic iron oxide powder for magnetic recording medium and its production
US4437881A (en) Acicular ferromagnetic alloy particles and process for producing said particles
JP2625708B2 (en) Method for producing ultra-high coercivity metal powder
JPH04168703A (en) Manufacture of needle-shaped magnetic iron oxide particle and powder for magnetic recording
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPS5850005B2 (en) Jikikirokuyouji Seifun Matsuno Seizouhou
JP2970706B2 (en) Method for producing acicular magnetic iron oxide particles
EP0076462B2 (en) Method of production of magnetic particles
JPS5860624A (en) Ferromagnetic powder and its preparation
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JPS5941453A (en) Needle crystal iron alloy magnetic particulate powder for magnetic recording and preparation thereof
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6051242B2 (en) Method for producing magnetic iron oxide particles for magnetic recording materials
JPS5857709A (en) Magnetic recording medium
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JPS60127241A (en) Magnetic iron oxide powder
JPS6244842B2 (en)
JPH08165117A (en) Spindlelike geothite particulate powder containing cobalt and its production