JPS5857708A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS5857708A
JPS5857708A JP56157135A JP15713581A JPS5857708A JP S5857708 A JPS5857708 A JP S5857708A JP 56157135 A JP56157135 A JP 56157135A JP 15713581 A JP15713581 A JP 15713581A JP S5857708 A JPS5857708 A JP S5857708A
Authority
JP
Japan
Prior art keywords
powder
resulting
magnetic
less
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56157135A
Other languages
Japanese (ja)
Other versions
JPS6129122B2 (en
Inventor
Soichiro Nobuoka
信岡 聡一郎
Kazuaki Ato
和明 阿度
Takashi Asai
浅井 孝
Mikio Kishimoto
幹雄 岸本
Susumu Kitaoka
北岡 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Maxell Ltd
Original Assignee
Agency of Industrial Science and Technology
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Hitachi Maxell Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP56157135A priority Critical patent/JPS5857708A/en
Priority to EP19820109003 priority patent/EP0076462B2/en
Priority to DE8282109003T priority patent/DE3274777D1/en
Priority to CA000412570A priority patent/CA1246321A/en
Publication of JPS5857708A publication Critical patent/JPS5857708A/en
Publication of JPS6129122B2 publication Critical patent/JPS6129122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70652Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides gamma - Fe2 O3

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a medium which is excellent in the dispersion of magnetic powder and the orientation and further has the good surface smoothness and erasing characteristic, by applying the ferromagnetic powder or iron oxide, wherein the diameter of the major axis, the axis ratio and the specific surface area by a BET method are specified, on a base body together with a coupling resin resulting in a magnetic recording medium wherein the coercive force is 15.9KA/m or more. CONSTITUTION:The ferromagnetic powder of iron oxide wherein the diameter of the major axis is 300nm or less, the axis ratio is 5 or less and further the specific surface area by a BET method is 40m<2>/g or less is applied on the base body together with the coupling resin resulting in the recording medium wherein the coercive force is 15.9KA/m or more. In other words, the solution of ferric chloride is added to the aqueous solution of sodium hydroxide resulting in the generation of hydrothermal reaction, and the yellow sediment which is obtained is washed in water, filtered and dried resulting in the powder of alpha-oxy iron hydroxide. Next, it is placed into an electric furnace and reduced by using H2 gas resulting in the powder of Fe3O4 and further oxidized in the air resulting in the powder of gamma-Fe2O3. Thereafter, it is dispersed into the composites of vinyl-vinyl acetate.vinyl alcohol copolymer, synchro-hexane, toluene, etc.

Description

【発明の詳細な説明】 この発明は磁気記録媒体に関し、その目的とするところ
は磁性粉末の分散性および配向性に舛れ、かつノイズが
少なくて表面平滑性および消去特性に優れた磁性層を有
する磁気記録媒体を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium, and its object is to provide a magnetic layer that has excellent dispersibility and orientation of magnetic powder, low noise, and excellent surface smoothness and erasing characteristics. The object of the present invention is to provide a magnetic recording medium having the following characteristics.

磁気記録媒体は、通常、磁性粉末を結合剤樹脂、!:と
もにポリエステルフィルムなどの基体上に塗着してつく
られ、このとき使用される磁性粉末として社磁気特性に
優れるとともに分散性および配向性がよく、ノイズが少
なくて磁性層の表面平滑性を向上でき、かつ消去特性等
に優れたものが望まれ、る。
Magnetic recording media usually uses magnetic powder as a binder and resin! : Both are made by coating on a substrate such as polyester film, and the magnetic powder used at this time has excellent magnetic properties, good dispersibility and orientation, low noise, and improves the surface smoothness of the magnetic layer. What is desired is something that can be used and has excellent erasing characteristics.

仁のような要求を比較的満足するものとして従来からF
e、04粉末およびγ−Fe20.粉末などの磁性酸化
鉄粉末が汎用されている。
Traditionally, F
e, 04 powder and γ-Fe20. Magnetic iron oxide powder such as powder is widely used.

ところが、従来から汎用されている磁性酸化鉄粉末は、
一般に第一鉄塩水溶液とアルカリ水溶液トラ混合シて3
0〜60’Cの温度で空気醸化して得られるa−オキシ
水酸化鉄粉末を原料とし、これを還元または還元後最北
して得られるものであるため、軸比(長軸/短軸)が大
きな磁性酸化鉄粉末が得られ易いものの、粒度分布が均
一で微細なものは得られにくく、この従来の方法でσ−
オにして得られた磁性酸化鉄粉末の磁気特性および分散
性、配向性、表面平滑性を改善できなψばかりかノイズ
も低下しない。さらに加熱還元または加熱還元後、磁性
酸化鉄粉末のBET法による比表面積も大となって磁性
塗料を調製する際比表面積の大きな磁性学化鉄粉末によ
り磁性塗料の粘窄が高くなって磁性塗料の調製も良好に
行なえないなどの難点がある。
However, the magnetic iron oxide powder that has been widely used
Generally, a ferrous salt aqueous solution and an alkaline aqueous solution are mixed together.
The raw material is a-iron oxyhydroxide powder obtained by air fermentation at a temperature of 0 to 60'C, and it is reduced or obtained by the most northerly process after reduction. Although it is easy to obtain magnetic iron oxide powder with a large σ-
Not only can the magnetic properties, dispersibility, orientation, and surface smoothness of the magnetic iron oxide powder obtained in the above process not be improved, but also the noise cannot be reduced. Furthermore, after thermal reduction or thermal reduction, the specific surface area of the magnetic iron oxide powder measured by the BET method increases, and when preparing a magnetic paint, the viscosity of the magnetic paint increases due to the magnetic chemical iron powder with a large specific surface area. However, there are some drawbacks such as difficulty in preparing it properly.

この発明者らはこのようにα−オキシ水酸化鉄粉末の粒
子構造が、これを還元まなは還元後酸化して得られる強
磁性酸化鉄粉末の粒子構造および磁気特性等に大きく影
響することに鑑み種々検討を行なった結果、3価の鉄イ
オンを含有する水溶液を当量以上のアルカリ水溶液中に
30°C以下の温度で添加し反応させて水酸化第二鉄を
生成し、これを100℃以下で10分以上、通常は常温
で30分以上熟成した後、オートクレーブ中で水熱反応
させると軸比が小さくて微細化されたα−オキシ水酸化
鉄粉末が得られ、これを4元またFi還元後酸化すると
軸比が小さいため暁結も生じにくく、長軸径が300 
nm以下、軸比が5以下でかつBET法による比表面積
が40rrI79以下の強磁性酸化鉄粉末が得られ、こ
れを使用して得られる磁気記録媒体は保磁力が15.9
に、A/m以上で磁気特性が向上されるとともに強磁性
酸化鉄粉末の分散性、(向性がよく、ノイズも低下して
表面平滑性も改善され、さらに消去特性本向上されるこ
とを見いだし、この発明をなすに至った〇この発明にお
いて使用される強磁性酸化鉄粉末は長軸径を300 n
mより大きくするとノイズが低下せず、また軸比を5よ
り大きくすると、磁性塗料の調製が困難になり表面平滑
性も充分に改善され寿いため長軸径け300 nm以下
でかつ軸比が5以下であれは充分である。実用的には長
軸径50〜300 nmでかつ軸比が1.5〜5のもの
が好ましく使用される。また同様の理由で短軸径は30
〜100 nmのものが好ましく使用される。
The inventors discovered that the particle structure of α-iron oxyhydroxide powder greatly affects the particle structure and magnetic properties of ferromagnetic iron oxide powder obtained by reducing or oxidizing it after reduction. As a result of various studies, we added an aqueous solution containing trivalent iron ions to an equivalent amount or more of an alkaline aqueous solution at a temperature of 30°C or less, caused a reaction, and produced ferric hydroxide, which was heated to 100°C. After aging for at least 10 minutes, usually at room temperature for at least 30 minutes, a hydrothermal reaction is performed in an autoclave to obtain fine α-iron oxyhydroxide powder with a small axial ratio. When oxidized after Fi reduction, the axial ratio is small, so crystal formation is difficult to occur, and the major axis diameter is 300.
A ferromagnetic iron oxide powder with an axial ratio of 5 or less and a specific surface area of 40rrI79 or less by the BET method is obtained, and a magnetic recording medium obtained using this powder has a coercive force of 15.9.
In addition, the magnetic properties are improved at A/m or higher, and the dispersibility of the ferromagnetic iron oxide powder (tropism is good, noise is reduced, surface smoothness is improved, and the erasing property is also improved. The ferromagnetic iron oxide powder used in this invention has a major axis diameter of 300 nm.
If the axial ratio is larger than m, the noise will not decrease, and if the axial ratio is larger than 5, it will be difficult to prepare the magnetic paint, and the surface smoothness will be sufficiently improved and the longevity will be long. The following is sufficient. Practically, those having a major axis diameter of 50 to 300 nm and an axial ratio of 1.5 to 5 are preferably used. Also, for the same reason, the short axis diameter is 30
~100 nm is preferably used.

さらにこの強磁性酸化鉄粉末のBICT法による比表面
積は40ttf/9より大きくなると磁性塗料調製時に
粘度が高くなって磁性塗料を良好KIN製しそくいため
40trl/9以下であることが好ましく、BET法に
よる比表面積20〜40−/りのものが好ましく使用さ
れる。またこの強磁性酸化鉄粉末は、結合剤樹脂ととも
に基体上に塗着して磁気記録媒体としたとき保磁力が1
5.9 KA / mより小さいと充分な磁気特性が得
られなφため保磁力が15.9KA/m以上となるもの
が好ましく保磁力159〜27.9KA/mになるもの
が好適なものとして使用される。
Further, the specific surface area of this ferromagnetic iron oxide powder by the BICT method is preferably 40 ttf/9 or less, because if it exceeds 40 ttf/9, the viscosity will increase during the preparation of the magnetic paint, making it difficult to make a good magnetic paint. Those having a specific surface area of 20 to 40 -/- are preferably used. Furthermore, this ferromagnetic iron oxide powder has a coercive force of 1 when applied to a substrate together with a binder resin to form a magnetic recording medium.
If it is smaller than 5.9 KA/m, sufficient magnetic properties cannot be obtained, so a coercive force of 15.9 KA/m or more is preferable, and a coercive force of 159 to 27.9 KA/m is preferable. used.

このような強磁性酸化鉄粉末は、3価の鉄イオンを含有
する水溶液を当量以上のアルカリ水溶液中に30℃以下
の温度で添加し反応させて水酸化第二鉄を生成し、さら
に常温で熟成した後この水、醸化第二鉄をオートクレー
ブ中で水熱反応してα−オキシ水酸化鉄粉末を生成し、
これを還元または還元後酸化して製造され、水酸化第二
鉄の生成反応を30℃以下の低湿で行ない、さらに常温
で熟成した後オートクレーブ中で水熱反応を行なってい
るため微細で軸比が小さい1喰分布の均一なα−オキシ
水酸化鉄粉末が得られ、このよりなα−オキシ水酸化鉄
粉末を還元または還元後酸化して強磁性Fe3O4粉末
またVi襞研性γ−Fe20.粉末としているため、前
記したような微細で軸比が小さく、BET法による比表
面積の小さなものが得られ、分散性、配向性、表面平滑
性、消去特性および磁気特性等が改善され、ノイズも充
分に低減される。
Such ferromagnetic iron oxide powder is produced by adding an aqueous solution containing trivalent iron ions to an equivalent amount or more of an alkaline aqueous solution at a temperature of 30°C or less, causing the reaction to produce ferric hydroxide, and then producing ferric hydroxide at room temperature. After aging, this water and fermented ferric iron are hydrothermally reacted in an autoclave to produce α-iron oxyhydroxide powder,
It is produced by reducing or oxidizing after reduction, and the production reaction of ferric hydroxide is carried out at low humidity below 30 degrees Celsius, and after being aged at room temperature, a hydrothermal reaction is carried out in an autoclave, so it is fine and has an axial ratio. A homogeneous α-iron oxyhydroxide powder with a small one-bite distribution is obtained, and this fine α-iron oxyhydroxide powder is reduced or oxidized after reduction to produce ferromagnetic Fe3O4 powder or Vi-folded γ-Fe20. Since it is in the form of a powder, it is possible to obtain the fine powder with a small axial ratio and a small specific surface area by the BET method, which improves dispersibility, orientation, surface smoothness, erasing characteristics, magnetic properties, etc., and reduces noise. sufficiently reduced.

この発明の磁気記録媒体を製造するには常法に準じて行
なえばよく、たとえばポリエステルフィルムなどの基体
上に、前記の強磁性酸化鉄粉末、結合剤樹脂、有機溶剤
およびその他の必要成分を含も磁性塗料をp−ルコータ
ーなどの任童の塗布手段によって塗布し、乾燥すればよ
φ。
The magnetic recording medium of the present invention may be produced by a conventional method, for example, by depositing the above-mentioned ferromagnetic iron oxide powder, binder resin, organic solvent, and other necessary components on a substrate such as a polyester film. The magnetic paint can also be applied using a proprietary coating method such as a P-L coater, and then dried.

ここに用いる結合剤1樹脂として#i1塩化ビニルー酢
酸ビニル系共重合体、ポリビニルブチラール、ポリウレ
タン系樹脂、ニトリセルロースなど従来汎用されている
結合剤樹脂が広く用いられる。
As the binder 1 resin used here, conventionally widely used binder resins such as #i1 vinyl chloride-vinyl acetate copolymer, polyvinyl butyral, polyurethane resin, and nitricellulose are widely used.

有機溶剤としてはトルエン、メチルイソブチルケトン、
メチルエチルケトン、シクロヘキサノン、テトラヒドロ
7ラン、酢酸エチルなど従来から汎用されている有機溶
剤から適宜選択し、これらを単独または二種以上混合し
て使用される。
Organic solvents include toluene, methyl isobutyl ketone,
The organic solvent is appropriately selected from conventionally widely used organic solvents such as methyl ethyl ketone, cyclohexanone, tetrahydro7rane, and ethyl acetate, and these are used alone or in a mixture of two or more.

がお、磁性塗料中には通常使用されている各種添加剤、
たとえば分散剤、潤滑剤、研磨剤、帯電防止側などを任
意に添加使用してもよい。
However, various additives commonly used in magnetic paints,
For example, dispersants, lubricants, abrasives, antistatic agents, and the like may be optionally added.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 塩化第二鉄(FeCl、 、 6H20H0モルを水3
01に溶解した環化第二鉄水溶液と、水酸化す) IJ
ウム60モルを水601に溶解した水酸化ナトリウム水
溶液を調製し、温度θ℃で塩化第二鉄水溶液を水酸化ナ
トリウム水溶液中に加え褐色の沈澱を得た。次いでこれ
を常温で18時間熟成した後、上澄み液を一部除去し、
その残りをオードクレープ中に入れ180℃で1時間水
熱反応を行なった。
Example 1 Ferric chloride (FeCl, , 6H20H0 mol in water 3
IJ
A sodium hydroxide aqueous solution was prepared by dissolving 60 moles of sodium hydroxide in 601 moles of water, and a ferric chloride aqueous solution was added to the sodium hydroxide aqueous solution at a temperature of θ°C to obtain a brown precipitate. Next, after aging this at room temperature for 18 hours, a portion of the supernatant liquid was removed,
The remainder was placed in an eau de crepe and subjected to a hydrothermal reaction at 180°C for 1 hour.

反応終了後生成した黄色の沈澱物を水洗、ろ過、乾燥し
てd−オキシ水酸化鉄粉末を得た。
After the reaction was completed, the yellow precipitate produced was washed with water, filtered, and dried to obtain d-iron oxyhydroxide powder.

次に、得られたα−オキシ水水化化鉄粉末800を石英
ボード中に展開し、管状電気炉内に載置して水素ガスを
517分の速度で通気し、300°Cで還元してFe、
04 粉末を得、さらにこれを空気中で、250℃の温
度で酸化し、r−Fe20.粉末を得た。得られ友r−
Fe、O,粉采は、長軸径120 nm s短軸径30
 am s軸比4.0でBET法による比表面積は32
.1 tri/ 9であった。
Next, the obtained α-oxyhydride iron powder 800 was spread on a quartz board, placed in a tubular electric furnace, hydrogen gas was passed through at a rate of 517 minutes, and reduced at 300°C. teFe,
04 powder was obtained and further oxidized in air at a temperature of 250°C to obtain r-Fe20. A powder was obtained. Friend gained
For Fe, O, powder, the major axis diameter is 120 nm and the minor axis diameter is 30 nm.
The specific surface area according to the BET method is 32 with an am s axial ratio of 4.0.
.. It was 1 tri/9.

また保磁力(Hc ) Ifi 19.9 KA/ m
 −C1角型(dr/σS)は0.4であった0 このよう、にして得られたγ−Fe20.粉末を使用し
、 r−Fe205粉末         80重量部VA
GH(米[fU、C,C社製、塩化  11 〃ビニル
ー酢酸ビニルービニル アルコ、−ル共重合体) バンデツクスT−5250(大口   7I本インキ社
製、ウレタンエラスト マー) コロネートしく日本ポリウレタン    21工業社製
、三官能性低分子量イソ シアネート化合物) シクロヘキサノン         60 lトルエン
             60 〃の組成からなる組
成物をボールミル中で72時間混合分散して磁性塗料を
調製した。この磁性塗料をQさ12μmのホ′リエステ
ルペースフイルム上に乾燥厚が4μmとなるように塗布
、乾燥し、表面処理を行なった後所定の巾r裁断して磁
気テープをつくった。
Also, coercive force (Hc) Ifi 19.9 KA/m
-C1 square shape (dr/σS) was 0.4. Thus, the obtained γ-Fe20. Using powder, r-Fe205 powder 80 parts by weight VA
GH (US [manufactured by fU, C, C, chloride 11 vinyl-acetate-vinyl alcohol copolymer] Bandex T-5250 (manufactured by Oguchi 7I Hon Ink Co., Ltd., urethane elastomer) Coronate Shikoku Nippon Polyurethane 21 Kogyo Co., Ltd. A magnetic paint was prepared by mixing and dispersing a composition consisting of 60 l of cyclohexanone and 60 l of toluene for 72 hours in a ball mill. This magnetic paint was applied onto a polyester paste film having a Q of 12 μm to a dry thickness of 4 μm, dried, surface treated, and then cut to a predetermined width r to produce a magnetic tape.

実施例2 実施例IKお−て塩化第二鉄水溶液を水酸化ナシリウム
水溶液中に加える時の温度を10°Cとした以外は実施
例1と同様にして、長軸径200nm、短軸径50nm
s軸比4.0、BET法による比表面積25.0 d/
11で保磁力(Hc) 23.9 KA/m 、角型(
gr/ as ) 0.45のr−Fe205粉末を得
、さらkこのr−Fe205  粉末を使用して実施例
1と同様にして磁気テープをつくった。
Example 2 Example IK The same procedure as in Example 1 was carried out except that the temperature when adding the ferric chloride aqueous solution to the sodium hydroxide aqueous solution was 10°C, and the major axis diameter was 200 nm and the minor axis diameter was 50 nm.
s-axis ratio 4.0, specific surface area 25.0 d/ by BET method
11, coercive force (Hc) 23.9 KA/m, square shape (
An r-Fe205 powder with a gr/as) of 0.45 was obtained, and a magnetic tape was made in the same manner as in Example 1 using this r-Fe205 powder.

実施例3 実施例Iにおいて、塩化第二鉄水溶液を水酸化ナトリウ
ム水溶液中(加える時の温度を20℃とした以外は実施
例1と同様にして、長軸径240nms短軸径fJ O
nm s軸比40、BET法による比表面積25 d/
fで保磁力(He)25.5 KA / m 、−角型
(er/am ) 0.45のr−Fe20.  粉末
を得、さらKこ0r−11*105  粉末を使用して
実施例1と同様にして磁気テープをつくった。
Example 3 In Example I, a ferric chloride aqueous solution was added to a sodium hydroxide aqueous solution (except that the temperature at the time of addition was 20° C.) in the same manner as in Example 1, with a major axis diameter of 240 nm and a minor axis diameter fJ O
nm s-axis ratio 40, specific surface area 25 d/ by BET method
r-Fe20. with f coercive force (He) 25.5 KA/m, -square (er/am) 0.45. A magnetic tape was prepared in the same manner as in Example 1 using the obtained powder.

実施例4 実施例1において塩化第二鉄15モルを水30IK、溶
解した塩化第二鉄水溶液と、水酸化ナトリウム60モル
を水601に溶解し、た水酸化ナトリウム水溶液を使用
し、塩化第二鉄水溶液を水酸化ナトリウム水溶液Etl
rK加える時の温度を−2“Cとした以外は実施例1と
同様にして、長軸径10100n短軸径30 nm s
軸比3.3、BET法による比表面積33.4rt/f
で保磁力(He) 1 g、3 KA / tn 。
Example 4 In Example 1, a ferric chloride aqueous solution in which 15 moles of ferric chloride was dissolved in 30 IK of water, and a sodium hydroxide aqueous solution in which 60 moles of sodium hydroxide were dissolved in 601 K of water were used. Iron aqueous solution to sodium hydroxide aqueous solution Etl
The major axis diameter was 10100n, the minor axis diameter was 30 nm s, except that the temperature when applying rK was -2"C.
Axial ratio 3.3, specific surface area 33.4rt/f by BET method
Coercive force (He) at 1 g, 3 KA/tn.

角型(’r/’s ) 0.4のr−Fe、0.粉末を
得、さらにこのr −Fe2O3粉末を使用して実施例
1と同様にして磁気テープをつくった。
Square ('r/'s) 0.4 r-Fe, 0. A magnetic tape was produced in the same manner as in Example 1 using this r -Fe2O3 powder.

比較例1 硫酸第一鉄(FeSO4,7H20) 10モルを水4
01に溶解した硫酸第一鉄水溶液と、水酸化ナトリウム
70モルを水401に溶解した水酸化ナトリウム水溶液
を調製し、温度25°Cで硫ilV!第一鉄水溶液中に
水酸化ナトリウム水溶液を加え淡緑色の沈澱を得た。次
いでこの懸濁液を恒温水槽中で40℃に加温しながら毎
分10/の空気を懸濁液中に吹き込み、6時間酸化反応
を行なって黄色沈澱物を得、水洗、ろ過、乾燥してσ−
オキシ水醗化鉄粉末を得た。
Comparative Example 1 10 moles of ferrous sulfate (FeSO4,7H20) in 4 parts of water
An aqueous solution of ferrous sulfate dissolved in 01 and a sodium hydroxide aqueous solution prepared by dissolving 70 moles of sodium hydroxide in 401 water were prepared, and sulfur V! was dissolved at a temperature of 25°C. A sodium hydroxide aqueous solution was added to the ferrous aqueous solution to obtain a pale green precipitate. Next, this suspension was heated to 40°C in a constant temperature water bath while air was blown into the suspension at a rate of 10/min to carry out an oxidation reaction for 6 hours to obtain a yellow precipitate, which was washed with water, filtered, and dried. teσ−
Iron oxyhydroxide powder was obtained.

次に、このα−オキシ水酸化鉄粉末を実施例1と同様に
して還元し、さらに酸化してγ−Fe 2 c。
Next, this α-iron oxyhydroxide powder was reduced in the same manner as in Example 1, and further oxidized to yield γ-Fe 2 c.

粉末を得々。得られたr−Fe20.粉末は、長軸径2
00nmq短軸径’30 nm s軸比6.7、BET
法による比表面積50rl/9で保磁力(Hc)14.
3 KA/ m s角型(0170g)0.3であった
Get some powder. The obtained r-Fe20. The powder has a long axis diameter of 2
00nmq minor axis diameter '30nm s axis ratio 6.7, BET
Coercive force (Hc) 14. Specific surface area 50 rl/9 by method.
3 KA/m s square shape (0170 g) was 0.3.

次いで、このr−Fe20.粉末を使用し、実施例1と
同様にして磁気テープをつくった。
Next, this r-Fe20. A magnetic tape was made in the same manner as in Example 1 using the powder.

比較例2 比較@IKお鱒て温度25℃で伽11−鉄水溶液中に水
酸化ナトリウム水溶液を加えて淡緑色の沈澱を作り、次
にこog濁液を恒温水槽中で50°Cに加温しながら空
気酸化した以外は比較例1と同様にして、長軸径280
 mm N短軸径40nms軸比7、BET法による比
表面積40rrl/fで保磁力(Hc)1g、3KA/
m 、角型(#r/as)0.35のT−Fe 20 
B粉末を得、ざらにこのr −Fe20B粉末を使用し
て比較例1と同様にして磁気テープをつくった。
Comparative Example 2 Comparison @ IK At a temperature of 25°C, an aqueous sodium hydroxide solution was added to an aqueous solution of 11-iron to form a pale green precipitate, and the suspension was then heated to 50°C in a thermostatic water bath. A major axis diameter of 280
mm N minor axis diameter 40nms axial ratio 7, specific surface area 40rrl/f by BET method, coercive force (Hc) 1g, 3KA/
m, square shape (#r/as) 0.35 T-Fe 20
B powder was obtained, and a magnetic tape was made in the same manner as in Comparative Example 1 using the r -Fe20B powder.

各実施例および各比較例で得られた磁気テープについて
、保磁力(He)、残留磁束密度(Br)、角型(Br
/Bs)、DC5/NおよびAC5/Nを澗定した。
Regarding the magnetic tapes obtained in each example and each comparative example, coercive force (He), residual magnetic flux density (Br), square shape (Br
/Bs), DC5/N and AC5/N were determined.

下表はその結果である。The table below shows the results.

表 上表から明らかなように、この発明によって得られた磁
気テープ(実施例1〜4)は従来の磁気テープ(比較例
1〜2)に比し、いずれも保磁力、残留磁束密度および
角型が高くてDcS/N およびAC5/Nが低く、こ
のことからこの発明によって得られる磁気記録媒体は磁
性粉末の分散性、配向性に優れるとともに表面平滑性に
優れ、ノイズが充分に低下されていることがわかる。
As is clear from the table above, the magnetic tapes obtained according to the present invention (Examples 1 to 4) are superior to conventional magnetic tapes (Comparative Examples 1 to 2) in terms of coercive force, residual magnetic flux density, and angle. The type is high and DcS/N and AC5/N are low. Therefore, the magnetic recording medium obtained by this invention has excellent dispersibility and orientation of magnetic powder, excellent surface smoothness, and sufficiently reduced noise. I know that there is.

特許出願人 工業技術院長  石 坂 誠 −特許出願
人  日立マクセル株式会社 代表者 水弁 厚 指定代理人 工業技術院大阪工業技袷試験所長内藤−男
Patent applicant Makoto Ishizaka, Director of the Agency of Industrial Science and Technology - Patent applicant Representative of Hitachi Maxell Co., Ltd. Atsushi Mizuben Designated representative Director of the Osaka Institute of Industrial Science and Technology Naito Naito

Claims (1)

【特許請求の範囲】[Claims] 1、長軸径が300 nm以下、軸比が5以下でかつB
ICT法による比表面積が40w1/9以下の強磁性酸
化鉄粉末を結合剤樹脂とともに基体に塗着してなる保磁
力が15.9 KA /m以上の磁気記録媒体
1. The major axis diameter is 300 nm or less, the axial ratio is 5 or less, and B
A magnetic recording medium with a coercive force of 15.9 KA/m or more, which is obtained by applying ferromagnetic iron oxide powder with a specific surface area of 40w1/9 or less by the ICT method to a substrate together with a binder resin.
JP56157135A 1981-10-01 1981-10-01 Magnetic recording medium Granted JPS5857708A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56157135A JPS5857708A (en) 1981-10-01 1981-10-01 Magnetic recording medium
EP19820109003 EP0076462B2 (en) 1981-10-01 1982-09-29 Method of production of magnetic particles
DE8282109003T DE3274777D1 (en) 1981-10-01 1982-09-29 Magnetic particles and method of production thereof
CA000412570A CA1246321A (en) 1981-10-01 1982-09-30 Magnetic particles and method of production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56157135A JPS5857708A (en) 1981-10-01 1981-10-01 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5857708A true JPS5857708A (en) 1983-04-06
JPS6129122B2 JPS6129122B2 (en) 1986-07-04

Family

ID=15642962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56157135A Granted JPS5857708A (en) 1981-10-01 1981-10-01 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5857708A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119609A (en) * 1982-01-11 1983-07-16 Fuji Photo Film Co Ltd Magnetic recording medium
JPS6036603A (en) * 1983-08-10 1985-02-25 Dainippon Ink & Chem Inc Fine magnetic metallic powder having small specific surface area and its manufacture
JPS6066321A (en) * 1983-09-21 1985-04-16 Toshiba Corp Magnetic recording medium
JPS6225259A (en) * 1985-07-26 1987-02-03 Mitsubishi Electric Corp Electromagnetic ultrasonic tranceducer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102599795B1 (en) * 2021-06-15 2023-11-08 (주)우인기연 An apparatus for rotating mask body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119609A (en) * 1982-01-11 1983-07-16 Fuji Photo Film Co Ltd Magnetic recording medium
JPH0412009B2 (en) * 1982-01-11 1992-03-03 Fuji Photo Film Co Ltd
JPS6036603A (en) * 1983-08-10 1985-02-25 Dainippon Ink & Chem Inc Fine magnetic metallic powder having small specific surface area and its manufacture
JPH0118961B2 (en) * 1983-08-10 1989-04-10 Dainippon Ink & Chemicals
JPS6066321A (en) * 1983-09-21 1985-04-16 Toshiba Corp Magnetic recording medium
JPS6225259A (en) * 1985-07-26 1987-02-03 Mitsubishi Electric Corp Electromagnetic ultrasonic tranceducer

Also Published As

Publication number Publication date
JPS6129122B2 (en) 1986-07-04

Similar Documents

Publication Publication Date Title
GB1585419A (en) Process of producing cobalt-containing feromagnetic iron oxide powder
US4069164A (en) Process for producing ferromagnetic powder
US4059716A (en) Manufacture of gamma-iron(III) oxide
JPS5857708A (en) Magnetic recording medium
JPS5852806A (en) Magnetic recording medium
JPS6114642B2 (en)
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
EP0076462B2 (en) Method of production of magnetic particles
JPS5857709A (en) Magnetic recording medium
JPS5860624A (en) Ferromagnetic powder and its preparation
JP2583087B2 (en) Production method of plate-like magnetite particles
JPS5976402A (en) Manufacture of magnetic iron oxide powder for magnetic recording medium
JPS59169937A (en) Production of magnetic powder
JPH04184903A (en) Manufacture of magnetic particle power for magnetic recording
JPS5858203A (en) Ferromagnetic metallic powder and its manufacture
JPS59172136A (en) Magnetic recording medium
JPS6163921A (en) Magnetic powder and its production
JPS6187302A (en) Manufacture of magnetic recording medium
JPH0425687B2 (en)
JPS638224A (en) Production of ferro magnetic powder for magnetic recording
JPS62154228A (en) Magnetic recording medium
JPS59144035A (en) Magnetic recording medium
JPS59151402A (en) Manufacture of magnetic powder
JPH0430162B2 (en)
JPS59174533A (en) Manufacture of magnetic powder