JPS6036603A - Fine magnetic metallic powder having small specific surface area and its manufacture - Google Patents

Fine magnetic metallic powder having small specific surface area and its manufacture

Info

Publication number
JPS6036603A
JPS6036603A JP58144889A JP14488983A JPS6036603A JP S6036603 A JPS6036603 A JP S6036603A JP 58144889 A JP58144889 A JP 58144889A JP 14488983 A JP14488983 A JP 14488983A JP S6036603 A JPS6036603 A JP S6036603A
Authority
JP
Japan
Prior art keywords
surface area
specific surface
goethite
major axis
axial ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58144889A
Other languages
Japanese (ja)
Other versions
JPH0118961B2 (en
Inventor
Tetsushiyuu Miyahara
鉄洲 宮原
Katsuhiko Kawakami
河上 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP58144889A priority Critical patent/JPS6036603A/en
Publication of JPS6036603A publication Critical patent/JPS6036603A/en
Publication of JPH0118961B2 publication Critical patent/JPH0118961B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture magnetic metallic powder having a small specific surface area by reducing spindle-shaped goethite having a specified major axis size, a specified minor axis size and a specified axial ratio with a reducing gas. CONSTITUTION:Spindle-shaped goethite having 0.05-0.3mum major axis size, 0.015-0.04mum minor axis size and 3-15 axial ratio is optionally dehydrated by heat treatment to prepare iron oxide, and the goethite or the iron oxide is reduced with a reducing gas at about 300-500 deg.C. The starting material is coated with a sintering inhibitor such as potassium silicate before the reduction. The amount of the inhibitor is about 5-10wt% of the amount of the goethite. Magnetic metallic powder having 0.05-0.2mum major axis size, 4-10 axial ratio and 30-55m<2>/g specific surface area is obtd. The specific surface area is measured by adsorbing gaseous N2 by the BET method.

Description

【発明の詳細な説明】 この発明は高密度磁気記録用の金属磁性粉末およびその
製造方法に関するものであり、比表面積が小さい微小金
属磁性粉を堤イ1(することを目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal magnetic powder for high-density magnetic recording and a method for producing the same. .

j11年、オーテ゛イオのディジタル化や8nビデオ等
の開発に伴い、磁気記録媒体は益々高密度記録の要求が
大きくなってきた。
In 2011, with the digitization of audio and the development of 8n video, there was an increasing demand for high-density recording on magnetic recording media.

そこで、これら磁気記録媒体に用いられる磁性粉は、高
保磁力(10000e以」−)を持つ金属磁性粉が採用
され始めているが、テープのノイズレヘルの低減および
短波長領域での高出力化を目ざして、益々粒子ザイスが
小さく、精度分布の狭いかつ分散化にすくれ、飽和磁化
量の大きい磁性粉が要求されるようになった(特開昭5
7−154618号参照)。
Therefore, metal magnetic powders with high coercive force (more than 10,000 e) are being used as the magnetic powders used in these magnetic recording media, but with the aim of reducing tape noise levels and increasing output in the short wavelength region. , magnetic powders with increasingly smaller particle size, narrower precision distribution, and greater dispersion were required (Japanese Patent Application Laid-Open No.
7-154618).

8重曹ビデオの場合、金属磁性粉の保磁力Hcは140
0〜15000eに選ばれている。Hcがこれより小さ
いと、再律時の出力が不十分であり、大きすぎると記録
ヘッドに飽和がおきるとともに消去が困難になることに
よる。金属磁性粉としては、材料の価格の低い点からP
e、およびFe −Ni−Co合金系のものが用いられ
るが、これら各金属は、立方晶結晶のため高保磁力をI
Iローには、粒子形状を剣状として、−軸異方性を賄与
しなければならない。針状粒子の長径と短径の比、すな
わち軸比は2〜15の範囲であれば良い。保磁力は、軸
比が大きいほど大きくなるが、一方、保磁力は、粒子サ
イズによって影響され、超常磁性が現れる粒1条以1−
の大きさでC:1゛粒子ザイズが小さくなるほど大きく
なる。従って、目的とする保磁力は、粒子サイズとその
軸比を適当に選ぶことGこよって得られる。
8 In the case of baking soda video, the coercive force Hc of metal magnetic powder is 140
It is selected from 0 to 15000e. If Hc is smaller than this, the output during retemplation will be insufficient, and if it is too large, saturation will occur in the recording head and erasing will become difficult. As metal magnetic powder, P is preferred due to the low cost of the material.
E, and Fe-Ni-Co alloys are used, but each of these metals has a high coercive force due to its cubic crystal structure.
For I-row, the particle shape must be sword-shaped to provide −axis anisotropy. The ratio of the major axis to the minor axis of the acicular particles, that is, the axial ratio, may be in the range of 2 to 15. The coercive force increases as the axial ratio increases, but on the other hand, the coercive force is influenced by the grain size, and the coercive force is influenced by the grain size.
The size of C: 1' becomes larger as the particle size becomes smaller. Therefore, the desired coercive force can be obtained by appropriately selecting the grain size and its axial ratio.

他方、金属磁性粉ば、粒子サイズを小さくしてゆけばゆ
くほど表面エネルギーが大きくなり、化学的に活性とな
る。
On the other hand, the smaller the particle size of metal magnetic powder, the greater its surface energy and the more chemically active it becomes.

そこで、これを大気中で燃焼しないように安定化するた
めに、被睦厚さ30〜50人の耐酸化保護換が必要であ
る。
Therefore, in order to stabilize this so that it does not burn in the atmosphere, 30 to 50 people of oxidation-resistant protective conversion are required.

従って、金属磁性粉としての特性を保持するためには粒
子の短軸(¥が0.01μm以トー必要である。また、
長軸径の大きさは、保留力をどの程度にするかによって
軸比を決めるので、自ずと定まる。従って例えば保磁)
月TC>14000eとするには軸比3以11、好まし
くば4以i−必要とすることから、長軸径は0.05μ
m 1it(iRが一ト限となる。
Therefore, in order to maintain the properties as a metal magnetic powder, the short axis of the particles (\) must be 0.01 μm or more.
The size of the major axis diameter is determined automatically because the axial ratio is determined by the degree of retention force. Therefore, for example, coercivity)
To make the monthly TC>14000e, the axial ratio is required to be 3 or more, preferably 4 or more, so the major axis diameter is 0.05μ.
m 1it (iR is limited to one.

しかしながら、金属磁性粉を小粒径化すると、比表面積
が大きくなり、凝集性が高まるとともに、吸油量が大き
くなる。従って、塗料化に際して粘度が大きくなり、分
散が困難になってくる。そこで、粒子を微小化しても低
粘度で、かつ高度に分散した磁性塗料をつくるためには
、比表面積が小さく、表面平滑性の良い、粒度の揃った
金属磁性粉を得ることが必要である。
However, when the particle size of metal magnetic powder is reduced, the specific surface area increases, cohesiveness increases, and oil absorption increases. Therefore, when made into a paint, the viscosity increases, making it difficult to disperse. Therefore, in order to create a highly dispersed magnetic paint with low viscosity even when the particles are miniaturized, it is necessary to obtain metal magnetic powder with a small specific surface area, good surface smoothness, and uniform particle size. .

そこで、本発明者ら(3[種々の検討を行った結果、従
来紡錘型ゲーサイトと呼ばれてきたゲーサイトの針伏性
を改善し、かつ、微粒子化したものを還元することによ
り、上記要求を満たず金属磁性粉が得られるであろうこ
とに気イー1き、本発明をなした。
Therefore, the present inventors (3) [As a result of various studies, by improving the acicularity of goethite, which has conventionally been called spindle-shaped goethite, and reducing the microparticles, the above-mentioned The present invention was created based on the realization that metal magnetic powder could be obtained that did not meet the requirements.

すなわち、従来紡錘型ゲーサイトは、特開昭5(+−8
0999号公報に記載されているように、枝がなく精度
が揃っているという特徴をもつことから、これを原料と
して製造した酸化鉄や金属また4;1合金の粉末も同様
に粒度が均質である。
In other words, the conventional spindle type game site is
As stated in Publication No. 0999, it is characterized by having no branches and uniform precision, so the powders of iron oxide, metals, and 4:1 alloys produced using it as a raw material also have a uniform particle size. be.

従って、磁性塗膜中の充填密度を晶くすることができる
ことから、高密度の磁気記録を可能にする。しかしなが
ら、紡錘型ゲーサイトは、長袖径に比較して短軸径が大
きく、かつ高分解能電子顕微鏡観察によると、1ケの粒
子は大きさ数10人の六角板状微粒子の簗合でてきてい
ることから、これを還元したときに粒子内部に空孔がで
きやすく、多孔質粒子となる。従って、磁気特性におけ
る保磁力が一トがらないと同時に、空孔から発41゛す
る漏洩磁界のために粒子間の相U作用が大きくて凝築し
やすく、塗料分散性が悪いという欠点を持っていた。例
えば保磁力については特開昭55=−85605号でみ
られるように紡錘型ゲーサイトを用いて製造した金属磁
性粉の保磁力は高々12000eにしがならない。
Therefore, since the packing density in the magnetic coating film can be made crystallized, high-density magnetic recording is possible. However, spindle-shaped goethite has a larger short axis diameter than its long diameter, and according to high-resolution electron microscopy observation, one particle is made up of dozens of hexagonal plate-shaped fine particles. Therefore, when it is reduced, pores are likely to be formed inside the particles, resulting in porous particles. Therefore, the coercive force in the magnetic properties is not constant, and at the same time, due to the leakage magnetic field emanating from the pores, the phase U effect between the particles is large, which tends to cause agglomeration, and the paint dispersibility is poor. was. For example, as for the coercive force, the coercive force of metal magnetic powder produced using spindle-shaped goethite is only 12,000 e, as shown in Japanese Patent Laid-Open No. 55-85605.

そこで、発明者ら番、を気泡塔を用いて剣状性の良い紡
錘型ゲーサイトの合成を行うとともに、これを還元して
金属磁性粉としての堵特牲を検バ・lした結果、ゲーサ
イトの短軸径を0. (14/7 mlべ下、好ましく
は0.02 t!m以下にすると空孔が消滅して牢、′
I子内部の均一性が良くなることを見出した。
Therefore, the inventors used a bubble column to synthesize spindle-shaped goethite with good sword-like properties, and as a result of reducing it and examining its properties as a metal magnetic powder, we found that Set the short axis diameter of the site to 0. (When the volume is lowered by 14/7 ml, preferably 0.02 t!m or lower, the pores disappear and the
It has been found that the internal uniformity of the I-element is improved.

また、長軸径はゲーサイト合成時の空気Iや温度を調整
することによって自由にコントロールでき、最小0.0
2μmまで短かくすることが可能となった。そこで、金
属磁性粉の保磁力14000e以1−の条件を検討した
ところ、ゲーサイトの平均短軸径0.02μmの場合、
軸比31u−h、すなわち、長軸径0.06μm以上あ
れば良いことが判った。また、このようなゲーサイI・
は、ケイ酸カリウム等で焼結防IL被覆処理を施した後
還元して1#た鉄粉は、短軸1¥0.015士0.00
5μm、軸比3以上、すなわち長軸i革0.05.cr
m以上となることが判った。
In addition, the major axis diameter can be freely controlled by adjusting the air I and temperature during goethite synthesis, with a minimum of 0.0
It has become possible to shorten the length to 2 μm. Therefore, we investigated the conditions for the coercive force of metal magnetic powder of 14,000e or more, and found that in the case of goethite with an average minor axis diameter of 0.02 μm,
It has been found that an axial ratio of 31u-h, that is, a major axis diameter of 0.06 μm or more is sufficient. Also, games like this
The iron powder, which has been reduced to 1# after being treated with anti-sintering IL coating with potassium silicate, etc., has a short axis of 1 yen 0.015 and 0.00 yen.
5 μm, axial ratio 3 or more, that is, long axis i leather 0.05. cr
It was found that it was more than m.

以にの点から、本発明における金属磁性粉の製造に当っ
ては、長軸径が0.05〜0.3.c+m、短軸径が0
.OI5〜0、04 p rnで、軸比が3〜15の紡
錘型ゲーサイトが必要とされる。
From the above points, when manufacturing the metal magnetic powder in the present invention, the major axis diameter is 0.05 to 0.3. c+m, minor axis diameter is 0
.. Spindle-shaped goethite with an OI of 5-0, 04 p rn and an axial ratio of 3-15 is required.

一方、このような金属磁性粉のBET法でN2ガスを吸
着させてめた比表面積は、長軸径0,1μm、短軸径0
.02μm、軸比5、かつ飽和磁化i1120 emt
+ / g以−ヒに還元した金属磁性粉で約50rrr
/gである。この値は、アルカリとしてカセイソーダを
用いて合成したゲーサイトを還元5− して得た、同体積で軸比10の金属磁性粉の比表面積が
約64M/gであるから、それと比較して相当率さいと
云える。
On the other hand, the specific surface area of such metal magnetic powder obtained by adsorbing N2 gas by the BET method is 0.1 μm in major axis diameter and 0.1 μm in minor axis diameter.
.. 02 μm, axial ratio 5, and saturation magnetization i1120 emt
Approximately 50 rrr with metal magnetic powder reduced to +/g or more
/g. This value is quite significant compared to the specific surface area of metal magnetic powder with the same volume and axial ratio of 10, which is approximately 64 M/g, obtained by reducing goethite synthesized using caustic soda as an alkali. You can say that you should take the lead.

従って、本金属磁性粉を’ffII化した場合には、塗
料化が容易であり、塗料粘度がイ1(いので粒子の充填
度を高めることができ、粒子サイズの徹小骨と相俟って
高記録密度の磁気テープを作製することができる。
Therefore, when this metal magnetic powder is made into 'ffII, it is easy to make it into a paint, and the viscosity of the paint is 11 (I). A magnetic tape with high recording density can be produced.

本発明における金属磁性粉末を構成する金属は、鉄、コ
バルト、および鉄−:1ハルト−ニッケル合金系等の各
種強磁性金属および強磁性合金である。
The metals constituting the metal magnetic powder in the present invention are various ferromagnetic metals and ferromagnetic alloys such as iron, cobalt, and iron-:1Hart-nickel alloys.

本金属&f4It粉末を製造するのに用いるゲーサイト
は、気泡塔反応槽を用いて用酸アルカリ水溶液と第一鉄
塩水溶液とを反応せしめ、引続き空気を導入して(通気
線速度0.1〜2.0CIII/sec程度)スラリー
の攪拌を気泡塔で行いつつ常温以トの反応温度で酸化反
応をせしめ、所望により熟成して得た、微小で且つ軸比
の大きな紡錘型ゲーサイトである。この様なゲーサイト
を製造する方法については、先行の特願昭58−’10
5911号の明細壜に詳細に開示されている。
The goethite used to produce the present metal & f4It powder is obtained by reacting an acid-alkali aqueous solution with a ferrous salt aqueous solution using a bubble column reaction tank, and then introducing air (aeration linear velocity 0.1~ It is a spindle-shaped goethite that is minute and has a large axial ratio, obtained by stirring the slurry in a bubble column, allowing the oxidation reaction to occur at a reaction temperature of room temperature or higher, and aging it if desired. Regarding the method of manufacturing such gamesite, please refer to the previous patent application filed in 1982-'10.
It is disclosed in detail in the specification bottle of No. 5911.

また、−■−記ゲーザイI・を還元するにあたって、ゲ
ーサイトの剣状性を損2rわないようにするF」的で粒
子表面を被覆する焼結防止処理剤としては、通常、ケイ
酸カリ、ゲイ酸−〇− ソータ′等のゲイ酸ffJ、、またはアルミニウム塩、
−ングネシウム塩、カルシカム塩等が用いられる。夫々
の処理量はゲーサイトに対して5〜10市量%となる量
が好ましい。
In addition, when reducing Goethite I. mentioned above, potassium silicate is usually used as an anti-sintering agent that coats the particle surface to prevent loss of the sword-like properties of Goethite. , a gay acid ffJ such as a gay acid-〇-sorta', or an aluminum salt,
- Gnesium salt, calcium salt, etc. are used. The amount of each treatment is preferably 5 to 10% by market weight based on goethite.

還元温度は300 ’c〜50(1℃の範囲が好ましく
、これより低いと還元時間が長すぎたり、還元不足とな
る。また高すぎると粒子間の焼結が著しくなり、分散性
を損なうことになる。
The reduction temperature is preferably in the range of 300'C to 50'C (1C); if it is lower than this, the reduction time will be too long or the reduction will be insufficient. If it is too high, sintering between particles will become significant and the dispersibility will be impaired. become.

次に、実施例により本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実施例1 炭酸ソーダ(Na2CO3) 5 kgを61.2 k
gの水に溶解した後、気泡塔方式反応槽にN2ガスを流
しながら入れた。次に、硫酸第一鉄(F8SC14・7
1tz O) 5 kgを28kgの水に溶解した後、
この反応槽に加えて第一鉄イオンを沈殿させた。
Example 1 Soda carbonate (Na2CO3) 5 kg to 61.2 k
After dissolving in 1 g of water, the mixture was introduced into a bubble column reaction tank while flowing N2 gas. Next, ferrous sulfate (F8SC14/7
1tz O) After dissolving 5 kg in 28 kg of water,
Ferrous ions were added to the reactor to precipitate.

スラリー温度を40℃にした後、N?ガスを空気に切換
え、100β/分の空気量を流して2時間反応を行った
。次いで、スラリーを濾過し、洗液が中性になるまで十
分水洗を行って、長軸径0.25μm、軸比7、比表面
積110n(7gの紡錘型ゲーサイトを得た。
After setting the slurry temperature to 40℃, N? The gas was switched to air, and the reaction was carried out for 2 hours with an air flow rate of 100β/min. Next, the slurry was filtered and thoroughly washed with water until the washing liquid became neutral to obtain spindle-shaped goethite with a major axis diameter of 0.25 μm, an axial ratio of 7, and a specific surface area of 110 nm (7 g).

次に、このゲーサイトを固形分として100gをとり、
蒸留水1728mj!および濃度4650 ppln 
、ケイ酸カリウム水溶液272m6 (Si/Pe=4
at%相当)を加えて十分攪拌した後、濾過、乾燥した
。得られたにλSiO3被榎ゲーリ・イト50gをとり
、固定床式管状還元炉に入れ、窒素ガスで空気をW換し
た1多、流量30β/minの水素ガス中で温度を十昇
し、380℃で5時間の還元を行って金属鉄粉末とした
。これを室温に下げ、再び窒素ガスで水素ガスを置換し
た。この金属粉末をトルエン中に浸漬し、20時間放置
し表面を徐酸化させた後、風乾して空気中に取出した。
Next, take 100g of this goethite as a solid content,
Distilled water 1728mj! and concentration 4650 ppln
, potassium silicate aqueous solution 272m6 (Si/Pe=4
After stirring thoroughly, the mixture was filtered and dried. 50 g of the obtained λSiO3 to be treated was taken, placed in a fixed-bed tubular reduction furnace, and the temperature was raised to 380 g in hydrogen gas at a flow rate of 30 β/min after replacing the air with nitrogen gas. Reduction was performed at ℃ for 5 hours to obtain metallic iron powder. This was cooled to room temperature, and the hydrogen gas was replaced with nitrogen gas again. This metal powder was immersed in toluene, left to stand for 20 hours to slowly oxidize the surface, then air-dried and taken out into the air.

このようにして得た金1ホ鉄粉末の大きさは長軸径0.
2μm、軸比7,5であり、BET法でN2ガスを吸着
させて測定した比表面積は39nf/gであうた。また
、東英工業製振動試料型磁力針を用いて、最大測定磁界
10KOeで測定した磁気特性は、保磁ノ月1c=15
000e、飽和磁化量σm=131emu/g、角型比
0.50であった。
The size of the gold 1-hole iron powder obtained in this way is 0.5 mm in major axis diameter.
It had a diameter of 2 μm, an axial ratio of 7.5, and a specific surface area of 39 nf/g measured by adsorbing N2 gas using the BET method. In addition, the magnetic properties measured using a vibrating sample type magnetic needle manufactured by Toei Kogyo at a maximum measurement magnetic field of 10 KOe are as follows: coercive force 1c = 15
000e, saturation magnetization amount σm=131 emu/g, and squareness ratio 0.50.

この金属磁性粉末15gをとり、ポリウレタン樹脂(P
^NDEX−B 大日本インキ化学ン1商品名)5g1
メチルイソブチルケトンとトルエンの1:1の混合液を
65g3およびレシチン0.45 gと混合してペイン
トシェーカーで4時間攪拌して磁性塗料を作製した。こ
の塗料をE型粘度針を用いて回転速度100 rpmで
粘度測定を行った結果4.5 poiseであった(表
1参照)。
Take 15g of this metal magnetic powder, and
^NDEX-B Dainippon Ink Chemical 1 brand name) 5g1
A magnetic paint was prepared by mixing a 1:1 mixture of methyl isobutyl ketone and toluene with 65 g of lecithin and 0.45 g of lecithin, and stirring the mixture in a paint shaker for 4 hours. The viscosity of this paint was measured using an E-type viscosity needle at a rotation speed of 100 rpm, and the result was 4.5 poise (see Table 1).

実施例2〜6 実施例Iのゲー・シイI−製造法ζこおいて空気量およ
び温度を変えた以外は同様な方法で得たゲーサイトを実
施例1と同様にして金属磁性わ)をIl!I造し7た。
Examples 2 to 6 Goethite obtained in the same manner as in Example 1 except that the amount of air and temperature were changed was used to produce a metal magnetic material. Il! I built 7.

これらの金属磁性粉の大きさと比表面積および磁気特性
を塗料粘度とともに表1に示す。
The size, specific surface area and magnetic properties of these metal magnetic powders are shown in Table 1 along with the coating viscosity.

実施例7 実施例6において還元温度を400℃と高くした以外は
、実施例6と同様にして金属磁性粉を製造した。この場
合の金属磁性粉の大きさと比表面積および磁気特性を表
1に示した。実施例6と比較して粒径にあまり差異はみ
られないが、比表面積がわずか減少している。また、実
施例1と同様にして磁性塗料を調整し、粘度測定を行っ
た結果を表1に示したが、実施例6と比較してわずか粘
度が高くなる。
Example 7 Metal magnetic powder was produced in the same manner as in Example 6 except that the reduction temperature was increased to 400°C. Table 1 shows the size, specific surface area, and magnetic properties of the metal magnetic powder in this case. Although there is not much difference in particle size compared to Example 6, the specific surface area is slightly decreased. Further, a magnetic paint was prepared in the same manner as in Example 1, and the viscosity was measured. The results are shown in Table 1, but the viscosity was slightly higher than in Example 6.

−10 比較例1 水酸化すl−1)ラム3.24 kgを47kgの水に
溶解した後、気泡塔方式反応槽にN2ガスを流しながら
入れ、次いで、う−イ酸カリウム(Kユ5i03)の1
.38重量%水溶液237mβを加えた。次に、硫酸第
一鉄(FeSO5+ ・7820 ) 7.51kgを
13kgの水に熔解した後、第一鉄イオンを沈殿させた
-10 Comparative Example 1 After dissolving 3.24 kg of hydroxide sulfur in 47 kg of water, it was poured into a bubble column reaction tank while flowing N2 gas, and then potassium oxalate (Kyu5i03) was dissolved in 47 kg of water. ) No. 1
.. 237 mβ of a 38% by weight aqueous solution was added. Next, 7.51 kg of ferrous sulfate (FeSO5+ .7820) was dissolved in 13 kg of water, and then ferrous ions were precipitated.

スラリー温度を40℃にした後、100j!/minの
空気を流して2時間反応を行った。スラリーを濾過し、
洗浄後、平均長軸径0.2511 m、軸比8、比表面
積85%/gの針状ゲーサイトを得た。このゲーザイI
・を実施例1と同様にして還元したところ、平均長軸径
0.2μm、軸比10、比表面積50 n? / gの
金属鉄粉を得た。また、この金属磁性杯粉の粉体磁気特
性はHc = ] 7000e、σaa = 132 
emu/g、σr/σm−0,52であった。一方、実
施例1と同様にして調整し7た磁性塗料の粘度は、回転
数] 00 rpn+で約30 poiseであった。
After setting the slurry temperature to 40℃, 100j! The reaction was carried out for 2 hours by flowing air at /min. Filter the slurry;
After washing, acicular goethite with an average major axis diameter of 0.2511 m, an axial ratio of 8, and a specific surface area of 85%/g was obtained. This game I
When . / g of metallic iron powder was obtained. In addition, the powder magnetic properties of this metal magnetic cup powder are Hc = ] 7000e, σaa = 132
emu/g, σr/σm-0.52. On the other hand, the viscosity of the magnetic paint prepared in the same manner as in Example 1 was approximately 30 poise at a rotational speed of 00 rpn+.

比較例2 比較例1のゲーサイト合成において、ケイ酸カリウム水
溶液を551mIV、(Si/Fe=1at%相当)加
えた以外は比較例1と同様にして得たゲージ・イトを、
実施例1と同様に還元して金属磁性粉を得た。この金属
磁性粉の大きさと[[、表面積を表1に示したが、全体
的に枝分れが多く、実施例11− のものに比較して粒度も不均一であった。また、実施例
1と同様にして調整した磁性塗料の粘度は100 po
ise以−1−となり、測定できなかった。
Comparative Example 2 Goethite obtained in the same manner as Comparative Example 1 except that 551 mIV of potassium silicate aqueous solution (equivalent to Si/Fe = 1 at%) was added in the goethite synthesis of Comparative Example 1.
A metal magnetic powder was obtained by reduction in the same manner as in Example 1. The size, surface area, and size of this metal magnetic powder are shown in Table 1, and it was found that there were many branches overall, and the particle size was nonuniform compared to that of Example 11-. In addition, the viscosity of the magnetic paint prepared in the same manner as in Example 1 was 100 po.
ISE became -1- and could not be measured.

比較例3 実施例Iにおいて気泡塔の代りに攪拌槽を用い、攪拌速
度165 rpmで攪拌し、30Il/minの空気量
を流した以外は実施例1と同様に反応させて合成したゲ
ーサイトは、紡錘形状が顕著であり、長軸径0.2μm
、短軸径0゜08μm、軸比2,5、比表面積63J/
gであった。このゲーサイトを実施例1と同様に還元し
て得た金属磁性粉は、長軸径0.018μm、軸比3.
5、比表面積25rrf/gであって、粉体磁気特性は
Hc=11700e、 σm=130emu/g、σe
/σm=0.47であり、保磁力I(cを14000e
以上にすることができなかった。一方、実施例1と同様
にして調整した磁性塗料の粘度は3 poiseと小さ
な値を示した。
Comparative Example 3 Goethite was synthesized by reacting in the same manner as in Example 1, except that in Example I, a stirring tank was used instead of the bubble column, stirring was carried out at a stirring speed of 165 rpm, and an air amount of 30 Il/min was flowed. , the spindle shape is prominent, and the major axis diameter is 0.2 μm.
, short axis diameter 0°08μm, axial ratio 2.5, specific surface area 63J/
It was g. The metal magnetic powder obtained by reducing this goethite in the same manner as in Example 1 had a major axis diameter of 0.018 μm and an axial ratio of 3.
5. The specific surface area is 25rrf/g, and the powder magnetic properties are Hc=11700e, σm=130emu/g, σe
/σm=0.47, and the coercive force I (c is 14000e
I couldn't do more than that. On the other hand, the viscosity of the magnetic paint prepared in the same manner as in Example 1 was as small as 3 poise.

(各比較例の結果を表1に併記する。)代理人 弁理士
 高 橋 勝 利 12−
(The results of each comparative example are also listed in Table 1.) Agent Patent Attorney Katsutoshi Takahashi 12-

Claims (1)

【特許請求の範囲】 1、長軸径が0.05〜0.2 μm、軸比が4〜10
の金属磁性粉で、BET法でN?ガスを吸着させて測定
した比表面積が30〜55n(/gであることを特徴と
した金属磁性粉・ 2、磁気特性が保磁力1(c 13000e以」二、飽
和磁化量120emu/g以上であることを特徴とする
特許請求の範囲第1項記載の金属磁性粉。 3、長軸径が0.05〜0.3μm、短軸径が0.01
5〜0.04μmで軸比が3〜15の紡錘型ゲーサイト
またはそれを熱処理により脱水して酸化鉄としたものを
、還元性ガスで還元することを特徴とする、長軸径が0
.05〜()、2μm1軸比が4〜10、BET法でN
2ガスを吸着させて測定した比表面積が30〜55 n
i / gである金属磁性粉の製造方法。
[Claims] 1. The major axis diameter is 0.05 to 0.2 μm, and the axial ratio is 4 to 10.
With metal magnetic powder, N? with BET method? A metal magnetic powder characterized by having a specific surface area of 30 to 55 n(/g) when measured by adsorbing a gas.2, Magnetic properties having a coercive force of 1 (c 13000e or more), and a saturation magnetization of 120 emu/g or more. The metal magnetic powder according to claim 1, characterized in that: 3. The major axis diameter is 0.05 to 0.3 μm, and the minor axis diameter is 0.01 μm.
A spindle-shaped goethite with a diameter of 5 to 0.04 μm and an axial ratio of 3 to 15, or a material obtained by dehydrating it to iron oxide by heat treatment, is reduced with a reducing gas, and the major axis diameter is 0.
.. 05~(), 2μm uniaxial ratio is 4~10, N by BET method
The specific surface area measured by adsorbing two gases is 30 to 55 n.
A method for producing metal magnetic powder with i/g.
JP58144889A 1983-08-10 1983-08-10 Fine magnetic metallic powder having small specific surface area and its manufacture Granted JPS6036603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144889A JPS6036603A (en) 1983-08-10 1983-08-10 Fine magnetic metallic powder having small specific surface area and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144889A JPS6036603A (en) 1983-08-10 1983-08-10 Fine magnetic metallic powder having small specific surface area and its manufacture

Publications (2)

Publication Number Publication Date
JPS6036603A true JPS6036603A (en) 1985-02-25
JPH0118961B2 JPH0118961B2 (en) 1989-04-10

Family

ID=15372710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144889A Granted JPS6036603A (en) 1983-08-10 1983-08-10 Fine magnetic metallic powder having small specific surface area and its manufacture

Country Status (1)

Country Link
JP (1) JPS6036603A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262906A (en) * 1984-06-11 1985-12-26 Kanto Denka Kogyo Kk Metallic magnetic powder and its manufacture
JPS61198421A (en) * 1985-02-27 1986-09-02 Fuji Photo Film Co Ltd Magnetic recording medium
JPS62158801A (en) * 1985-12-28 1987-07-14 Toda Kogyo Corp Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JPH0258727A (en) * 1988-08-24 1990-02-27 Dowa Mining Co Ltd Magnetic metal powder for short wavelength magnetic recording medium and magnetic recording medium formed by using this powder
JPH03175603A (en) * 1989-12-04 1991-07-30 Toda Kogyo Corp Magnetic particle powder of dendrite metal wherein iron is main component
US5582914A (en) * 1988-12-29 1996-12-10 Toda Kogyo Corp. Magnetic iron oxide particles and method of producing the same
US5599378A (en) * 1988-12-22 1997-02-04 Toda Kogyo Corp. Spindle-shaped magnetic iron based alloy particles and process for producing the same

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997738A (en) * 1973-01-24 1974-09-17
JPS5080999A (en) * 1973-11-22 1975-07-01
JPS5310100A (en) * 1976-07-15 1978-01-30 Hitachi Maxell Method of manufacturing ferromagnetic metal powder
JPS5370397A (en) * 1976-12-06 1978-06-22 Fuji Photo Film Co Ltd Strongly magnetic metallic powder, preparation of same and magneticrecording media emplying same
JPS5585605A (en) * 1978-12-20 1980-06-27 Hitachi Ltd Production of ferromagnetic metal powder
JPS55125205A (en) * 1979-03-10 1980-09-26 Bayer Ag Ferromagnetic metal pigment comprising essentially iron and method
JPS56145525A (en) * 1980-04-11 1981-11-12 Tdk Corp Magnetic recording medium
JPS56155024A (en) * 1980-04-30 1981-12-01 Toda Kogyo Corp Preparation of needlelike crystalline alpha-feooh particulate powder
JPS5760001A (en) * 1980-09-29 1982-04-10 Hitachi Ltd Manufacture of metallic magnetic powder
JPS57123905A (en) * 1981-01-21 1982-08-02 Hitachi Ltd Production of metallic magnetic powder
JPS57154618A (en) * 1981-03-19 1982-09-24 Sony Corp Magnetic recording medium
JPS5817539A (en) * 1981-07-21 1983-02-01 Sony Corp Magnetic recording medium
JPS5832028A (en) * 1981-08-19 1983-02-24 Mitsui Toatsu Chem Inc Preparation of goethite
JPS5858203A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Ferromagnetic metallic powder and its manufacture
JPS5857708A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Magnetic recording medium
JPS58119609A (en) * 1982-01-11 1983-07-16 Fuji Photo Film Co Ltd Magnetic recording medium
JPS6021818A (en) * 1983-07-15 1985-02-04 Nippon Soda Co Ltd Preparation of acicular crystal of alphaoxy iron hydroxide
JPS6021819A (en) * 1983-07-15 1985-02-04 Nippon Soda Co Ltd Preparation of acicular goethite crystal

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997738A (en) * 1973-01-24 1974-09-17
JPS5080999A (en) * 1973-11-22 1975-07-01
JPS5310100A (en) * 1976-07-15 1978-01-30 Hitachi Maxell Method of manufacturing ferromagnetic metal powder
JPS5370397A (en) * 1976-12-06 1978-06-22 Fuji Photo Film Co Ltd Strongly magnetic metallic powder, preparation of same and magneticrecording media emplying same
JPS5585605A (en) * 1978-12-20 1980-06-27 Hitachi Ltd Production of ferromagnetic metal powder
JPS55125205A (en) * 1979-03-10 1980-09-26 Bayer Ag Ferromagnetic metal pigment comprising essentially iron and method
JPS56145525A (en) * 1980-04-11 1981-11-12 Tdk Corp Magnetic recording medium
JPS56155024A (en) * 1980-04-30 1981-12-01 Toda Kogyo Corp Preparation of needlelike crystalline alpha-feooh particulate powder
JPS5760001A (en) * 1980-09-29 1982-04-10 Hitachi Ltd Manufacture of metallic magnetic powder
JPS57123905A (en) * 1981-01-21 1982-08-02 Hitachi Ltd Production of metallic magnetic powder
JPS57154618A (en) * 1981-03-19 1982-09-24 Sony Corp Magnetic recording medium
JPS5817539A (en) * 1981-07-21 1983-02-01 Sony Corp Magnetic recording medium
JPS5832028A (en) * 1981-08-19 1983-02-24 Mitsui Toatsu Chem Inc Preparation of goethite
JPS5858203A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Ferromagnetic metallic powder and its manufacture
JPS5857708A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Magnetic recording medium
JPS58119609A (en) * 1982-01-11 1983-07-16 Fuji Photo Film Co Ltd Magnetic recording medium
JPS6021818A (en) * 1983-07-15 1985-02-04 Nippon Soda Co Ltd Preparation of acicular crystal of alphaoxy iron hydroxide
JPS6021819A (en) * 1983-07-15 1985-02-04 Nippon Soda Co Ltd Preparation of acicular goethite crystal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262906A (en) * 1984-06-11 1985-12-26 Kanto Denka Kogyo Kk Metallic magnetic powder and its manufacture
JPS61198421A (en) * 1985-02-27 1986-09-02 Fuji Photo Film Co Ltd Magnetic recording medium
JPS62158801A (en) * 1985-12-28 1987-07-14 Toda Kogyo Corp Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JPH0647681B2 (en) * 1985-12-28 1994-06-22 戸田工業株式会社 Spindle-shaped iron-based metallic magnetic particle powder and method for producing the same
JPH0258727A (en) * 1988-08-24 1990-02-27 Dowa Mining Co Ltd Magnetic metal powder for short wavelength magnetic recording medium and magnetic recording medium formed by using this powder
US5599378A (en) * 1988-12-22 1997-02-04 Toda Kogyo Corp. Spindle-shaped magnetic iron based alloy particles and process for producing the same
US5582914A (en) * 1988-12-29 1996-12-10 Toda Kogyo Corp. Magnetic iron oxide particles and method of producing the same
JPH03175603A (en) * 1989-12-04 1991-07-30 Toda Kogyo Corp Magnetic particle powder of dendrite metal wherein iron is main component

Also Published As

Publication number Publication date
JPH0118961B2 (en) 1989-04-10

Similar Documents

Publication Publication Date Title
JPS6036603A (en) Fine magnetic metallic powder having small specific surface area and its manufacture
JPH0625702A (en) Magnetic metal powder and its production
JP3412676B2 (en) Spindle-shaped goethite particle powder and method for producing the same
JPS5980901A (en) Manufacture of ferromagnetic metal powder
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JPH0270003A (en) Method for treating ferromagnetic iron powder
JP3169105B2 (en) Needle-like alloy magnetic fine particle powder containing iron as a main component and method for producing the same
JPH08165501A (en) Fusiform metallic magnetic-grain powder consisting essentially of cobalt and iron and its production
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
JPH1083906A (en) Metallic powder for magnetic recording use and manufacture thereof
JP2005310856A (en) Magnetic powder for magnetic recording medium
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP2925561B2 (en) Spindle-shaped magnetic iron oxide particles
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH02156001A (en) Manufacture of ferromagnetic iron powder
JPS61186410A (en) Production of ferromagnetic metallic powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JPH1041112A (en) Ferromagnetic metal fine particles
JPH11189421A (en) Production of magnetic metal powder
JPH10182162A (en) Production of spindle-like goethite
JPH03250702A (en) Manufacture of metallic magnetic powder
JPH07330341A (en) Production of needle-like magnetic iron oxide particle powder
JPH0463208A (en) Manufacture of metal magnetic powder