JPS62274665A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62274665A
JPS62274665A JP11876786A JP11876786A JPS62274665A JP S62274665 A JPS62274665 A JP S62274665A JP 11876786 A JP11876786 A JP 11876786A JP 11876786 A JP11876786 A JP 11876786A JP S62274665 A JPS62274665 A JP S62274665A
Authority
JP
Japan
Prior art keywords
film
gate
oxide film
nitride film
thermally oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11876786A
Other languages
Japanese (ja)
Inventor
Shigeru Iwata
岩田 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11876786A priority Critical patent/JPS62274665A/en
Publication of JPS62274665A publication Critical patent/JPS62274665A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the MOS transistor of LDD structure having no junction leak current and excellent controllability over the film thickness of a gate side part by a method wherein a CVD nitride film is grown on a thermally oxidized film, the nitride film is left on a gate side part by performing an anisotropic dry etching, the thermally oxided film is removed by performing a wet etching, and a source and a drain are formed. CONSTITUTION:A gate oxide film and a polycrystalline silicon gate 3 are formed on the surface of a silicon substrate 1, and a thermally oxided film (silicon oxide film) 4 is formed by performing a thermal oxidizing method. Then, a CVD nitride film 5 is grown on the thermally oxidized film 4, an anisotropic dry etching is performed on the film 4, and the dry etching is stopped before the film 4 is completely etched. At this time, the nitride film 5 can be left on the gate side part only. Then, a wet etching is performed on the thermally oxidized film 4, and the thermally oxidized film on the silicon substrate is removed. Subsequently, silicon is thermally oxidized, and a source 7 and a drain 8 are formed by ion-implanting impurities of the opposite conductivity type.

Description

【発明の詳細な説明】 発明の詳細な説明 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にLD D 
(Lightly Doped Drain)構造を有
するMO3構造トランジスタの製造方法に関する。
[Detailed Description of the Invention] Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device.
The present invention relates to a method of manufacturing an MO3 structure transistor having a (Lightly Doped Drain) structure.

〔従来の技術〕[Conventional technology]

第2図(a)〜(d)は従来技術によるLDD構造のM
OSトランジスタの製造方法を説明するために工程順に
示したペレットの断面図である。
FIGS. 2(a) to 2(d) show M of the LDD structure according to the prior art.
FIG. 2 is a cross-sectional view of a pellet shown in order of steps to explain a method for manufacturing an OS transistor.

LDD構造のMOSトランジスタは次の工程により製造
することができる。
A MOS transistor having an LDD structure can be manufactured by the following steps.

すなわち、第2図(a>に示すようにシリコン基板1上
にゲート酸化膜2を形成し、次いでゲート多結晶シリコ
ン3を形成する。次に、第2図(b)に示すように表面
にP S G 9を形成する。
That is, as shown in FIG. 2(a), a gate oxide film 2 is formed on a silicon substrate 1, and then a gate polycrystalline silicon 3 is formed.Next, as shown in FIG. Form PSG 9.

次いで、第2図(c)に示すように異方性ドライエツチ
ングを行い、ゲート側部にのみPSG9を残存させる。
Next, as shown in FIG. 2(c), anisotropic dry etching is performed to leave the PSG 9 only on the gate sides.

次いで、イオン注入によりソース7、ドレイン8を形成
する。しかるときはゲート側部には残存PSGがあるの
でこの部分はイオン注入量が減少し、第2図(d)に示
すLDD構造になっている。
Next, a source 7 and a drain 8 are formed by ion implantation. In this case, since there is residual PSG on the side of the gate, the amount of ion implantation is reduced in this part, resulting in the LDD structure shown in FIG. 2(d).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のLDD構造のMOSトランジスタの製造
方法は以下のような問題がある。すなわち、第2図(b
)のPSGを異方性エツチングするとき、少しでもオー
バーエッチすると下のシリコン酸化膜をつきゆけて、シ
リコン基板をたたいてしまう。異方性エツチングにより
シリコン基板をたたくと、欠陥が発生しやすく、後でソ
ース。
The above-described conventional method of manufacturing a MOS transistor having an LDD structure has the following problems. In other words, Fig. 2 (b
) When performing anisotropic etching of PSG, if even a slight overetch occurs, the underlying silicon oxide film will be exposed and the silicon substrate will be struck. Hitting a silicon substrate with anisotropic etching tends to cause defects, which can later be sourced.

ドレインを形成しても接合リーク電流が大きくなりやす
い。また、PSGの異方性エツチングをかなり前で止め
、ソース、ドレイン上のPSGの膜厚を厚く残した場合
、ソース、ドレイン形成時にイオン注入したときPSG
中にイオンがとどまり、シリコン基板中に入りにくくな
り、ソース。
Even if a drain is formed, junction leakage current tends to increase. In addition, if the anisotropic etching of PSG is stopped long before the PSG film is left thick on the source and drain, when ions are implanted during the formation of the source and drain, the PSG
Ions stay inside, making it difficult for them to enter the silicon substrate and forming a source.

ドレイン形成がうまくいかなくなる。ソース、トレイン
上のPSGの残膜をウェットエツチングにより除去する
ことも考えられるが、ゲート側部に残存しなPSGを除
去せずに、ソース、ドレイン上のPSGだけを除去する
のは困難である。
Drain formation will not work properly. It is possible to remove the remaining PSG film on the source and train by wet etching, but it is difficult to remove only the PSG on the source and drain without removing the PSG remaining on the gate side. .

本発明の目的は、接合リーク電流がなく、ゲート側部の
膜厚の制御性がよく、わずかの工程の追ト側部の膜厚の
制御性がよく、わずかの工程の追加で形成できるLDD
横遣の半導体装置の製造方法を提供することにある。
The object of the present invention is to provide an LDD that has no junction leakage current, has good controllability of the film thickness on the gate side, has good controllability of the film thickness on the side with only a few additional steps, and can be formed with only a few additional steps.
It is an object of the present invention to provide a method for manufacturing a semiconductor device in a horizontal manner.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、−導電型の半導体基
板の表面にゲート酸化膜及びゲート電極を形成する工程
と、熱酸化膜を形成する工程と、該熱酸化膜上にCVD
窒化膜を形成し該CVD窒化膜を異方性ドライエツチン
グしゲート側部にのみCVD窒化膜を残す工程と、ウェ
ットエツチングを行い熱酸化膜を除去する工程と、ゲー
トおよびゲート側部の残膜をマスクとして反対導電型の
不純物をイオン注入しソース、ドレインを形成する工程
とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes a step of forming a gate oxide film and a gate electrode on the surface of a conductive type semiconductor substrate, a step of forming a thermal oxide film, and a CVD process on the thermal oxide film.
A step of forming a nitride film and anisotropic dry etching of the CVD nitride film to leave the CVD nitride film only on the gate side, a step of wet etching to remove the thermal oxide film, and a step of removing the remaining film on the gate and the gate side. The method includes a step of ion-implanting impurities of opposite conductivity type using the mask as a mask to form a source and a drain.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
。第1図(a)〜(f>は本発明の一実施例を説明する
ために工程順に示したベレットの断面図である。
Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1(a) to 1(f) are cross-sectional views of a pellet shown in the order of steps for explaining an embodiment of the present invention.

まず、第1図(a)に示すように、−導電型のシリコン
基板1の表面にゲート酸化膜を形成し、次いで多結晶シ
リコンゲート3を形成する。次に、第1図(b)に示す
ように熱酸化により熱酸化膜(シリコン酸化膜)4を形
成する。このときシリコン基板上で500人、ゲートを
形成する多結晶シリコンは酸化速度が大きいので150
0人の酸化膜が形成される。次に、第1図(c)に示す
ように、熱酸化膜4上にCVD窒化膜5を500人成長
させる0次いで、第1図(d)に示すように、CVD窒
化膜を異方性ドライエツチングし下の熱酸化膜4がすべ
てエツチングされないところでエツチングを中止する。
First, as shown in FIG. 1(a), a gate oxide film is formed on the surface of a -conductivity type silicon substrate 1, and then a polycrystalline silicon gate 3 is formed. Next, as shown in FIG. 1(b), a thermal oxide film (silicon oxide film) 4 is formed by thermal oxidation. At this time, there were 500 people on the silicon substrate, and 150 people because the polycrystalline silicon that forms the gate has a high oxidation rate.
An oxide film of 0 people is formed. Next, as shown in FIG. 1(c), 500 CVD nitride films 5 are grown on the thermal oxide film 4.Next, as shown in FIG. 1(d), the CVD nitride film 5 is anisotropically grown. Dry etching is performed, and the etching is stopped when the underlying thermal oxide film 4 is not completely etched.

CVD窒化膜のエツチングレートは熱酸化膜の2倍程度
あるのでCVD窒化膜だけをエツチングし、下の熱酸化
膜だけを残すことは容易にできる。このとき、ゲートの
側部はエツチングされにくいので、第1図(d)のよう
にゲート側部のみに窒化膜5を残すことができる。次に
、第1図(e)に示すように、熱酸化v4をウェットエ
ツチングしシリコン基板上の熱酸化膜を除去する。この
ときゲート表面の熱酸化膜は除去されるが、ゲート側部
の酸化膜は窒化膜でおおわれているため、エツチングさ
れない。
Since the etching rate of the CVD nitride film is about twice that of the thermal oxide film, it is easy to etch only the CVD nitride film and leave only the underlying thermal oxide film. At this time, since the side portions of the gate are not easily etched, the nitride film 5 can be left only on the side portions of the gate as shown in FIG. 1(d). Next, as shown in FIG. 1(e), the thermal oxide film V4 on the silicon substrate is removed by wet etching. At this time, the thermal oxide film on the gate surface is removed, but the oxide film on the sides of the gate is not etched because it is covered with a nitride film.

なお、この熱酸化膜の除去はウェットエツチングのため
シリコン基板に欠陥は生じない。次に、第1図(f>に
示すように、200人ぐらいシリコンを熱酸化し、反対
導電型の不純物をイオン注入しソース7、ドレイン8を
形成する。このときゲート側部には熱酸化膜4が150
0人、CVD窒化膜が500人付0ているため合わせて
0.2μmのLDD部分が形成される。この熱酸化膜4
およびCVD窒化膜5の膜厚を変えることによりLDD
部分の大きさを制御することが可能である。
Note that since this thermal oxide film is removed by wet etching, no defects occur on the silicon substrate. Next, as shown in FIG. Membrane 4 is 150
Since there are 0 and 500 CVD nitride films, an LDD portion of 0.2 μm in total is formed. This thermal oxide film 4
And by changing the thickness of CVD nitride film 5, LDD
It is possible to control the size of the portions.

なお、ゲート側部の膜厚を大きくすると、オフセット構
造のM OS ?−ランジスタができる。
It should be noted that if the film thickness on the side of the gate is increased, the offset structure M OS ? -A transistor can be made.

また、熱酸化膜4の形成前にソース、トレイン形成用イ
オンと同タイプのイオンを少し注入することにより、ゲ
ーI・側部の電界を弱め、ホットエレクトロン耐性を強
くすることが可能である。
Further, by implanting a small amount of ions of the same type as the source and train forming ions before forming the thermal oxide film 4, it is possible to weaken the electric field on the side of the gate I and strengthen the hot electron resistance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、熱酸化膜上にCVD窒化
膜を成長し、異方性ドライエツチングによりゲート側部
に窒化膜を残し、ウェットエツチングにより熱酸化膜を
除去し、ソース、トレインを形成することにより、接合
リーク電流がなく、ゲート側部の膜厚の制御性が良いL
DD楕遣のMOSトランジスタがわずかな工程の追加で
実現できる効果がある。
As explained above, in the present invention, a CVD nitride film is grown on a thermal oxide film, the nitride film is left on the side of the gate by anisotropic dry etching, the thermal oxide film is removed by wet etching, and the source and train are removed. By forming L, there is no junction leakage current and the film thickness on the gate side can be easily controlled.
This has the effect that a DD elliptical MOS transistor can be achieved with only a few additional steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f>は本発明の一実施例を説明するた
めに工程順に示した半導体ペレットの断面図、第2図(
a)〜(d)は、従来技術の一例によるMOSトランジ
スタの製造方法を説明するために工程順に示した半導体
ペレットの断面図である。 1・・・シリコン基板、2・・・ゲート酸化膜、3・・
・ゲート多結晶シリコン、4・・・熱酸化膜、5・・・
C■D窒化膜、6・・・熱酸化膜、7・・・ソース、8
・・・ドレ茅1回 Y−ト勿曖6品多qフン 峯1 (2) ゲニFv門Z、+シqフン 半2悶
FIGS. 1(a) to (f) are cross-sectional views of a semiconductor pellet shown in the order of steps to explain an embodiment of the present invention, and FIG.
a) to (d) are cross-sectional views of a semiconductor pellet shown in order of steps to explain a method of manufacturing a MOS transistor according to an example of the conventional technology. 1... Silicon substrate, 2... Gate oxide film, 3...
・Gate polycrystalline silicon, 4... thermal oxide film, 5...
C■D nitride film, 6... thermal oxide film, 7... source, 8
... Dore Kaya 1 time Y-to Mukuwa 6 items q Funmine 1 (2) Geni Fv gate Z, + Shiqfun half 2 agony

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板の表面にゲート酸化膜及びゲート
電極を形成する工程と、熱酸化膜を形成する工程と、該
熱酸化膜上にCVD窒化膜を形成し該CVD窒化膜を異
方性ドライエッチングしゲート側部にのみCVD窒化膜
を残す工程と、ウェットエッチングを行い熱酸化膜を除
去する工程と、ゲートおよびゲート側部の残膜をマスク
として反対導電型の不純物をイオン注入しソース、ドレ
インを形成する工程とを含むことを特徴とする半導体装
置の製造方法。
A step of forming a gate oxide film and a gate electrode on the surface of a semiconductor substrate of one conductivity type, a step of forming a thermal oxide film, and a step of forming a CVD nitride film on the thermal oxide film and making the CVD nitride film anisotropic. A process of dry etching to leave the CVD nitride film only on the gate sides, a process of wet etching to remove the thermal oxide film, and a process of ion-implanting impurities of the opposite conductivity type using the gate and the remaining film on the gate sides as a mask to remove the source. . A method of manufacturing a semiconductor device, the method comprising: forming a drain.
JP11876786A 1986-05-22 1986-05-22 Manufacture of semiconductor device Pending JPS62274665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11876786A JPS62274665A (en) 1986-05-22 1986-05-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11876786A JPS62274665A (en) 1986-05-22 1986-05-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62274665A true JPS62274665A (en) 1987-11-28

Family

ID=14744562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11876786A Pending JPS62274665A (en) 1986-05-22 1986-05-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62274665A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023935A (en) * 1988-01-19 1990-01-09 Smc Standard Microsyst Corp Manufacture of mos device having self-aligned silicide and low impurity concentration doped drain
JPH03204941A (en) * 1989-10-09 1991-09-06 Toshiba Corp Semiconductor device and manufacture thereof
WO2002029881A1 (en) * 2000-10-06 2002-04-11 Stmicroelectronics S.A. Miniaturised ldd-type mos transistors
JP2012234941A (en) * 2011-04-28 2012-11-29 Denso Corp Manufacturing method of semiconductor device and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818965A (en) * 1981-07-28 1983-02-03 Toshiba Corp Manufacture of semiconductor device
JPS5961182A (en) * 1982-09-30 1984-04-07 Toshiba Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818965A (en) * 1981-07-28 1983-02-03 Toshiba Corp Manufacture of semiconductor device
JPS5961182A (en) * 1982-09-30 1984-04-07 Toshiba Corp Manufacture of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023935A (en) * 1988-01-19 1990-01-09 Smc Standard Microsyst Corp Manufacture of mos device having self-aligned silicide and low impurity concentration doped drain
JPH03204941A (en) * 1989-10-09 1991-09-06 Toshiba Corp Semiconductor device and manufacture thereof
WO2002029881A1 (en) * 2000-10-06 2002-04-11 Stmicroelectronics S.A. Miniaturised ldd-type mos transistors
FR2815174A1 (en) * 2000-10-06 2002-04-12 St Microelectronics Sa MINIATURIZED LD M-TYPE TRANSISTORS
JP2012234941A (en) * 2011-04-28 2012-11-29 Denso Corp Manufacturing method of semiconductor device and semiconductor device

Similar Documents

Publication Publication Date Title
JPS62274665A (en) Manufacture of semiconductor device
JPS60145664A (en) Manufacture of semiconductor device
JPS6116573A (en) Manufacture of mis type semiconductor device
JPS63129664A (en) Manufacture of semiconductor device
JPS62245671A (en) Manufacture of semiconductor integrated circuit device
JPS59104167A (en) Manufacture of insulated gate type field effect transistor
JPS6159870A (en) Manufacture of semiconductor device
JPH0387060A (en) Manufacture of semiconductor device
JPS63177561A (en) Manufacture of semiconductor device
JPS59177941A (en) Manufacture of element isolation region
KR930001893B1 (en) Cmos transistor manufacturing method
JP2705583B2 (en) Method for manufacturing semiconductor device
JPH04196341A (en) Manufacture of semiconductor device
JPS6290974A (en) Manufacture of mosfet
JPS61220372A (en) Manufacture of semiconductor device
JPH0226034A (en) Manufacture of semiconductor device
JPS61136241A (en) Manufacture of semiconductor device
JPH0475349A (en) Manufacture of semiconductor device
JPS62183183A (en) Formation of sidewall
JPH04739A (en) Manufacture of semiconductor device
JPS63150965A (en) Manufacture of semiconductor device
JPH02135756A (en) Manufacture of semiconductor device with trench isolation
JPS63229755A (en) Manufacture of semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPH04114476A (en) Semiconductor device and manufacture thereof