JPS6290974A - Manufacture of mosfet - Google Patents

Manufacture of mosfet

Info

Publication number
JPS6290974A
JPS6290974A JP23194785A JP23194785A JPS6290974A JP S6290974 A JPS6290974 A JP S6290974A JP 23194785 A JP23194785 A JP 23194785A JP 23194785 A JP23194785 A JP 23194785A JP S6290974 A JPS6290974 A JP S6290974A
Authority
JP
Japan
Prior art keywords
oxide film
substrate
gate electrode
source
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23194785A
Other languages
Japanese (ja)
Inventor
Seiichiro Kawamura
河村 誠一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23194785A priority Critical patent/JPS6290974A/en
Publication of JPS6290974A publication Critical patent/JPS6290974A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To readily manufacture MOSFET of LDD structure without using anisotropic RIE unit by thermally oxidizing under high pressure a phosphorus- doped polysilicon layer. CONSTITUTION:A field oxide film 2 and a gate oxide film 3 are formed by a P-type silicon substrate 1, a phosphorus-doped polysilicon layers are laminated to form a gate electrode 4, and an N<-> type layer 5 is formed on source, drain regions. Then, high pressure thermal oxidation is applied to the substrate to form a thick oxide film 10 on the phosphorus-doped polysilicon layer of the gate electrode. A thin oxide film 11 is formed on the bulk silicon region of source, drain regions. The film 11 on the bulk silicon is removed by isotropic etching the substrate. At this time, an N<-1> type layer 12 remains on the region masked with the film 10 remaining on the sidewall of the gate electrode.

Description

【発明の詳細な説明】 〔概要〕 MOSFETでチャネル長が短くなり、サブミクロン領
域となると、ホット・キャリヤ (HotCarrie
r)効果の問題が避けられなくなるが、通常L D D
 (L ightly  Doped  Drain)
構造により対策を行っている。本発明では高価な異方性
RIE装置を使用しないLDD構造によるM OS F
ETの製造方法を説明する。
[Detailed Description of the Invention] [Summary] As the channel length of MOSFET becomes shorter and reaches the submicron region, hot carrier
r) The problem of effectiveness becomes unavoidable, but usually L D D
(Lightly Doped Drain)
We are taking measures based on the structure. In the present invention, an MOS F using an LDD structure does not use an expensive anisotropic RIE device.
The method for manufacturing ET will be explained.

〔産業上の利用分野〕[Industrial application field]

本発明は、集積度の高いMOSFETで用いられるLD
D構造のMOS F ETの製造方法に関する。
The present invention is directed to an LD used in a highly integrated MOSFET.
The present invention relates to a method of manufacturing a D-structure MOS FET.

集積度の向上に伴ってソース、ドレイン間のチャネル長
は益々短縮化される傾向にあるが、チャネル長がサブミ
クロン領域となるとホット・キャリヤ効果を無視出来な
くなる。特にnチャネル間O3FETで問題となる。
As the degree of integration increases, the channel length between the source and drain tends to become shorter and shorter, but when the channel length reaches the submicron range, hot carrier effects cannot be ignored. This is particularly a problem with n-channel O3FETs.

ホット・キャリア効果とは、ドレイン方向に向かったキ
ャリアがドレイン領域の高電界に加速され充分なるエネ
ルギーを得て、SiとSiO□の電位障壁を乗り越えて
ゲート酸化膜内に注入される現象であり、しきい値電圧
、その他相互コンダクタンス特性の変化をもたらす。
The hot carrier effect is a phenomenon in which carriers heading toward the drain are accelerated by the high electric field in the drain region, obtain sufficient energy, and are injected into the gate oxide film by overcoming the potential barrier between Si and SiO□. , threshold voltage, and other transconductance characteristics.

その解決のためLDD構造のMOS F ETが提案さ
れているが、この構造はプロセスとして異方性RIEを
使用することが必要であり、設備として高価なRIE装
置を使用せずにLDD構造を形成する製造方法が要望さ
れている。
To solve this problem, a MOS FET with an LDD structure has been proposed, but this structure requires the use of anisotropic RIE as a process, and it is not possible to form an LDD structure without using an expensive RIE equipment. There is a need for a manufacturing method that does this.

〔従来の技術〕[Conventional technology]

ホット・キャリア効果を改善するため、ゲート酸化膜を
厚くしたり、ドレイン領域近傍の接合部の電界を弱くす
るため不純物の濃度分布に緩い傾斜を持たせる方法等が
とられる。
In order to improve the hot carrier effect, methods such as increasing the thickness of the gate oxide film and creating a gentle slope in the impurity concentration distribution are used to weaken the electric field at the junction near the drain region.

LDD構造は後者のドレイン領域近くの電界を緩和する
ことを口約とした構造であって、その製造方法を第2図
により更に詳しく説明する。
The LDD structure is designed to alleviate the electric field near the latter drain region, and its manufacturing method will be explained in more detail with reference to FIG.

第2図(a) ニ示すごとく、通常のn−MOSFET
のプロセスと同様にしてp型基板1上にフィールド酸化
膜2、ゲート酸化膜3、ポリシリコンよりなるゲート電
極4が形成された基板を用いる。
As shown in Figure 2(a), a normal n-MOSFET
A substrate is used in which a field oxide film 2, a gate oxide film 3, and a gate electrode 4 made of polysilicon are formed on a p-type substrate 1 in the same manner as in the process described above.

この状態に図に示すごとく燐のイオン打込みによりソー
ス、ドレイン領域に先ずn一層5を形成する。
In this state, as shown in the figure, an n layer 5 is first formed in the source and drain regions by ion implantation of phosphorus.

次いで、CVD法により厚い酸化膜6を全面に成長させ
る。これを第2図(b)に示す。
Next, a thick oxide film 6 is grown over the entire surface by CVD. This is shown in FIG. 2(b).

上記の基板にRIE法により異方性エツチングを加える
。異方性であるためゲート電極4の側壁面の酸化膜7を
残して酸化膜6は除去される。
Anisotropic etching is applied to the above substrate by RIE method. Since it is anisotropic, the oxide film 6 is removed leaving the oxide film 7 on the sidewall surface of the gate electrode 4.

これに高濃度の砒素イオンの打込みを行ってソース領域
8、ドレイン領域9を形成する。この状態を第2図(C
)に示す。
Highly concentrated arsenic ions are implanted into this to form a source region 8 and a drain region 9. This state is shown in Figure 2 (C
).

最初の燐のイオン打込みによって形成されたn一層5は
低濃度であり、砒素のイオン打込み領域は高濃度で且つ
酸化膜7の存在によってゲート電極より僅か離れた位置
に形成される。
The n layer 5 formed by the initial phosphorus ion implantation has a low concentration, and the arsenic ion implantation region has a high concentration and is formed at a position slightly distant from the gate electrode due to the presence of the oxide film 7.

上記のごとく不純物の濃度に差異を設けることによりド
レイン近傍領域の電界強度を著しく低下させることが出
来る。
By providing a difference in impurity concentration as described above, the electric field strength in the region near the drain can be significantly reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記に述べた、LDD構造によるホット・キャリヤ効果
対策は、その製造プロセスとしてRIE法を用いている
ことである。
The above-mentioned measure against the hot carrier effect by the LDD structure is to use the RIE method as its manufacturing process.

異方性のRIE法は最近はドライ・エツチング法として
使用が多くなっているが、装置は比較的高価であり、量
産性を考えたとき出来れば一般的なる等方性エツチング
で製作可能なることが望ましい。
Recently, the anisotropic RIE method has been increasingly used as a dry etching method, but the equipment is relatively expensive, and when considering mass production, it is preferable to use general isotropic etching. is desirable.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は下記の工程よりなる本発明の製造方法によ
って解決される。
The above problems are solved by the manufacturing method of the present invention, which includes the following steps.

基板上にゲート酸化膜、次いで燐をドープせるポリシリ
コン層を積層し、パターンニングによりゲート電極を形
成する。
A gate oxide film and then a phosphorous-doped polysilicon layer are laminated on the substrate, and a gate electrode is formed by patterning.

次いで、ソース、ドレイン領域をパターンニングにより
基板を露出せしめた後、燐のイオン打込みを行い、更に
高圧熱酸化により全面に酸化膜を成長させる。
Next, after patterning the source and drain regions to expose the substrate, phosphorus ions are implanted, and an oxide film is grown over the entire surface by high-pressure thermal oxidation.

次いで、等方性エツチングによりソース、ドレインのバ
ルク・シリコン上の酸化膜を除去して、ソース、ドレイ
ン領域に砒素のイオン打込みを行うことによりドレイン
領域近傍では不純物濃度に傾斜が形成されて、電界強度
を弱くすることが出来る。
Next, the oxide film on the bulk silicon of the source and drain is removed by isotropic etching, and arsenic ions are implanted into the source and drain regions to form a gradient in impurity concentration near the drain region, which increases the electric field. The strength can be weakened.

〔作用〕[Effect]

燐をドープせるポリシリコン層を高圧熱酸化させると、
その酸化膜の膜厚は通常のバルク・シリコンの酸化膜の
膜厚の4〜5倍と大きくなる。
When a polysilicon layer that can be doped with phosphorus is subjected to high-pressure thermal oxidation,
The thickness of the oxide film is four to five times greater than the thickness of a normal bulk silicon oxide film.

そのため、その後等方性エツチングを加えた場合でも、
ゲート電極の側壁面の酸化膜は残存し、ソース、ドレイ
ン領域のバルク・シリコン面上の酸化膜は除去出来る。
Therefore, even if isotropic etching is subsequently applied,
The oxide film on the sidewalls of the gate electrode remains, and the oxide film on the bulk silicon surface of the source and drain regions can be removed.

この結果、ゲート電極側壁面の酸化膜は、砒素のイオン
打込み時にはマスクとなって不純物の導入領域に傾斜特
性を形成することになる。
As a result, the oxide film on the side wall surface of the gate electrode serves as a mask during arsenic ion implantation, and forms a gradient characteristic in the region into which impurities are introduced.

〔実施例〕 本発明の一実施例を図面により詳細説明する。〔Example〕 An embodiment of the present invention will be described in detail with reference to the drawings.

第1図fa)〜(clは本発明の製造方法を示す工程順
断面図である6通常のMOSFETのプロセスと変わら
ない工程は説明を簡略化する。
FIG. 1 fa) to (cl) are step-by-step cross-sectional views showing the manufacturing method of the present invention. 6 The description of steps that are the same as those of a normal MOSFET process will be simplified.

第1図(alはp型シリコン基板1を用い、フィールド
酸化膜2、ゲート酸化膜3を形成した後、燐ドープのポ
リシリコン層を積層してパターンニングによりゲート電
極4を形成した状態を示す。
FIG. 1 (al shows a state in which a p-type silicon substrate 1 is used, a field oxide film 2 and a gate oxide film 3 are formed, and then a phosphorus-doped polysilicon layer is laminated and a gate electrode 4 is formed by patterning. .

上記のプロセスでは燐ドープのポリシリコンを使用する
以外は通常のMOS F ETプロセスと変わらない。
The above process is no different from a normal MOSFET process except for the use of phosphorous-doped polysilicon.

次いで、ソース、ドレイン領域に燐のイオン打込みを行
う。打込みは80KeVにてドーズ量は、I XIO”
/cm”とする。これによりソース、ドレイン領域にn
一層5が形成される。
Next, phosphorus ions are implanted into the source and drain regions. The implantation was 80KeV and the dose was IXIO”
/cm". This results in n in the source and drain regions.
One layer 5 is formed.

次いで、上記基板に高圧熱酸化を加える。約10気圧の
圧力槽に基板を入れ、基板温度を約900 ”Cに上昇
することによりゲート電極の燐ドープ・ポリシリコン層
には厚い酸化膜1oが形成される。
Next, high pressure thermal oxidation is applied to the substrate. A thick oxide film 1o is formed on the phosphorus-doped polysilicon layer of the gate electrode by placing the substrate in a pressure tank of about 10 atmospheres and raising the substrate temperature to about 900''C.

一方、ソース、ドレイン領域のバルク・シリコン領域は
酸化速度が遅いので薄い酸化膜11が形成される。この
ような高圧酸化の条件では、燐ドープ・ポリシリコンの
酸化nlの成長速度はバルク。
On the other hand, since the bulk silicon region of the source and drain regions has a slow oxidation rate, a thin oxide film 11 is formed. Under such high-pressure oxidation conditions, the growth rate of oxidized Nl of phosphorous-doped polysilicon is bulk.

シリコンの酸化速度の4〜5倍となる。高圧酸化後の状
態を第1図(b)に示す。
The oxidation rate is 4 to 5 times that of silicon. The state after high-pressure oxidation is shown in FIG. 1(b).

上記の基板を等方性エツチング、即ちウェット・エツチ
ングによりバルク・シリコン上の酸化膜11を除去する
。このときゲート電極の被覆せる酸化膜10は、膜厚が
大であるので殆ど残る。
The above substrate is subjected to isotropic etching, that is, wet etching to remove the oxide film 11 on the bulk silicon. At this time, most of the oxide film 10 covering the gate electrode remains because it is thick.

この状態で砒素のイオン打込みを行って高濃度のn+層
を形成し、ソース領域8、ドレイン領域9を形成する。
In this state, arsenic ions are implanted to form a highly concentrated n+ layer, and a source region 8 and a drain region 9 are formed.

砒素のイオン打込みは120KeV、ドーズ量はl X
LO15/Cl11”とする。
Arsenic ion implantation is 120KeV, dose is lX
LO15/Cl11''.

このときゲート電極の側壁面に残された酸化膜10にマ
スクされた領域にはn一層12が残される。
At this time, the n layer 12 is left in the region masked by the oxide film 10 left on the side wall surface of the gate electrode.

これを第1図fc)に示す。This is shown in Figure 1 fc).

この残されたn一層が動作時の電界強度を緩和し、ホッ
ト・キャリヤ効果を抑える機能を持つ。
This remaining n layer has the function of relaxing the electric field strength during operation and suppressing the hot carrier effect.

以後の配線層の形成、保護膜の形成等のプロセスは省略
する。
Subsequent processes such as formation of wiring layers and formation of protective films are omitted.

〔発明の効果〕〔Effect of the invention〕

以上に説明せるごとく、本発明の製造方法を適用するこ
とにより異方性のRIE装置を使用せずに、容易にLD
D構造のMOS F ETを製作することが可能となっ
た。
As explained above, by applying the manufacturing method of the present invention, LD can be easily produced without using an anisotropic RIE device.
It has become possible to manufacture a D-structure MOS FET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜(C1は本発明にかかわるLDD構造の
MOSFETの製造方法を示す工程順断面図、第2図(
al〜(c)は従来の方法によるLDD構造のMOSF
ETの製造方法を示す工程順断面図、を示す。 図面において、 1はp型シリコン基板、 2はフィールド酸化膜、 3はゲート酸化膜、 4はゲート電極、 5.12はn一層、 6 、7.10.11は酸化膜、 8はソース領域、 9はドレイン領域、 をそれぞれ示す。 第 1 閃 第2閏
FIG. 1 (al~(C1 is a step-order cross-sectional view showing the method for manufacturing an LDD structure MOSFET according to the present invention, and FIG. 2 (
al~(c) are MOSFs with LDD structure made by the conventional method.
1A and 1B are step-by-step cross-sectional views showing a method for manufacturing an ET. In the drawings, 1 is a p-type silicon substrate, 2 is a field oxide film, 3 is a gate oxide film, 4 is a gate electrode, 5.12 is an n-layer, 6, 7.10.11 is an oxide film, 8 is a source region, 9 shows the drain region, respectively. 1st flash 2nd leap

Claims (1)

【特許請求の範囲】 基板(1)上にゲート酸化膜(3)、次いで燐をドープ
せるポリシリコン層よりなるゲート電極(4)を形成し
、 次いで、基板のソース、ドレイン形成領域を選択的に露
出せしめた後、 燐のイオン打込みを行い、更に高圧熱酸化により全面に
酸化膜(10)、(11)を成長させる工程と、等方性
エッチングによりソース、ドレインのバルク・シリコン
上の酸化膜(11)を除去する工程と、ソース領域(8
)、ドレイン領域(9)に砒素のイオン打込みを行う工
程を含むことを特徴とするMOSFETの製造方法。
[Claims] A gate oxide film (3) is formed on a substrate (1), and then a gate electrode (4) made of a polysilicon layer doped with phosphorous is formed, and then source and drain forming regions of the substrate are selectively formed. After exposure, phosphorus ions are implanted, and oxide films (10) and (11) are grown on the entire surface by high-pressure thermal oxidation, and oxide films (10) and (11) are grown on the bulk silicon of the source and drain by isotropic etching. A step of removing the film (11) and removing the source region (8).
), a method for manufacturing a MOSFET, comprising the steps of implanting arsenic ions into the drain region (9).
JP23194785A 1985-10-16 1985-10-16 Manufacture of mosfet Pending JPS6290974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23194785A JPS6290974A (en) 1985-10-16 1985-10-16 Manufacture of mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23194785A JPS6290974A (en) 1985-10-16 1985-10-16 Manufacture of mosfet

Publications (1)

Publication Number Publication Date
JPS6290974A true JPS6290974A (en) 1987-04-25

Family

ID=16931556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23194785A Pending JPS6290974A (en) 1985-10-16 1985-10-16 Manufacture of mosfet

Country Status (1)

Country Link
JP (1) JPS6290974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637514A (en) * 1995-10-18 1997-06-10 Micron Technology, Inc. Method of forming a field effect transistor
US6576939B1 (en) 1998-07-30 2003-06-10 Micron Technology, Inc. Semiconductor processing methods, methods of forming electronic components, and transistors
US6844252B2 (en) 1996-09-17 2005-01-18 Micron Technology, Inc. Semiconductor processing methods of forming a conductive gate and line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116174A (en) * 1983-11-29 1985-06-22 Toshiba Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116174A (en) * 1983-11-29 1985-06-22 Toshiba Corp Manufacture of semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637514A (en) * 1995-10-18 1997-06-10 Micron Technology, Inc. Method of forming a field effect transistor
US5940692A (en) * 1995-10-18 1999-08-17 Micron Technology, Inc. Method of forming a field effect transistor
US6844252B2 (en) 1996-09-17 2005-01-18 Micron Technology, Inc. Semiconductor processing methods of forming a conductive gate and line
US7170139B2 (en) 1996-09-17 2007-01-30 Micron Technology, Inc. Semiconductor constructions
US6576939B1 (en) 1998-07-30 2003-06-10 Micron Technology, Inc. Semiconductor processing methods, methods of forming electronic components, and transistors
US6713355B2 (en) 1998-07-30 2004-03-30 Micron Technology, Inc. Semiconductor processing method
US6838365B2 (en) 1998-07-30 2005-01-04 Micron Technology, Inc. Methods of forming electronic components, and a conductive line

Similar Documents

Publication Publication Date Title
US5346839A (en) Sidewall doping technique for SOI transistors
US5200351A (en) Method of fabricating field effect transistors having lightly doped drain regions
JPS59111358A (en) Method of producing cmos structure
JP2951893B2 (en) Method of manufacturing transistor for semiconductor device
JPH05267331A (en) Manufacture of mos semiconductor device
JPS6290974A (en) Manufacture of mosfet
JPH04278534A (en) Element separation method of semiconductor device
KR100187680B1 (en) Method of manufacturing semiconductor device
JP3360970B2 (en) Method for manufacturing semiconductor device
JPS6384162A (en) Manufacture of semiconductor device
JPS62274665A (en) Manufacture of semiconductor device
JP2707901B2 (en) Method for manufacturing semiconductor device
JP2856603B2 (en) Method for manufacturing semiconductor device
KR0167231B1 (en) Isolation method for semiconductor device
JPS6373666A (en) Insulated-gate field-effect semiconductor device
JP3848782B2 (en) Manufacturing method of semiconductor device
JP3127078B2 (en) Field effect transistor and method of manufacturing the same
JPH0541516A (en) Semiconductor device and its manufacture
JP2750724B2 (en) Method for manufacturing semiconductor device
JPS6249666A (en) Manufacture of mosfet
JPS6373667A (en) Manufacture of mos semiconductor device
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
KR950000152B1 (en) Manufacturing method of gate overlap ldd cmos
JPH0527995B2 (en)
JPS6367778A (en) Manufacture of semiconductor device