JPS59104167A - Manufacture of insulated gate type field effect transistor - Google Patents

Manufacture of insulated gate type field effect transistor

Info

Publication number
JPS59104167A
JPS59104167A JP21331782A JP21331782A JPS59104167A JP S59104167 A JPS59104167 A JP S59104167A JP 21331782 A JP21331782 A JP 21331782A JP 21331782 A JP21331782 A JP 21331782A JP S59104167 A JPS59104167 A JP S59104167A
Authority
JP
Japan
Prior art keywords
insulating film
oxide film
gate electrode
semiconductor substrate
concentration impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21331782A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nihei
仁平 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21331782A priority Critical patent/JPS59104167A/en
Publication of JPS59104167A publication Critical patent/JPS59104167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To readily manufacture in a self-alignment by oxidizing the entire surface to allow the part not oxidized of the substance formed in the prescribed shape to remain. CONSTITUTION:An oxidized film 22 and a polycrystalline Si 23 are sequentially formed on a P type semiconductor substrate 21. Then, only the exposed part of the film 22 is removed. Then, the entire surface is oxidized, the part not oxidized in the Si 23 is allowed to remain as a gate electrode 23'. Then, an oxidized film 24' is allowed to remain on the upper and side parts of the electrodes 23'. With the electrode 23' and the film 24' as masks an N<+> type high density impurity layer 26 is formed. Subsequently, with the electrode 23' as a mask, an N type low density impurity layer 27 is formed adjacent to the layer 26.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に係り、特に微細化した
時のトランジスタ特性の不安定性を抑制する構造の絶縁
ゲート形電界効果トランジスタの製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing an insulated gate field effect transistor having a structure that suppresses instability of transistor characteristics when miniaturized. .

〔発明の技術的背景〕[Technical background of the invention]

半導体装置の高速・高密度化には、絶縁ゲート形電界効
果トランジスタ(以下MO8FBTと略す)の縮少化、
すなわちゲート絶縁膜の薄膜化やゲート長の短縮化が必
要である。しかしMO8FETの縮少化は、半導体基板
界面でのドレイン端部の電界集中をもたらし、トランジ
スタ特性の不安定性を引起こす。
In order to increase the speed and density of semiconductor devices, it is necessary to reduce the size of insulated gate field effect transistors (hereinafter abbreviated as MO8FBT),
That is, it is necessary to make the gate insulating film thinner and shorten the gate length. However, the reduction in size of the MO8FET causes electric field concentration at the drain end at the semiconductor substrate interface, causing instability of transistor characteristics.

この不安定性は、ソース、ドレインの不純物濃度が半導
体結晶格子にかなりの欠陥を生じさるものであることに
起因している。この不純物濃度はソース、ドレインと、
ソース、ドレイン金属電極との間に良好なオーム接触を
与えるために必要とされるものでもあり、任意に選択で
きるものではない。
This instability is caused by the fact that the impurity concentration in the source and drain causes considerable defects in the semiconductor crystal lattice. This impurity concentration is
It is also required to provide good ohmic contact between the source and drain metal electrodes, and cannot be selected arbitrarily.

そこで、次に示す構造が提案された。すなわち、チャン
ネルの両端にそれぞれ接触するソース、ドレインの不純
物濃度をその不純物が半導体結晶格子に実質的な物理的
欠陥を生じさせない濃度に、チャンネルから遠く離れた
ソース、ドレインの不純物濃度ケソース、ドレイン金属
電極と良好なオーム接触を与える濃度にするものである
。このとき、前者不純物濃度は後者不純物濃度より低濃
度となっている。
Therefore, the following structure was proposed. That is, the impurity concentration of the source and drain, which are in contact with both ends of the channel, respectively, is set to such a concentration that the impurity does not cause substantial physical defects in the semiconductor crystal lattice, and the impurity concentration of the source and drain, which is far from the channel, is adjusted to a concentration that does not cause substantial physical defects in the semiconductor crystal lattice. The concentration should be such that it provides good ohmic contact with the electrode. At this time, the former impurity concentration is lower than the latter impurity concentration.

このような構造はLightly Dopeol Dr
ain構造(LDD構造)と呼ばれる。
Such a structure is Lightly Dopeol Dr.
This is called an ain structure (LDD structure).

以下、第1図ケ用いて前記構造の従来の製造方法を述べ
る。まず第一の導電形の半導体基板11上に、100〜
200λの厚さの絶縁膜12金形成する。(第1図(a
))その上に写真蝕刻法ケ用いて、約3000Xの厚さ
のゲート電極13全形成した後、このゲートを極13ヲ
マスクとして半導体基板11と異なる第二の導電形の不
純換金基板に注入し、低濃度不純物層14を形成する。
Hereinafter, a conventional manufacturing method of the above structure will be described with reference to FIG. First, on the semiconductor substrate 11 of the first conductivity type, 100~
An insulating film of 12 gold is formed to a thickness of 200λ. (Figure 1(a)
)) After forming the entire gate electrode 13 with a thickness of about 3000X using photolithography, using this gate as a mask, the impurity exchange substrate of a second conductivity type different from the semiconductor substrate 11 is implanted. , a low concentration impurity layer 14 is formed.

(第1図(b))次に全面に約3000Xの厚さの絶縁
膜15をCVD法により堆積させる。このとき、ゲート
電極13による段差部16での絶縁膜の厚さは約600
0″にとなっている。(第1図(C))次に異方性エツ
チングであるリアクティブイオンエツチング(l(T 
E)により、絶縁膜15をゲート電極13が露出するま
で除去すると、ゲート電極13の端部には、約3ooo
Xの厚さの絶縁膜17が残る。ここでのエツチングはR
IEであることが必須である。なぜならばウェットエツ
チング、ドライエツチング等の等方性エツチングではゲ
ート電極端部に所望の絶縁膜を残すことができないため
である。しかる後、ゲート′a憧13と残った絶縁膜1
7をマスクとして、半導体基板11と異なる第二の導電
形の不純物を基板に注入し、高濃度不純物層18f、形
成する。
(FIG. 1(b)) Next, an insulating film 15 with a thickness of about 3000× is deposited over the entire surface by CVD. At this time, the thickness of the insulating film at the stepped portion 16 due to the gate electrode 13 is approximately 600 mm.
(Fig. 1 (C)) Next, reactive ion etching (l(T)), which is anisotropic etching, is performed.
When the insulating film 15 is removed until the gate electrode 13 is exposed by E), approximately 300 mm is left at the end of the gate electrode 13.
An insulating film 17 with a thickness of X remains. The etching here is R
IE is required. This is because isotropic etching such as wet etching and dry etching cannot leave a desired insulating film at the end of the gate electrode. After that, the gate 'a layer 13 and the remaining insulating film 1 are removed.
7 as a mask, an impurity of a second conductivity type different from that of the semiconductor substrate 11 is implanted into the substrate to form a high concentration impurity layer 18f.

(第1図(d))その後、層間絶縁膜を堆積し、At等
の配線を行い、MO8FETf:形成する。
(FIG. 1(d)) After that, an interlayer insulating film is deposited, wiring of At or the like is formed, and MO8FETf is formed.

〔背景技術の問題点〕[Problems with background technology]

従来の技術には以下のような欠点がある。 The conventional technology has the following drawbacks.

まず低濃度不純物)f1114を形成した後、CVD法
により絶縁膜15全堆積させる際に、ゲート電極端部の
堆積の形状を制御するのが難しい。なぜならばその形状
は、ゲート電極13の厚さ、幅及び絶縁膜15の厚さに
よるからである。もしゲート電極端部に絶縁膜15が充
分に唯積していなければ、その後の工程でRIF!1に
:行うと、絶縁膜17がほとんど残らず、マスクの用を
なさなくなってしまう。また段差部がなだらかになると
、マスクとして残す絶縁膜17の端も、なだらかに伸び
てしまい、所期の形状の高濃度不純物層を形成するのが
難しい。
First, after forming the low concentration impurity f1114, it is difficult to control the shape of the deposition at the end of the gate electrode when the entire insulating film 15 is deposited by CVD. This is because the shape depends on the thickness and width of the gate electrode 13 and the thickness of the insulating film 15. If the insulating film 15 is not sufficiently deposited on the end of the gate electrode, RIF! 1: If this is done, very little of the insulating film 17 will remain, rendering the mask useless. Furthermore, if the stepped portion becomes gentle, the edge of the insulating film 17 left as a mask will also become gentle, making it difficult to form a high concentration impurity layer in the desired shape.

次にゲート電極13から光分離れた位置の絶縁膜15の
厚さが一様でなければ、その後RIEを行う際、薄い絶
縁膜の部分は絶縁膜12.及び半導体基板11までエツ
チングされ、基板表面に汚染・損傷が生じる恐れがある
ことから、絶縁膜15の厚さは一様とすることが必要で
あるが、それを精度よく行うことは困難である。
Next, if the thickness of the insulating film 15 at a position optically separated from the gate electrode 13 is not uniform, when performing RIE thereafter, the thin insulating film portion will be removed from the insulating film 12. The thickness of the insulating film 15 needs to be uniform, but it is difficult to do this with high precision because there is a risk that the etching may be etched to the semiconductor substrate 11, resulting in contamination and damage to the substrate surface. .

さらに絶縁膜15t−エツチングするにはRIEでなけ
ればならないが、RIEには、むらがあるため、深くエ
ツチングされる所もあれば、浅くエツチングされる所も
あり、絶縁膜をきnいに除去するのは困難である。
Furthermore, in order to etch the insulating film 15t, RIE must be used, but since RIE is uneven, some places are etched deeply and others are etched shallowly, and the insulating film is thoroughly removed. It is difficult to do so.

基板表面にRIEによる損傷等があるままで以下の工程
全行うと、接合リークが増大し、ドレイン耐圧の低下を
まねき、所望の性能のMOSFETを得ることができな
い。
If all of the following steps are performed while the substrate surface is still damaged by RIE, junction leakage will increase, resulting in a decrease in drain breakdown voltage, making it impossible to obtain a MOSFET with desired performance.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点に鑑みてなされたものであり、LD
D構造の効果を充分発揮できる、制御よく、均一な特性
音もつMO8FETi容易に得ることができる製造方法
を提供するものである。
The present invention has been made in view of the above-mentioned drawbacks, and is
The purpose of the present invention is to provide a manufacturing method that can easily produce MO8FETi that can fully exhibit the effects of the D structure, has well-controlled, and uniform characteristic sound.

〔発明の概要〕[Summary of the invention]

第一の導電形の半導体基板上に絶縁膜を形成し、その上
に半導体基板よりも酸化速度が速い物質を所定形状に形
成する。
An insulating film is formed on a semiconductor substrate of a first conductivity type, and a substance having a faster oxidation rate than the semiconductor substrate is formed thereon in a predetermined shape.

全面を所定形状に形成された物質の内部に酸化されない
部分が残るように、酸化させる。この所定形状に形成さ
れた物質の酸化されずに残った部分がゲート電極となる
。この時酸化速度の違いのため、半導体基板上の酸化膜
は、ゲート電極の回りの酸化膜よりもその厚さは薄い。
The entire surface of the material is oxidized in a predetermined shape so that an unoxidized portion remains inside the material. The portion of the material formed into the predetermined shape that remains unoxidized becomes the gate electrode. At this time, due to the difference in oxidation rate, the oxide film on the semiconductor substrate is thinner than the oxide film around the gate electrode.

ゲート電極とその周囲の厚い酸化膜の全部または一部を
マスクとして、半導体基板と異なる第二の導電形の高濃
度不純物層を形成する。次にゲート電極の回りの酸化膜
を除去し、ゲート電極をマスクとして、基板と異なる第
二の導電形の低濃度不純物層全形成する。
Using all or part of the gate electrode and the surrounding thick oxide film as a mask, a highly concentrated impurity layer of a second conductivity type different from that of the semiconductor substrate is formed. Next, the oxide film around the gate electrode is removed, and using the gate electrode as a mask, a low concentration impurity layer of a second conductivity type different from that of the substrate is entirely formed.

その後層間絶縁膜を堆積し、At等の配線を行い、MO
SFETを形成する。
After that, an interlayer insulating film is deposited, wiring such as At is performed, and MO
Form an SFET.

〔発明の実施例〕[Embodiments of the invention]

以下 第2図を用いて、本発明を説明する。 The present invention will be explained below with reference to FIG.

半導体基板21は、ホウ素を約10  cm含む、厚さ
約600μmの単結晶シリコンの薄板である。このP型
半導体基板21に絶縁膜として約200にの厚さの酸化
膜22を形成し、さらにその上にリンを約10  cm
  添加した多結晶シリコンを約4oooi堆積させる
The semiconductor substrate 21 is a thin plate of single crystal silicon about 600 μm thick and containing about 10 cm of boron. An oxide film 22 with a thickness of about 200 cm is formed as an insulating film on this P-type semiconductor substrate 21, and phosphorus is further applied on it to a thickness of about 10 cm.
Approximately 4 oooi of added polycrystalline silicon is deposited.

写真蝕刻法を用いて、所定位置にのみ多結晶シリコンを
残存させる。この残存した多結晶シリコン23ヲマスク
として、フッ化アンモニウム水溶液により、酸化膜22
のうち、露出している部分のみを除去する。(第2図(
a)) 次に全面を8500のH,十〇、雰囲気中で100分間
酸化させると、残存した多結晶シリコン23の内部には
、約2000Xの厚さの酸化されない部分が残る。これ
をゲート電極23′とする。このゲート電極23′の上
部、及び側部には約4000Xの厚さの厚い酸化膜24
が形成されている。一方それ以外の基板表面には、約1
000Xの厚さの薄い酸化膜25が形成されている。(
第2図(b))同時酸化で、このような酸化膜の厚さの
違いが生じるのは、残存した多結晶シリコン23と半導
体基板21を構成する物質の酸化速度に、大きな差があ
るためである。この場合その差は多結晶シリコンに添加
する不純物の濃度によりて変化するため、不純物濃度を
加減することにより、それぞれの酸化膜の厚さを、所望
のものとすることは容易である。
Using photolithography, polycrystalline silicon remains only in predetermined locations. As a mask for the remaining polycrystalline silicon 23, the oxide film 22 is removed using an aqueous ammonium fluoride solution.
Remove only the exposed parts. (Figure 2 (
a)) Next, the entire surface is oxidized for 100 minutes in an atmosphere of 8,500 H, 100° C., leaving an unoxidized portion of about 2,000× thick inside the remaining polycrystalline silicon 23. This will be referred to as the gate electrode 23'. A thick oxide film 24 with a thickness of about 4000X is formed on the upper and side parts of this gate electrode 23'.
is formed. On the other hand, about 1
A thin oxide film 25 having a thickness of 000X is formed. (
FIG. 2(b)) The reason why such a difference in the thickness of the oxide film occurs during simultaneous oxidation is that there is a large difference in the oxidation rate of the remaining polycrystalline silicon 23 and the substance constituting the semiconductor substrate 21. It is. In this case, the difference changes depending on the concentration of the impurity added to the polycrystalline silicon, so it is easy to make the thickness of each oxide film desired by adjusting the impurity concentration.

ついで、フッ化アンモニウム水溶液を用い、薄い酸化膜
25の厚さ分だけ、酸化膜全除去する。
Then, the oxide film is completely removed by the thickness of the thin oxide film 25 using an ammonium fluoride aqueous solution.

すると、ゲート電極23′の上部及び側部には、約30
00 Kの厚さの酸化膜24′が残存する。
Then, approximately 30
An oxide film 24' having a thickness of 0.00 K remains.

ゲート電極23′及び残存する酸化膜24′全マスクと
してヒ素全打込み、約10” car”の濃度のN型高
濃度不純物層26ヲ形成する。(第2図(C))次に、
基板上に露出している酸化膜をフッ化アンモニウム水溶
液で除去した後、ゲート電極23′をマスクとしてυノ
を打込み、約10  α の濃度のN型低濃度不純物層
27をN型高濃度不純物層26に隣接して形成する。(
第2図(d))その後、層間絶縁膜を堆積させ、At等
の配線を行えば所望の性能を持つLDD構造のMO8F
IilTを得ることができる。
As a mask for the gate electrode 23' and the remaining oxide film 24', arsenic is fully implanted to form an N-type high concentration impurity layer 26 having a concentration of about 10"car". (Figure 2 (C)) Next,
After removing the oxide film exposed on the substrate with an ammonium fluoride aqueous solution, υ is implanted using the gate electrode 23' as a mask, and the N-type low-concentration impurity layer 27 with a concentration of about 10 α is replaced with an N-type high-concentration impurity. Formed adjacent layer 26. (
Figure 2 (d)) After that, by depositing an interlayer insulating film and wiring such as At, an LDD structure MO8F with the desired performance can be obtained.
IilT can be obtained.

本実施例においては残存した多結晶シリコン23を形成
した後酸化膜22の露出部を除去したが、この酸化膜2
2の厚さは約200Xであり、後の工程で形成される酸
化膜24.25の厚さに対し、充分小さいと見なすこと
ができるため、この除去工程を行うことは必須ではなく
、この工程を省いて次の工程を行ってモヨイ。
In this example, the exposed portion of the oxide film 22 was removed after forming the remaining polycrystalline silicon 23;
The thickness of the oxide film 24.25 is approximately 200X, which can be considered to be sufficiently smaller than the thickness of the oxide film 24.25 that will be formed in a later step, so it is not essential to perform this removal step. It's a shame to omit this and go to the next step.

また、酸化膜24.25を形成した後、薄い酸化膜25
の厚さ分だけ、酸化膜を除去したが、この除去工程も必
須ではない。々ぜならば、薄い酸化膜25の厚さは約1
000λてあり、その上から不純物打込みを行うことも
可能なためである。
Further, after forming the oxide films 24 and 25, a thin oxide film 25 is formed.
Although the oxide film was removed by the thickness of , this removal step is not essential. If so, the thickness of the thin oxide film 25 is approximately 1
000λ, and it is also possible to implant impurities from above.

さらに本実施例中の3つの酸化膜除去工程による除去量
及び、酸化工程による酸化量を適宜選択することにより
、ゲート電極23′の高さ、チャンネル長、2つの不純
物層の位置等を自由に変えることができる。
Furthermore, by appropriately selecting the removal amount in the three oxide film removal steps and the oxidation amount in the oxidation step in this embodiment, the height of the gate electrode 23', the channel length, the position of the two impurity layers, etc. can be freely adjusted. It can be changed.

また本実施例では、酸化膜を除去するのに、フッ化アン
モニウム水溶液によるウェットエツチングを使用したが
、それ以外のエツチング、例えばドライエツチング等を
使用してもよい。
Further, in this embodiment, wet etching using an aqueous ammonium fluoride solution was used to remove the oxide film, but other etching methods such as dry etching may also be used.

本実施例中に示した、半導体基板、多結晶シリコン等に
添加される不純物は一例であり、同様な効果音生むもの
ならば何でもかまわない。また本実施例はN型M08F
ETの製造方法であったが、P型MO8FETの製造に
も本発明全使用できることは明らかである。さらに絶縁
膜22上に堆積させる物質は不純物全添加した多結晶シ
リコンに限らず、半導体基板よりも酸化速度が速い物質
であればよい。
The impurities added to the semiconductor substrate, polycrystalline silicon, etc. shown in this embodiment are merely examples, and any impurity may be used as long as it produces similar sound effects. In addition, this embodiment uses N type M08F
Although the method of manufacturing ET was described above, it is clear that the present invention can also be used for manufacturing P-type MO8FET. Furthermore, the material deposited on the insulating film 22 is not limited to fully doped polycrystalline silicon, but may be any material that has a faster oxidation rate than the semiconductor substrate.

〔発明の効果〕〔Effect of the invention〕

従来の方法は、ゲート電極を形成後、CVD法により絶
縁膜を堆積させ、RIE’i用いてゲート電極の肩部に
絶縁膜を残しマスクとするものであった。しかし、この
方法では、CVD法により絶縁膜全堆積させる際、ゲー
ト電極があるため、ゲート電極から離れた位置の厚さが
、一様ではなくなってしまう。この状態でRIEi行う
と、除去する量が多過ぎると、基板表面に損傷が加わっ
てしまい、また除去歇が少な過ぎると、基板表面のゲー
ト電極肩部以外の場所に絶縁膜が残ってしまう。つまり
、基板表面に損傷を与えることなく、かつ、ゲート電極
の肩部のみにP縁膜を残すことは非常に難しい。その上
、ゲート電極肩部に残る絶縁膜の形状は、CVD法によ
る堆積の工程及びRIEの工程により変化し、特に11
. I Fiによる残存させるべき絶縁膜の制御が雑し
い。
In the conventional method, after forming the gate electrode, an insulating film is deposited by CVD, and RIE'i is used to leave the insulating film on the shoulder of the gate electrode to serve as a mask. However, in this method, when the insulating film is entirely deposited by CVD, the thickness at a position away from the gate electrode is not uniform because of the presence of the gate electrode. If RIEi is performed in this state, if too much is removed, damage will be added to the substrate surface, and if too little is removed, the insulating film will remain at locations other than the gate electrode shoulder on the substrate surface. In other words, it is extremely difficult to leave the P film only on the shoulder portion of the gate electrode without damaging the substrate surface. Moreover, the shape of the insulating film remaining on the gate electrode shoulder changes depending on the CVD deposition process and the RIE process.
.. The control of the insulating film to remain by IFi is complicated.

ところが本発明によれば、層成長工程は常に全面につい
てなされるため、層の厚さにむらが生じにくく、なおか
つ、ゲート電$i1.全囲む酸化膜は酸化工程で形成す
るため、正確な形状制御が可能である。
However, according to the present invention, since the layer growth step is always carried out over the entire surface, unevenness in layer thickness is less likely to occur, and the gate voltage $i1. Since the entire surrounding oxide film is formed by an oxidation process, accurate shape control is possible.

さらに従来の方法ではマスク形成の工程においてRIE
は必須であったが、本発明では、エツチングそのものが
必須ではなく、またエツチング全行うとしても、異方性
エツチングである必要はないため、基板表面に損傷ケ与
えることのないウェットエツチングを選択できる。なお
かつRIBを選択してもよく、その際でも、エツチング
する量が従来よりも少ないため、エツチングむらが少な
くなり、基板表面に生じる損傷は少なくてすむ。
Furthermore, in the conventional method, RIE is used in the mask forming process.
However, in the present invention, etching itself is not essential, and even if all etching is performed, it is not necessary to use anisotropic etching, so wet etching that does not damage the substrate surface can be selected. . In addition, RIB may be selected, and even in that case, since the amount of etching is smaller than in the conventional case, etching unevenness is reduced, and damage to the substrate surface can be reduced.

以上に述べたように、本発明によれば、所望の性WE 
k持つM08FFiTeセルファラインで容易に製造す
ることができる。
As described above, according to the present invention, the desired sex WE
It can be easily manufactured using the M08FFiTe self-fa line with k.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術による製造工程金示す断面図。 第2図は、本発明の一実施例の製造工程を示す断面図で
ある。 21・・・・・・半導体基板  22・・・・・・絶縁
膜23′・・・・・・ゲー)’dtlfj   24・
・・・・・厚い酸化膜25 ・・・・・・薄い酸化膜 
 26・・・・・・高濃度不純物層27 ・・・・・・
低濃度不純物1m1代理人 弁理士 則 近 憲 佑 (ほか1名) 策 1 口 (41 (1)) (Qr <d) ■2 口 (b+ (Q )    2/ 1 (d) し−一一一一一一一一 1
FIG. 1 is a cross-sectional view showing the manufacturing process according to the prior art. FIG. 2 is a sectional view showing the manufacturing process of an embodiment of the present invention. 21...Semiconductor substrate 22...Insulating film 23'...'dtlfj 24.
...Thick oxide film 25 ...Thin oxide film
26...High concentration impurity layer 27...
Low concentration impurity 1m1 Agent Patent attorney Noriyuki Chika (and 1 other person) Strategy 1 mouth (41 (1)) (Qr < d) ■2 mouth (b+ (Q) 2/1 (d) Shi-111 11111

Claims (1)

【特許請求の範囲】 1、第一の導電型の半導体基板上に形成された絶縁膜上
の所定位置に、前記半導体基板よりも酸化速度が速い物
質を所定形状に形成する工程と、前記半導体基板及び、
前記所定形状の@貞の表面を酸化させることにより、表
面部に酸化膜を形成する工程と、前記所定形状の物質の
表面に形成された酸化膜の全部または一部をマスクとし
て前記半導体基板内に第二の導電型の高濃度不純物領域
全形成する工程と、前記所定形状の物質の表向に形成さ
nた酸化膜を除去する工程と、前記所定形状の物質の酸
化されない部分全マスクとして、前記第2の導′亀型の
高濃度不純物領域に一部して第二の導電型の低濃度不純
物領域全形成する工程とを含むことt特徴とする絶縁ケ
ートa電界効果トランジスタの製造方法。 2、前記高濃度不純物領域の方が、前記低濃度不純物領
域よりもその深さが深いことケ特徴とする特許請求の範
囲第1項記載の絶縁ゲート形電界効果トランジスタの製
造方法。 3、前記所定形状の物質は不純物ktんだ多結晶7リコ
ンであることを特徴とする特許請求の範囲第1項記載の
絶縁ゲート形電界効果トランジスタの製造方法。
[Claims] 1. A step of forming a substance having a faster oxidation rate than the semiconductor substrate in a predetermined shape at a predetermined position on an insulating film formed on a semiconductor substrate of a first conductivity type; a substrate and
forming an oxide film on the surface by oxidizing the surface of the material having the predetermined shape; a step of forming a second conductivity type high concentration impurity region in its entirety; a step of removing an oxide film formed on the surface of the material having the predetermined shape; and a step of masking the entire non-oxidized portion of the material having the predetermined shape. , forming a part of the second conductivity type low concentration impurity region in the second conductivity type tortoise-type high concentration impurity region. . 2. The method of manufacturing an insulated gate field effect transistor according to claim 1, wherein the high concentration impurity region is deeper than the low concentration impurity region. 3. The method for manufacturing an insulated gate field effect transistor according to claim 1, wherein the material having the predetermined shape is polycrystalline 7-licon containing impurities Kt.
JP21331782A 1982-12-07 1982-12-07 Manufacture of insulated gate type field effect transistor Pending JPS59104167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21331782A JPS59104167A (en) 1982-12-07 1982-12-07 Manufacture of insulated gate type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21331782A JPS59104167A (en) 1982-12-07 1982-12-07 Manufacture of insulated gate type field effect transistor

Publications (1)

Publication Number Publication Date
JPS59104167A true JPS59104167A (en) 1984-06-15

Family

ID=16637140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21331782A Pending JPS59104167A (en) 1982-12-07 1982-12-07 Manufacture of insulated gate type field effect transistor

Country Status (1)

Country Link
JP (1) JPS59104167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876213A (en) * 1988-10-31 1989-10-24 Motorola, Inc. Salicided source/drain structure
US5498556A (en) * 1995-01-10 1996-03-12 United Microelectronics Corp. Metal-oxide-semiconductor field-effect transistor and its method of fabrication
US5543340A (en) * 1993-12-28 1996-08-06 Samsung Electronics Co., Ltd. Method for manufacturing offset polysilicon thin-film transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876213A (en) * 1988-10-31 1989-10-24 Motorola, Inc. Salicided source/drain structure
US5543340A (en) * 1993-12-28 1996-08-06 Samsung Electronics Co., Ltd. Method for manufacturing offset polysilicon thin-film transistor
US5498556A (en) * 1995-01-10 1996-03-12 United Microelectronics Corp. Metal-oxide-semiconductor field-effect transistor and its method of fabrication

Similar Documents

Publication Publication Date Title
US6188104B1 (en) Trench DMOS device having an amorphous silicon and polysilicon gate
KR101337267B1 (en) Method for fabricating transistor using single crystal silicon nanowire
US20210234035A1 (en) Transistor manufacturing method and gate-all-around device structure
JP2000138375A (en) Semiconductor device and its manufacture
JPS59104167A (en) Manufacture of insulated gate type field effect transistor
JPS63257231A (en) Manufacture of semiconductor device
JPH06349856A (en) Thin-film transistor and its manufacture
JP3663657B2 (en) Manufacturing method of semiconductor device
JPS62274665A (en) Manufacture of semiconductor device
KR0170314B1 (en) Semiconductor device with recessed gate electrode and method of producing the same
JPS63305566A (en) Semiconductor device and manufacture thereof
JPS6384162A (en) Manufacture of semiconductor device
KR100540339B1 (en) Method For Making Gate Structure In The Semiconductor Device Manufacture Processing
JPH07153940A (en) Manufacture of field-effect transistor
KR100348314B1 (en) Semiconductor device and method for fabricating the same
JPS59177941A (en) Manufacture of element isolation region
JPS61220372A (en) Manufacture of semiconductor device
JPS60145638A (en) Manufacture of semiconductor device
KR0147255B1 (en) Method for manufacturing mosfet
KR0182871B1 (en) Method of manufacturing semiconductor transistor
JPH04247665A (en) Manufacture of vertical field-effect transistor
JPH0430436A (en) Manufacture of field effect semiconductor device
JPS643349B2 (en)
JPS63240068A (en) Manufacture of semiconductor device
JPS5951573A (en) Insulated gate type field-effect semiconductor device and its manufacture