JPS6226151B2 - - Google Patents

Info

Publication number
JPS6226151B2
JPS6226151B2 JP54015834A JP1583479A JPS6226151B2 JP S6226151 B2 JPS6226151 B2 JP S6226151B2 JP 54015834 A JP54015834 A JP 54015834A JP 1583479 A JP1583479 A JP 1583479A JP S6226151 B2 JPS6226151 B2 JP S6226151B2
Authority
JP
Japan
Prior art keywords
iron sulfide
battery
heat
positive electrode
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54015834A
Other languages
Japanese (ja)
Other versions
JPS55108171A (en
Inventor
Sanehiro Furukawa
Kazuo Moriwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1583479A priority Critical patent/JPS55108171A/en
Publication of JPS55108171A publication Critical patent/JPS55108171A/en
Publication of JPS6226151B2 publication Critical patent/JPS6226151B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はリチウム、マグネシウム等の軽金属を
負極活物質とし、非水系の電解液を用いる非水電
解液電池に関するものであり、特に硫化鉄をイオ
ウ雰囲気中で熱処理したるものを正極活物質とし
て用いることにより、電池特性を向上せしめるこ
とを目的とするものである。 さて、負極活物質として極めて電気陰性度の大
なる軽金属を用いるこの種電池において、正極活
物質としては金属のハロゲン化物、硫化物、酸化
物等が提案されており、且その中でも硫化鉄は資
源的にも豊富であり安価であると共に軽金属負極
とを組合せた場合、1.5V系の電池が得られ、既
存の1.5V系電池と代替しうる等の特長を有し、
極めて有望視されている。 然しながら、硫化鉄は空気中の水分と容易に反
応して酸化鉄を生成し、且この酸化鉄は電池反応
に寄与しないため満足しうる電池容量を得ること
ができなかつた。 因みに硫化鉄の試薬では数十%の酸化鉄(FeO
及びFe3O4)が混在している。 そこで本発明者は硫化鉄をイオウ雰囲気中で熱
処理した後、分析した結果酸化鉄(FeO及び
Fe3O4)はほとんど認められないことを見出し
た。 次表は市販の硫化鉄をイオウ雰囲気中で熱処理
した硫化鉄と、真空雰囲気中で熱処理した硫化鉄
とをX線分析した結果を示すものである。
The present invention relates to a nonaqueous electrolyte battery that uses a light metal such as lithium or magnesium as a negative electrode active material and a nonaqueous electrolyte, and in particular uses iron sulfide heat-treated in a sulfur atmosphere as a positive electrode active material. The purpose of this is to improve battery characteristics. Now, in this type of battery that uses a light metal with extremely high electronegativity as the negative electrode active material, metal halides, sulfides, oxides, etc. have been proposed as the positive electrode active material, and among these, iron sulfide is a resource. It is abundant and inexpensive, and when combined with a light metal negative electrode, a 1.5V battery can be obtained, which can replace existing 1.5V batteries.
It is viewed as extremely promising. However, iron sulfide easily reacts with moisture in the air to produce iron oxide, and this iron oxide does not contribute to battery reactions, making it impossible to obtain a satisfactory battery capacity. Incidentally, iron sulfide reagents contain several tens of percent iron oxide (FeO
and Fe 3 O 4 ) are mixed. Therefore, the present inventor heat-treated iron sulfide in a sulfur atmosphere and analyzed the results.
It was found that almost no Fe 3 O 4 ) was observed. The following table shows the results of X-ray analysis of commercially available iron sulfide heat-treated in a sulfur atmosphere and iron sulfide heat-treated in a vacuum atmosphere.

【表】 即ち、硫化鉄をイオウ雰囲気中で熱処理すれば
酸化鉄が電池活物質たる硫化鉄に還元されること
を意味する。 以下本発明の一実施例を詳述する。 負極はリチウム圧延板をアルゴン置換されたド
ライボツクス中でローラーにより0.5mm程度に圧
延し、これを20φの寸法で打抜いたものを用い
る。 正極は硫化鉄90重量%、導電剤としての黒鉛粉
末3重量%及び結着剤としてのフツ素樹脂粉末7
重量%を加えた混合粉末を加圧成型し、厚み1mm
程度で20φの寸法としたものを熱処理する。 熱処理は上記正極成型体を中央に、イオウ粉末
を周辺に配した容器を真空にし、容器を密閉した
後、300℃で3時間熱処理した。この時、容器内
はイオウ粉末より発生せる蒸気でイオウ雰囲気と
なつている。 又、電解液はプロピレンカーボネイトと1.2ジ
メトキシエタンとの等体積比混合溶媒に1モル濃
度の過塩素酸リチウムを溶解したものであり、セ
パレータにはポリプロピレン不織布を使つた。 図は本発明法により得た正極を用いた本発明電
池Aと、真空雰囲気中において300℃で3時間熱
処理した硫化鉄正極を用いることを除いて他は同
一構造の従来電池Bとの20℃における5.6KΩ定
抵抗放電時の放電特性比較図を示す。 図より本発明電池によれば従来電池に比して約
10%程度電池容量が増大していることが伺える。 尚、実施例においては未処理の硫化鉄に導電剤
及び結着剤を加え、加圧成型したる後、イオウ雰
囲気中で熱処理する場合について述べたが、予じ
め硫化鉄のみをイオウ雰囲気中で熱処理したる
後、導電剤及び結着剤を加えて加圧成型し、その
後結着剤の融点付近の温度で結着させても同様の
効果が得られる。 上述した如く、本発明は非水電解液電池用正極
の製造法に係り、硫化鉄をイオウ雰囲気中で熱処
理することにより硫化鉄中に混入している酸化鉄
が電池反応に寄与する硫化鉄に還元されることに
着目し、正極活物質として硫化鉄をイオウ雰囲気
中で熱処理したるものを用いることにより電池容
量を増大させるものであり、その工業的価値は極
めて大である。
[Table] This means that when iron sulfide is heat-treated in a sulfur atmosphere, iron oxide is reduced to iron sulfide, which is a battery active material. An embodiment of the present invention will be described in detail below. The negative electrode used was a lithium rolled plate rolled to about 0.5 mm with rollers in an argon-substituted dry box, and then punched out to a size of 20φ. The positive electrode contains 90% by weight of iron sulfide, 3% by weight of graphite powder as a conductive agent, and 7% by weight of fluororesin powder as a binder.
Pressure mold the mixed powder with added weight% to a thickness of 1 mm.
Heat-treat a piece with a diameter of about 20φ. The heat treatment was performed by evacuating a container in which the positive electrode molded body was placed in the center and sulfur powder was placed around the periphery, and after sealing the container, heat treatment was performed at 300° C. for 3 hours. At this time, the inside of the container has a sulfur atmosphere due to the vapor generated from the sulfur powder. The electrolytic solution was a mixture of propylene carbonate and 1.2 dimethoxyethane in an equal volume ratio and 1 molar concentration of lithium perchlorate dissolved therein, and a polypropylene nonwoven fabric was used as the separator. The figure shows the difference between battery A of the present invention, which uses a positive electrode obtained by the method of the present invention, and conventional battery B, which has the same structure except that it uses an iron sulfide positive electrode that has been heat-treated at 300°C for 3 hours in a vacuum atmosphere at 20°C. A comparison diagram of discharge characteristics during 5.6KΩ constant resistance discharge is shown. As shown in the figure, the battery of the present invention has approximately
It can be seen that the battery capacity has increased by about 10%. In the example, a conductive agent and a binder are added to untreated iron sulfide, and after pressure molding, heat treatment is performed in a sulfur atmosphere. The same effect can be obtained by heat-treating the material, adding a conductive agent and a binder, press-molding it, and then binding it at a temperature near the melting point of the binder. As mentioned above, the present invention relates to a method for manufacturing a positive electrode for a nonaqueous electrolyte battery, in which iron sulfide is heat-treated in a sulfur atmosphere to convert iron oxide mixed in the iron sulfide into iron sulfide that contributes to battery reactions. Focusing on the fact that iron sulfide is reduced, the battery capacity is increased by using iron sulfide heat-treated in a sulfur atmosphere as the positive electrode active material, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明電池Aと従来電池Bとの放電特性
比較図である。
The drawing is a comparison diagram of the discharge characteristics of the battery A of the present invention and the conventional battery B.

Claims (1)

【特許請求の範囲】[Claims] 1 硫化鉄をイオウ雰囲気中で熱処理したるもの
を正極活物質として用いることを特徴とする非水
電解液電池用正極の製造法。
1. A method for producing a positive electrode for a non-aqueous electrolyte battery, characterized in that iron sulfide heat-treated in a sulfur atmosphere is used as a positive electrode active material.
JP1583479A 1979-02-13 1979-02-13 Nonaqueous electrolyte battery Granted JPS55108171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1583479A JPS55108171A (en) 1979-02-13 1979-02-13 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1583479A JPS55108171A (en) 1979-02-13 1979-02-13 Nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPS55108171A JPS55108171A (en) 1980-08-19
JPS6226151B2 true JPS6226151B2 (en) 1987-06-06

Family

ID=11899860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1583479A Granted JPS55108171A (en) 1979-02-13 1979-02-13 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS55108171A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776758A (en) * 1980-10-31 1982-05-13 Toshiba Corp Production of positive electrode for organic solvent battery
JPH03152865A (en) * 1989-11-08 1991-06-28 Sanyo Electric Co Ltd Manufacture of cell
KR100467454B1 (en) * 2002-07-10 2005-01-24 삼성에스디아이 주식회사 Positive active material composition for lithium sulfur battery and lithium sulfur battery fabricated using binder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111140A (en) * 1974-07-18 1976-01-29 Matsushita Electric Ind Co Ltd
JPS52103636A (en) * 1976-02-24 1977-08-31 Du Pont Galvanic battery using nonncompressive fes particles as cathode
JPS5364692A (en) * 1976-11-20 1978-06-09 Exxon Research Engineering Co Method of making stoichiometric titanium disulfide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111140A (en) * 1974-07-18 1976-01-29 Matsushita Electric Ind Co Ltd
JPS52103636A (en) * 1976-02-24 1977-08-31 Du Pont Galvanic battery using nonncompressive fes particles as cathode
JPS5364692A (en) * 1976-11-20 1978-06-09 Exxon Research Engineering Co Method of making stoichiometric titanium disulfide

Also Published As

Publication number Publication date
JPS55108171A (en) 1980-08-19

Similar Documents

Publication Publication Date Title
JPH0746607B2 (en) Non-aqueous secondary battery
JPH06283207A (en) Nonaqueous electrolyte battery
CN110838577A (en) Sulfur-based positive electrode active material for solid-state battery and preparation method and application thereof
JPS6310466A (en) Nonaqueous electrolyte battery
JPH0576744B2 (en)
JPS6226151B2 (en)
CN111373583B (en) Positive electrode active material for lithium ion secondary battery and method for producing same
JPH04112455A (en) Secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JPH07220758A (en) Lithium battery
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH0475267A (en) Nonaqueous secondary battery
JP3021478B2 (en) Non-aqueous secondary battery
JPH0619997B2 (en) Non-aqueous secondary battery
JP2698180B2 (en) Non-aqueous secondary battery
JPS6191862A (en) Manufacture of nonaqueous electrolyte battery
JPH03214562A (en) Manufacture of positive electrode for secondary battery with non-aqueous electrolyte
JPH0748377B2 (en) Non-aqueous secondary battery
KR20240093467A (en) Iron sodium hydroxysulfide compounds, processes for making such compounds, active materials comprising such compounds, and electrochemical electrodes made from such active materials
KR20220105127A (en) Sulfide solid electrolyte, precursor, all solid state battery and method for producing sulfide solid electrolyte
JPH02183963A (en) Manufacture of positive electrode for nonaqueous secondary battery
JPH0528995A (en) Nonaqueous electrolyte battery
JPH0373108B2 (en)
JPS58111259A (en) Manufacture of nonaqueous electrolyte battery
JPH0335250B2 (en)