JPH0335250B2 - - Google Patents

Info

Publication number
JPH0335250B2
JPH0335250B2 JP58064699A JP6469983A JPH0335250B2 JP H0335250 B2 JPH0335250 B2 JP H0335250B2 JP 58064699 A JP58064699 A JP 58064699A JP 6469983 A JP6469983 A JP 6469983A JP H0335250 B2 JPH0335250 B2 JP H0335250B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
present
active material
manganese
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58064699A
Other languages
Japanese (ja)
Other versions
JPS59190225A (en
Inventor
Sanehiro Furukawa
Kazuo Moriwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58064699A priority Critical patent/JPS59190225A/en
Publication of JPS59190225A publication Critical patent/JPS59190225A/en
Publication of JPH0335250B2 publication Critical patent/JPH0335250B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は電池用二酸化マンガン活物質の製法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a manganese dioxide active material for batteries.

(ロ) 従来技術 乾電池、アルカリ乾電池、非水電解液電池に代
表されるように陽極活物質として二酸化マンガン
が広く一般的に使用されている。そして二酸化マ
ンガンの製法についても種々の方法が知られてい
る。
(b) Prior Art Manganese dioxide is widely and commonly used as a positive electrode active material, as typified by dry batteries, alkaline dry batteries, and non-aqueous electrolyte batteries. Various methods are also known for producing manganese dioxide.

(ハ) 発明の目的 本発明の目的とするところは、特に硝酸マンガ
ン・6水和物を出発物質とし、これを熱分解して
二酸化マンガンを得る方法に着目し、電池性能向
上に寄与する二酸化マンガンの製法を提案するこ
とにある。
(c) Purpose of the Invention The purpose of the present invention is to focus on a method of obtaining manganese dioxide by thermally decomposing it using manganese nitrate hexahydrate as a starting material. The purpose is to propose a method for manufacturing manganese.

(ニ) 発明の構成 本発明の要旨とするところは、硝酸マンガン・
6水和物を密閉容器内において170〜300℃の温度
範囲で熱分解することを特徴とする電池用二酸化
マンガン活物質の製法にある。
(d) Structure of the invention The gist of the present invention is that manganese nitrate.
The present invention provides a method for producing a manganese dioxide active material for batteries, which comprises thermally decomposing a hexahydrate in a closed container at a temperature of 170 to 300°C.

(ホ) 実施例 以下本発明の一実施例につき非水電池用陽極の
場合を例にとり詳述する。
(e) Example An example of the present invention will be described in detail below, taking the case of an anode for a non-aqueous battery as an example.

硝酸マンガン・6水和物[Mn(NO32・6H2O]
を密閉容器内に入れ250℃で2時間、熱分解し分
解生成物を粉砕して後200メツシユパスを行い二
酸化マンガン活物質粉末を得る。ここで密閉容器
内の雰囲気としては酸化雰囲気、還元雰囲気を問
合ない。又熱処理温度については硝酸マンガン・
6水和物が熱分解する170〜300℃の温度範囲であ
れば良く、熱処理温度に応じて熱処理時間が考慮
される。
Manganese nitrate hexahydrate [Mn(NO 3 ) 2 6H 2 O]
The mixture is placed in a sealed container and thermally decomposed at 250°C for 2 hours to crush the decomposition products, followed by 200 mesh passes to obtain manganese dioxide active material powder. Here, it does not matter whether the atmosphere inside the closed container is an oxidizing atmosphere or a reducing atmosphere. Regarding heat treatment temperature, manganese nitrate/
The temperature range of 170 to 300° C. at which the hexahydrate is thermally decomposed is sufficient, and the heat treatment time is taken into consideration depending on the heat treatment temperature.

本実施例においては、非水電池の陽極活物質と
して適用するため、水分除去の目的で上記二酸化
マンガン活物質を更に350〜430℃で5時間熱処理
した。
In this example, the manganese dioxide active material was further heat-treated at 350 to 430° C. for 5 hours for the purpose of removing moisture in order to be applied as an anode active material of a non-aqueous battery.

ついで、この二酸化マンガン活物質85重量部、
誘電剤としてのアセチレンブラツク10重量部及び
結着剤としてのフツ素樹脂粉末5重量部を混合し
て陽極合剤とし、このうち50gを秤量し成型圧3
トン/cm2で直径20Φの集電リングに加圧成型した
後、更に300℃で真空乾燥して陽極とする。
Next, 85 parts by weight of this manganese dioxide active material,
10 parts by weight of acetylene black as a dielectric agent and 5 parts by weight of fluororesin powder as a binder were mixed to make an anode mixture.
After being pressure-molded into a current collector ring with a diameter of 20Φ at a pressure of tons/cm 2 , it is further vacuum-dried at 300°C to form an anode.

陰極はリチウム圧延板を直径20Φに打抜いたも
のを用い、又電解液はプロピレンカーボネートと
1.2ジメトキシエタンとの等体積混合溶媒に過塩
素酸リチウムを1モル/溶解したものでありポ
リプロピレン不織布よりなるセパレータに含浸し
て用い本発明に係る非水電解液電池(A)を作成し
た。尚、電池寸法は外径25Φ、高さ2.8mmであつ
た。
The cathode used was a lithium rolled plate punched out to a diameter of 20Φ, and the electrolyte was propylene carbonate.
A nonaqueous electrolyte battery (A) according to the present invention was prepared by dissolving 1 mol/mol of lithium perchlorate in a mixed solvent with 1.2 dimethoxyethane in an equal volume and impregnating it into a separator made of polypropylene nonwoven fabric. The battery dimensions were an outer diameter of 25Φ and a height of 2.8 mm.

一方、本発明法による優位性を調べるために、
硝酸マンガン・6水和物を開放容器内において
250℃で熱分解して得た二酸化マンガンを活物質
とすることを除いて、他は実施例と同様の方法で
比較電池(B)を作成した。
On the other hand, in order to investigate the superiority of the method of the present invention,
Manganese nitrate hexahydrate in an open container
A comparative battery (B) was produced in the same manner as in the example except that manganese dioxide obtained by thermal decomposition at 250°C was used as the active material.

第1図及び第2図はこれら電池の放電特性比較
図であり、第1図は室温下における5.6KΩ定負荷
放電特性、第2図は室温下における560Ω定負荷
放電特性を夫々示す。
Figures 1 and 2 are comparison diagrams of the discharge characteristics of these batteries; Figure 1 shows the 5.6KΩ constant load discharge characteristics at room temperature, and Figure 2 shows the 560Ω constant load discharge characteristics at room temperature.

(ヘ) 発明の効果 第1図及び第2図より明白なるように、本発明
法により得た二酸化マンガンを陽極活物質として
用いた電池(A)は比較電池(B)に比して電池性能が改
善されている。本発明による効果を考察するに、
本発明法の如く硝酸マンガン・6水和物を密閉容
器内で170〜300℃で加熱分解した二酸化マンガン
の粒径は10μ程度であるのに対し従来の如く開放
溶器内で熱分解して得た二酸化マンガンの粒径は
100μ程度であり、本発明法によればより微粒状
の二酸化マンガンが得られた。これは密閉容器内
での熱分解であるため、分解時の生成ガス(例え
ばNO2)によつて圧力下で行われるため熱分解
反応が急速に進行しているためであると考えられ
る。
(f) Effects of the invention As is clear from Figures 1 and 2, the battery (A) using manganese dioxide obtained by the method of the present invention as an anode active material has better battery performance than the comparative battery (B). has been improved. Considering the effects of the present invention,
The particle size of manganese dioxide obtained by thermally decomposing manganese nitrate hexahydrate at 170 to 300°C in a closed container as in the method of the present invention is about 10μ, whereas the particle size of manganese dioxide obtained by thermally decomposing it in an open vessel as in the conventional method The particle size of the obtained manganese dioxide is
The particle diameter was approximately 100μ, and the method of the present invention yielded finer manganese dioxide. This is thought to be because the thermal decomposition is carried out in a closed container under pressure due to the gas produced during decomposition (for example, NO 2 ), so that the thermal decomposition reaction progresses rapidly.

その結果、二酸化マンガンの見掛密度は本発明
法では3.7±0.1g・cm-3であるのに対し従来法で
は3.3±0.1g・cm-3であり本発明法の方が大きく
容量の増加が計れる。
As a result, the apparent density of manganese dioxide was 3.7 ± 0.1 g cm -3 in the method of the present invention, whereas it was 3.3 ± 0.1 g cm -3 in the conventional method, and the capacity increase was greater in the method of the present invention. can be measured.

又、夫々の方法で得た二酸化マンガンを用いて
作成した陽極の比抵抗は本発明法では0.4Ω・cm
であるのに対し、従来法では7.5Ω・cmであつた。
よつて、本発明法により得た二酸化マンガンを用
いれば電地電圧の向上も計れる。
In addition, the specific resistance of the anode made using manganese dioxide obtained by each method is 0.4Ω・cm using the method of the present invention.
In contrast, in the conventional method, it was 7.5Ω·cm.
Therefore, by using manganese dioxide obtained by the method of the present invention, it is possible to improve the earth voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明法により得た二酸化
マンガンを陽極活物質とする非水電解液電池(A)と
比較電池(B)との放電特性比較図を夫々示す。
FIGS. 1 and 2 respectively show comparison diagrams of the discharge characteristics of a non-aqueous electrolyte battery (A) using manganese dioxide obtained by the method of the present invention as an anode active material and a comparative battery (B).

Claims (1)

【特許請求の範囲】[Claims] 1 硝酸マンガン・6水和物を密閉容器内におい
て170〜300℃の温度範囲で熱分解することを特徴
とする電池用二酸化マンガン活物質の製法。
1. A method for producing a manganese dioxide active material for batteries, which comprises thermally decomposing manganese nitrate hexahydrate in a closed container at a temperature range of 170 to 300°C.
JP58064699A 1983-04-12 1983-04-12 Preparation of active material of manganese dioxide for cell Granted JPS59190225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064699A JPS59190225A (en) 1983-04-12 1983-04-12 Preparation of active material of manganese dioxide for cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064699A JPS59190225A (en) 1983-04-12 1983-04-12 Preparation of active material of manganese dioxide for cell

Publications (2)

Publication Number Publication Date
JPS59190225A JPS59190225A (en) 1984-10-29
JPH0335250B2 true JPH0335250B2 (en) 1991-05-27

Family

ID=13265652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064699A Granted JPS59190225A (en) 1983-04-12 1983-04-12 Preparation of active material of manganese dioxide for cell

Country Status (1)

Country Link
JP (1) JPS59190225A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786666B (en) * 2010-02-10 2012-02-22 彭天剑 lithium manganate anode material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135727A (en) * 1981-02-09 1982-08-21 Nec Corp Preparation of manganese dioxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135727A (en) * 1981-02-09 1982-08-21 Nec Corp Preparation of manganese dioxide

Also Published As

Publication number Publication date
JPS59190225A (en) 1984-10-29

Similar Documents

Publication Publication Date Title
JP2578646B2 (en) Non-aqueous secondary battery
US4133856A (en) Process for producing a positive electrode for a non-aqueous cell
JPH07107851B2 (en) Non-aqueous secondary battery
JPH0576744B2 (en)
JP2940015B2 (en) Organic electrolyte secondary battery
JPH0335250B2 (en)
JP2815862B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JPH0426075A (en) Organicelectrolyte battery
JPH0679485B2 (en) Non-aqueous secondary battery
JPH07114125B2 (en) Non-aqueous secondary battery
JP2000327340A (en) Lithium manganese compound oxide particulate composition and its production and utilization for lithium ion secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JPS62216171A (en) Nonaqueous electrolytic battery
JPH09245799A (en) Lithium secondary battery
JP3229765B2 (en) Lithium secondary battery
JPS6146948B2 (en)
JP2951013B2 (en) Non-aqueous electrolyte secondary battery
JP2631998B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JP3021478B2 (en) Non-aqueous secondary battery
JP3344853B2 (en) Positive active material for non-aqueous lithium secondary battery and lithium secondary battery
JPH10199530A (en) Nonaqueous electrolyte battery
JPH0787098B2 (en) Non-aqueous secondary battery
JPH09259881A (en) Manufacture of linio2 for lithium secondary battery
JPH07130361A (en) Nonaqueous electrolyte battery