JPH02183963A - Manufacture of positive electrode for nonaqueous secondary battery - Google Patents

Manufacture of positive electrode for nonaqueous secondary battery

Info

Publication number
JPH02183963A
JPH02183963A JP1001591A JP159189A JPH02183963A JP H02183963 A JPH02183963 A JP H02183963A JP 1001591 A JP1001591 A JP 1001591A JP 159189 A JP159189 A JP 159189A JP H02183963 A JPH02183963 A JP H02183963A
Authority
JP
Japan
Prior art keywords
manganese oxide
manganese
battery
positive electrode
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1001591A
Other languages
Japanese (ja)
Other versions
JP2714092B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Toshiyuki Noma
俊之 能間
Yuji Yamamoto
祐司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1001591A priority Critical patent/JP2714092B2/en
Publication of JPH02183963A publication Critical patent/JPH02183963A/en
Application granted granted Critical
Publication of JP2714092B2 publication Critical patent/JP2714092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve reversibility by oxidizing an Li-containing manganese hydroxide obtained by reacting bivalent manganese salt and lithium salt in an alkali aqueous solution with oxygen or air, then heat-treating it at the preset temperature, and using an Li-containing manganese oxide thus obtained as an active material. CONSTITUTION:An Li-containing manganese hydroxide obtained by reacting bivalent manganese salt and lithium salt in an alkali aqueous solution is oxidized with oxygen or air, then it is heat-treated at the temperature of 250 deg.C or above, and an Li-containing manganese oxide thus obtained is used as an active material. The crystal structure of the manganese oxide thus obtained is affected by the heat treatment temperature. At the heat treatment temperature of 250-300 deg.C, the crystal structure having peaks near 2theta=22 deg., 31.5 deg., 37 deg., 42 deg., and 55 deg. in the X-ray diffraction diagram, an Li2MnO3-containing manganese oxide is obtained at 300-430 deg.C, and a manganese oxide with a spinel structure is obtained at 800-900 deg.C.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はリチウム或いはリチウム合金を負極活物質とす
る非水系二次電池に係り、特に正極の製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a nonaqueous secondary battery using lithium or a lithium alloy as a negative electrode active material, and particularly relates to a method for manufacturing a positive electrode.

(0)従来の技術 非水系−次電池の正極活物質としては二酸化マ実用化さ
れている。
(0) Prior Art Carbon dioxide has been put to practical use as a positive electrode active material for non-aqueous secondary batteries.

この二酸化マンガンは可逆性に難があるため非水系二次
電池の正極活物質としては不適当であり、そのため改質
されたマンガン酸化物が種々提案されている。
This manganese dioxide has difficulty in reversibility and is therefore unsuitable as a positive electrode active material for non-aqueous secondary batteries.Therefore, various modified manganese oxides have been proposed.

例えば特願昭61−258940号、特願昭62−19
330号或いは特願昭63−60785号に開示されて
いるように、二酸化マンガンとリチウム塩との混合物を
熱処理してその結晶構造中にリチウムを含有したマンガ
ン酸化物が提案されている。
For example, Japanese Patent Application No. 61-258940, Japanese Patent Application No. 1987-1983
As disclosed in No. 330 or Japanese Patent Application No. 63-60785, a manganese oxide containing lithium in its crystal structure by heat-treating a mixture of manganese dioxide and a lithium salt has been proposed.

これらのマンガン酸化物は熱処理温度によって、生成す
るリチウム含有マンガン酸化物の構造が異なり、熱処理
温度250〜300℃ではX線回折図において2θ=2
2℃、31.5°、37゜712°、55°付近にピー
クを有する結晶構造のマンガン酸化物となり、300〜
430℃ではL IrM n Osを含有したマンガン
酸化物となり、そして800〜900℃ではスピネル型
構造を有するマンガン酸化物となる。
The structure of the lithium-containing manganese oxide produced differs depending on the heat treatment temperature, and at a heat treatment temperature of 250 to 300°C, 2θ = 2 in the X-ray diffraction diagram.
It becomes a manganese oxide with a crystal structure having peaks around 2℃, 31.5°, 37°, 712°, and 55°, and
At 430°C, it becomes a manganese oxide containing L IrM n Os, and at 800 to 900°C, it becomes a manganese oxide having a spinel structure.

又、これらの改良法では二酸化マンガンとリチウム塩と
を固相同志で反応させるため、二酸化マンガン粒子の内
部までは改質が及ばず、深い深度での充放電サイクルで
は劣化が早いという欠点があった。
In addition, in these improved methods, since manganese dioxide and lithium salt are reacted with each other in the solid phase, the modification does not reach the inside of the manganese dioxide particles, which has the disadvantage of rapid deterioration during charge/discharge cycles at deep depths. Ta.

そこで、二酸化マンガン粒子の内部まで改質を進めるた
めに、リチウム塩を溶解した水溶液中に二酸化マンガン
を浸漬し、水分を蒸発乾固した後に熱処理し、二酸化マ
ンガン粒子の細孔内部にまで改質反応を進める方法が提
案された。
Therefore, in order to advance the modification to the inside of the manganese dioxide particles, manganese dioxide is immersed in an aqueous solution containing a lithium salt, the water is evaporated to dryness, and then heat treated to reform the inside of the pores of the manganese dioxide particles. A method to proceed with the reaction was proposed.

(・・)発明が解決しようとする課題 本発明は前述せる従来技術をさらに改善し、可逆性に優
れた正極を得ることを目的とする。
(...) Problems to be Solved by the Invention The present invention aims to further improve the prior art described above and to obtain a positive electrode with excellent reversibility.

(ニ)課題を解決するための手段 本発明の要旨とするところは、 2価のマンガン塩と、リチウム塩とをアルカリ水溶液中
で反応させてリチウムを含有したマンガン水酸化物を得
、 ついでこのマンガン水酸化物を酸化雰囲気中で酸化処理
し、 その後、250℃以上の温度で熱処理して得たリチウム
含有マンガン酸化物を活物質として用いることを特徴と
する非水系二次電池用正極の製造法にある。
(d) Means for Solving the Problems The gist of the present invention is to react a divalent manganese salt and a lithium salt in an alkaline aqueous solution to obtain a lithium-containing manganese hydroxide; Production of a positive electrode for a non-aqueous secondary battery, characterized in that a lithium-containing manganese oxide obtained by oxidizing manganese hydroxide in an oxidizing atmosphere and then heat-treating it at a temperature of 250°C or higher is used as an active material. It's in the law.

(9作 用 アルカリ水溶液中で2価のマンガン塩とリチウム塩とを
反応させると、リチウムを含有したマンガン水酸化物t
、ixMn(OH)t+xが生成する。このマンガン水
酸化物が生成する反応において、水溶液中のイオンの状
態でMnとLiが混合されるため結晶粒子内部まで均一
にLiを含んだマンガン水酸化物が得られる。このよう
にして得たマンガン水酸化物を空気或いは酸素で酸化処
理した後、熱処理することにより、水溶液系反応で混入
した余分な水分が除去されると同時に、Liイオンと二
酸化マンガンの反応が起こり結晶内部までLiイオンを
含有したマンガン酸化物が得られる。
(9) When divalent manganese salt and lithium salt are reacted in an alkaline aqueous solution, manganese hydroxide containing lithium is produced.
, ixMn(OH)t+x are generated. In this reaction for producing manganese hydroxide, Mn and Li are mixed in the form of ions in the aqueous solution, so that manganese hydroxide containing Li uniformly even inside the crystal grains is obtained. By oxidizing the manganese hydroxide obtained in this way with air or oxygen and then heat-treating it, excess water mixed in in the aqueous reaction is removed, and at the same time, a reaction between Li ions and manganese dioxide occurs. A manganese oxide containing Li ions even inside the crystal is obtained.

尚、得られるマンガン酸化物の結晶構造は熱処理温度に
よって影響を受け、熱処理温度250〜300℃ではX
線回折図において2θ=22゜31.5°  37° 
 42′、55a付近にピークを有する結晶構造のマン
ガン酸化物となり、300−430℃ではLi*MnO
sを含有したマンガン酸化物となり、そして800〜9
00℃ではスピネル型構造を有するマンガン酸化物とな
る。
The crystal structure of the manganese oxide obtained is affected by the heat treatment temperature, and at a heat treatment temperature of 250 to 300°C,
In the line diffraction diagram, 2θ=22°31.5° 37°
It becomes manganese oxide with a crystal structure with peaks around 42' and 55a, and at 300-430°C it becomes Li*MnO.
becomes manganese oxide containing s, and 800 to 9
At 00°C, it becomes a manganese oxide having a spinel structure.

又、アルカリ水溶液中で2価のマンガン塩とリチウム塩
を反応させる方法としては、2価のマンガン塩とLiO
H水溶液を混合する方法が好ましい。
In addition, as a method for reacting divalent manganese salt and lithium salt in an alkaline aqueous solution, divalent manganese salt and LiO
A method of mixing an aqueous H solution is preferred.

(へ)実施例 以下本発明の実施例について詳述する。(f) Example Examples of the present invention will be described in detail below.

実施例1 硝酸マンガン140gを蒸留水500me中に溶解させ
た液に、4N−LiOH水溶液500+njを撹はんし
ながら加える。生成した白色の水酸化マンガンの沈澱を
含む溶液中に酸素を200mj/分の流量で10時間吹
きこみ、酸化処理を行う。酸化処理で生成する褐色の沈
澱をブフナロウト上で充分に蒸留水で洗浄しながら濾過
する。濾別された沈澱物を乾燥した後、細かく粉砕し、
空気中において温度375℃で20時間の熱処理を行っ
た。
Example 1 4N-LiOH aqueous solution 500+nj is added to a solution of 140 g of manganese nitrate dissolved in 500 me of distilled water while stirring. Oxygen is blown into the solution containing the produced white manganese hydroxide precipitate at a flow rate of 200 mj/min for 10 hours to carry out oxidation treatment. The brown precipitate formed during the oxidation treatment is filtered on a Buchna funnel while thoroughly washing with distilled water. After drying the filtered precipitate, it is finely ground,
Heat treatment was performed in air at a temperature of 375° C. for 20 hours.

熱処理して得られたマンガン酸化物を原子吸光法により
分析した結果、Li:Mn=1:2のモル比でLiを含
んでいることがわかった。
As a result of analyzing the manganese oxide obtained by heat treatment by atomic absorption spectrometry, it was found that it contained Li at a molar ratio of Li:Mn=1:2.

このLlを含有するマンガン酸化物90重量%と導電剤
としてのアセチレンブラック6重量%及びフッ素樹脂粉
末4重量%を混合して正極合剤とし、この合剤を成型圧
5トン/cm ”で直径20.0園に加圧成形した後、
更に200〜300℃の温度で真空熱処理をして正極と
する。負極は所定厚みのLi板を直径201M1に打ち
抜き、集電体を介して負極缶に圧着した。
90% by weight of this manganese oxide containing Ll, 6% by weight of acetylene black as a conductive agent, and 4% by weight of fluororesin powder are mixed to form a positive electrode mixture, and this mixture is molded at a molding pressure of 5 tons/cm'' to form a diameter 20.0 After pressure molding,
Further, vacuum heat treatment is performed at a temperature of 200 to 300°C to obtain a positive electrode. The negative electrode was made by punching out a Li plate with a predetermined thickness to a diameter of 201 M1, and was press-bonded to the negative electrode can via a current collector.

セパレータはポリプロピレン製微孔性薄板を用い、電解
液にはプロピレンカーボネートとジメトキシエタンとの
混合溶媒にLiCl1O,を1モル/!溶解したものを
使用した。
The separator uses a microporous thin plate made of polypropylene, and the electrolyte contains 1 mol/! of LiCl1O in a mixed solvent of propylene carbonate and dimethoxyethane. The dissolved one was used.

電池寸法は直径24mm、高さ3.Qm+nであった。Battery dimensions are 24mm in diameter and 3mm in height. It was Qm+n.

この電池を(A1)とする。This battery is referred to as (A1).

実施例2 マンガン酸化物を得るための熱処理温度を、空気中で2
50℃、20時間とすることを除いては、実施例1と同
様の工程でマンガン酸化物を作製し、得られたマンガン
酸化物を(M2)とする。
Example 2 The heat treatment temperature for obtaining manganese oxide was changed to 2 in air.
Manganese oxide was produced in the same process as in Example 1 except that the temperature was 50° C. for 20 hours, and the obtained manganese oxide was designated as (M2).

得られたマンガン酸化物(M2)をX線回折したところ
、L I IM n Osの存在は確認できず、回折角
2θ=22’   31.5’″  37′″  42
’   55°付近にピークが認められた。実施例1の
マンガン酸化物(Ml)の代わりに、このマンガン酸化
物(す)を用いて実施例1と同様の工程で電池を試作し
た。この電池を(A2)とする。
When the obtained manganese oxide (M2) was subjected to X-ray diffraction, the presence of L I IM n Os could not be confirmed, and the diffraction angle 2θ = 22'31.5'''37''' 42
'A peak was observed around 55°. In place of the manganese oxide (Ml) in Example 1, this manganese oxide (Ml) was used to fabricate a battery in the same manner as in Example 1. This battery is referred to as (A2).

実施例3 マンガン酸化物を得るための熱処理温度を空気中で65
0℃で6時間、850℃で14時間とすることを除いて
は実施例1と同様の工程でマンガン酸化物を作成し、得
られたマンガン酸化物を(M3)とする。このマンガン
酸化物(M3)をX線回折したところ、スピネル型の構
造を示すパターンが得られな。
Example 3 The heat treatment temperature for obtaining manganese oxide was set to 65% in air.
Manganese oxide was prepared in the same manner as in Example 1 except that the temperature was 0° C. for 6 hours and 850° C. for 14 hours, and the obtained manganese oxide was designated as (M3). When this manganese oxide (M3) was subjected to X-ray diffraction, a pattern indicating a spinel type structure was not obtained.

実施例1のマンガン酸化物(Ml)の代わりにこのマン
ガン酸化物(M3)を用いて、実施例1と同様の工程で
電池を試作した。この電池を(A3)とする。
A battery was prototyped using the same steps as in Example 1, using this manganese oxide (M3) in place of the manganese oxide (Ml) in Example 1. This battery is referred to as (A3).

実施例4 硝酸マンガン140g及び硝酸リチウム60gを水50
0m1に溶解し、これに4N−NaOH水I8液500
m1を撹はんしながら加える。生成した白色の水酸化マ
ンガンの沈澱を含む溶液中に、酸素ガスを200mj/
分の流量で10時間吹き込み、酸化処理を行う。酸化処
理で生成する褐色の沈澱をブフナロウト上で蒸留水を用
いて十分に洗浄しながら濾過する。濾別した沈澱物を乾
燥した後、細かく粉砕し、空気中において温度375℃
で20時間の熱処理を行う。熱処理して得られたマンガ
ン酸化物をX線回折したところLimMn0IとM n
 Orのピークが認められた。また、原子吸光分析によ
るLiとMnの組成比はLi:Mn=1°2であった。
Example 4 140 g of manganese nitrate and 60 g of lithium nitrate were added to 50 g of water.
0ml, and add 500ml of 4N-NaOH water I8 solution to this.
Add m1 while stirring. Oxygen gas was introduced at 200mj/ into the solution containing the white manganese hydroxide precipitate.
The oxidation treatment is carried out by blowing at a flow rate of 10 minutes for 10 hours. The brown precipitate formed during the oxidation treatment is filtered on a Buchna funnel while thoroughly washing with distilled water. After drying the filtered precipitate, it is finely ground and heated to 375°C in air.
Heat treatment is performed for 20 hours. X-ray diffraction of the manganese oxide obtained by heat treatment revealed LimMn0I and Mn
A peak of Or was observed. Further, the composition ratio of Li and Mn according to atomic absorption spectrometry was Li:Mn=1°2.

こうして得られたマンガン酸化物を(M4)とする。実
施例1のマンガン酸化物(Ml)の代わりに、このマン
ガン酸化物(M4)を用いて、実施例1と同様の工程で
電池を試作した。この電池を(A4)とする。
The manganese oxide thus obtained is referred to as (M4). A battery was prototyped using the manganese oxide (M4) in place of the manganese oxide (Ml) in Example 1 and following the same steps as in Example 1. This battery is referred to as (A4).

比較例1 L i Of(10gを水200mjに溶解させた水溶
液中に、M n O* 80 gを10時間浸漬させた
後、水を蒸発乾固させ、空気中において375′″で2
0時間熱処理する。こうして得られたマンガン酸化物を
実施例1のマンガン酸化物(Ml)の代わりに用いて、
実施例1と同様の工程で電池を試作した。この電池を(
旧)とする。
Comparative Example 1 After immersing 80 g of MnO* in an aqueous solution of LiOf (10 g dissolved in 200 mj of water) for 10 hours, the water was evaporated to dryness, and the mixture was immersed in air at 375''' for 2 hours.
Heat treatment for 0 hours. Using the manganese oxide thus obtained in place of the manganese oxide (Ml) of Example 1,
A battery was prototyped using the same steps as in Example 1. This battery (
old).

比較例2 LiOH10gを水200m1中に溶解させた水溶液中
に、M n Or 80 gを10時間浸漬した後、水
を蒸発乾固させ、空気中において250℃で20時間焼
成する。こうして得られたマンガン酸化物を実施例1の
マンガン酸化物(Ml)の代わりに用いて、実施例1と
同様の工程で電池を試作した。
Comparative Example 2 After immersing 80 g of M n Or in an aqueous solution in which 10 g of LiOH was dissolved in 200 ml of water for 10 hours, the water was evaporated to dryness, and the mixture was calcined in air at 250° C. for 20 hours. The thus obtained manganese oxide was used in place of the manganese oxide (Ml) in Example 1, and a battery was produced as a trial in the same process as in Example 1.

この電池を(B2)とする。This battery will be referred to as (B2).

比較例3 LiOHIOgを水200mj中に溶解させた水I8液
中に、M n O* 80 gを10時間浸漬させた後
、水を蒸発乾固させ、空気中において650℃で6時間
、850℃で14時間熱処理する。こうして得られたマ
ンガン酸化物を実施例1のマンガン酸化物(Ml)の代
わりに用いて、実施例1と同様の工程で電池を試作した
。この電池を(B3)とする。
Comparative Example 3 After immersing 80 g of M n O* in a water I8 liquid in which LiOHIOg was dissolved in 200 mj of water for 10 hours, the water was evaporated to dryness, and the water was evaporated to dryness at 650° C. for 6 hours at 850° C. in air. Heat-treated for 14 hours. The thus obtained manganese oxide was used in place of the manganese oxide (Ml) in Example 1, and a battery was produced as a trial in the same process as in Example 1. This battery will be referred to as (B3).

比較例4 M n 0180 gとLiOH10gを乳鉢で充分に
混合した後、空気中において375℃で20時間熱処理
した。こうして得られたマンガン酸化物を、実施例1の
マンガン酸化物(Ml )の代わりに用いて、実施例1
と同様の工程で電池を試作した。
Comparative Example 4 After thoroughly mixing 180 g of M n and 10 g of LiOH in a mortar, the mixture was heat-treated in air at 375° C. for 20 hours. The manganese oxide thus obtained was used in place of the manganese oxide (Ml) in Example 1, and Example 1
A prototype battery was manufactured using the same process.

この電池を(C1)とする。This battery is referred to as (C1).

比較例5 M n Ot 80 gとLiOH10gを乳鉢で充分
に混合した後、空気中において250 ”Cで20時間
熱処理した。こうして得られたマンガン酸化物を実施例
1のマンガン酸化物(Ml )の代わりに用いて実施例
1と同様の工程で電池を試作した。この電池を(C2)
とする。
Comparative Example 5 After thoroughly mixing 80 g of M n Ot and 10 g of LiOH in a mortar, the mixture was heat-treated in air at 250 ''C for 20 hours. Instead, a battery was fabricated using the same process as in Example 1.This battery was used as (C2)
shall be.

比較例6 M n Os 80 gとLiOH10gを乳鉢で充分
に混合した後、空気中において650℃で6時間、85
0℃で14時間熱処理する。こうして得られたマンガン
酸化物を実施例1のマンガン酸化物(Ml)の代わりに
用いて実施例1と同様の工程で電池を試作した。この電
池を(C3)とする。
Comparative Example 6 After thoroughly mixing 80 g of MnOs and 10 g of LiOH in a mortar, the mixture was heated at 650°C in air for 6 hours at 85°C.
Heat treatment at 0°C for 14 hours. A battery was experimentally produced in the same manner as in Example 1 using the manganese oxide thus obtained in place of the manganese oxide (Ml) in Example 1. This battery is referred to as (C3).

第1図は、実施例1〜4および比較例1〜6で試作した
扁平型非水電解液電池の半断面図を示し、(1)(2)
はステンレス製の正負極缶であって、これらはポリプロ
ピレン製の絶縁バッキング(3)により隔離されている
。(4)は本発明の要旨とする正極であって、正極缶(
1)の内底面に固着せる正極集電体(5)に圧接されて
いる。(6)は負極であって、負極缶(2)の内底面に
固着せる負極集電体(7)に圧着されている。(8)は
ポリプロピレン製微孔性薄膜よりなるセパレータである
FIG. 1 shows a half-sectional view of a flat non-aqueous electrolyte battery prototyped in Examples 1 to 4 and Comparative Examples 1 to 6, and shows (1) (2)
are positive and negative electrode cans made of stainless steel, and these are isolated by an insulating backing (3) made of polypropylene. (4) is a positive electrode which is the gist of the present invention, and is a positive electrode can (
1) is pressed into contact with a positive electrode current collector (5) fixed to the inner bottom surface of the electrode. (6) is a negative electrode, which is crimped to a negative electrode current collector (7) fixed to the inner bottom surface of the negative electrode can (2). (8) is a separator made of a microporous thin film made of polypropylene.

第2図乃至第4図はこれらの電池の充放電サイクル特性
図を示す。尚、充放電条件はいずれも電流3mAで8時
間放電し、電流3mAで充電し充電終止電圧4.OVと
した。
Figures 2 to 4 show charge/discharge cycle characteristics of these batteries. The charging and discharging conditions were as follows: discharging at a current of 3 mA for 8 hours, charging at a current of 3 mA, and reaching a charge end voltage of 4. It was set as OV.

第2図より本発明電池(A1)および(A4)は、従来
の方法で得られたマンガン酸化物(結晶構造はいずれも
Li1MnOsを含むマンガン酸化物である)を用いた
比較電池(Bl)および(CI)よりも特性が向tして
いる。これは本発明によるLiを含有したマンガン酸化
物はその結晶内部まで改質が進んでおり、可逆性が改善
されていることに起因している。また、(A1)と(A
4)では用いたマンガン酸化物の製造の出発物質が異な
るものの電池特性には大差はない。
From FIG. 2, the batteries (A1) and (A4) of the present invention are compared to the comparative battery (Bl) using manganese oxide obtained by the conventional method (all crystal structures are manganese oxide containing Li1MnOs). The characteristics are more favorable than those of (CI). This is because the Li-containing manganese oxide according to the present invention has been modified to the inside of its crystal, resulting in improved reversibility. Also, (A1) and (A
In 4), although the starting material for manufacturing the manganese oxide used was different, there was no major difference in battery characteristics.

同様に第3図に示されるように、本発明電池(A2)は
従来法による比較電池(B2)および(C2)よりも特
性が良い。この場合のマンガン酸化物の結晶構造はX線
回折角で2θ=22° 31.5゜37°  42’ 
  55°付近にピークを持ったものである。
Similarly, as shown in FIG. 3, the battery of the present invention (A2) has better characteristics than the conventional comparison batteries (B2) and (C2). The crystal structure of the manganese oxide in this case is the X-ray diffraction angle 2θ = 22° 31.5° 37° 42'
It has a peak around 55°.

第・1図でも本発明電池(A3)は従来法による電池(
B3)および(C3)より特性が向上している。この場
合のマンガン酸化物の結晶構造はいずれもスピネル型で
ある。
In Figure 1, the battery of the present invention (A3) is different from the battery of the conventional method (A3).
The characteristics are improved compared to B3) and (C3). The crystal structure of the manganese oxide in this case is all spinel type.

(ト)発明の効果 本発明の如く、アルカリ水溶液中で2価のマンガン塩と
リチウム塩とを反応させて得られるL i含有のマンガ
ン水酸化物を酸素あるいは空気で酸化した後、250℃
以上の温度で熱処理して得られるLi含有のマンガン酸
化物は、その熱処理温度および熱処理後の結晶構造にか
かわらず、従来法によるLi塩とM n O、を混合し
熱処理して得られるLi含有マンガン酸化物、あるいは
M n OrをLiOH水溶液に浸漬した後、水分を蒸
発乾固し、熱処理して得られるLi含有マンガン酸化物
よりも、非水系二次電池の正極活物質としての可逆性に
優れ、その結果、電池の充放電サイクル特性を大幅に改
善することができる。
(G) Effects of the Invention As in the present invention, Li-containing manganese hydroxide obtained by reacting a divalent manganese salt and a lithium salt in an alkaline aqueous solution is oxidized with oxygen or air and then heated at 250°C.
Regardless of the heat treatment temperature and the crystal structure after heat treatment, the Li-containing manganese oxide obtained by heat treatment at the above temperature is the Li-containing manganese oxide obtained by heat-treating a mixture of Li salt and MnO by the conventional method. It has better reversibility as a positive electrode active material for non-aqueous secondary batteries than Li-containing manganese oxide obtained by immersing manganese oxide or MnOr in a LiOH aqueous solution, evaporating the water to dryness, and heat-treating it. As a result, the charge/discharge cycle characteristics of the battery can be significantly improved.

なお、本発明の製造法において、原料として用いる2価
のMn塩、Li塩、塩基の種類および混合比、酸化処理
の時間、熱処理温度は記載された実施例に限定されるも
のではない。原料の混合比を変えることにより、得られ
るLiを含有したマンガン酸化物のLlとMnとの比を
種々変化させることができる。
In the production method of the present invention, the types and mixing ratios of the divalent Mn salt, Li salt, and base used as raw materials, the oxidation treatment time, and the heat treatment temperature are not limited to the examples described. By changing the mixing ratio of the raw materials, the ratio of Ll to Mn in the resulting Li-containing manganese oxide can be varied.

また、本発明は固体電解質を用いた非水系二次電池にも
適用しうるちのである。
Furthermore, the present invention can also be applied to non-aqueous secondary batteries using solid electrolytes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の半断面図、第2図乃至第4図は電
池の充放電特性を示す。 (1)・・正極缶、(2)・・・負極缶、(3)・・・
絶縁バッキング、(4)・・・正極、(5)・・・正極
集電体、(6)・・・リチウム負極、(7)・・・負極
集電体、(8)・・・セパレータ。 第1図 第2図 3、OL 第3図
FIG. 1 is a half-sectional view of the battery of the present invention, and FIGS. 2 to 4 show the charging and discharging characteristics of the battery. (1)...Positive electrode can, (2)...Negative electrode can, (3)...
Insulating backing, (4)...Positive electrode, (5)...Positive electrode current collector, (6)...Lithium negative electrode, (7)...Negative electrode current collector, (8)...Separator. Figure 1 Figure 2 Figure 3, OL Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)2価のマンガン塩と、リチウム塩とをアルカリ水
溶液中で反応させてリチウムを含有したマンガン水酸化
物を得、 ついでこのマンガン水酸化物を酸化雰囲気中で酸化処理
し、 その後、250℃以上の温度で熱処理して得たリチウム
含有マンガン酸化物を活物質として用いることを特徴と
する非水系二次電池用正極の製造法。
(1) Divalent manganese salt and lithium salt are reacted in an alkaline aqueous solution to obtain lithium-containing manganese hydroxide, and then this manganese hydroxide is oxidized in an oxidizing atmosphere. A method for producing a positive electrode for a non-aqueous secondary battery, characterized in that a lithium-containing manganese oxide obtained by heat treatment at a temperature of ℃ or higher is used as an active material.
JP1001591A 1989-01-06 1989-01-06 Manufacturing method of positive electrode for non-aqueous secondary battery Expired - Fee Related JP2714092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001591A JP2714092B2 (en) 1989-01-06 1989-01-06 Manufacturing method of positive electrode for non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001591A JP2714092B2 (en) 1989-01-06 1989-01-06 Manufacturing method of positive electrode for non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH02183963A true JPH02183963A (en) 1990-07-18
JP2714092B2 JP2714092B2 (en) 1998-02-16

Family

ID=11505753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001591A Expired - Fee Related JP2714092B2 (en) 1989-01-06 1989-01-06 Manufacturing method of positive electrode for non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2714092B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
WO1999059215A1 (en) * 1998-05-11 1999-11-18 Duracell Inc. Lithiated manganese oxide
US6093503A (en) * 1992-09-01 2000-07-25 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
US6093503A (en) * 1992-09-01 2000-07-25 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
WO1999059215A1 (en) * 1998-05-11 1999-11-18 Duracell Inc. Lithiated manganese oxide

Also Published As

Publication number Publication date
JP2714092B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
KR100738192B1 (en) Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and Method for preparing thereof
CN110690416A (en) High-nickel ternary positive electrode material for lithium secondary battery and preparation method thereof
JPH11180717A (en) Lithium manganate, its production and lithium cell produced by using the same
JP3702353B2 (en) Method for producing positive electrode active material for lithium battery and lithium battery
JPH0746607B2 (en) Non-aqueous secondary battery
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
CN110690444A (en) High-nickel ternary cathode material with layered porous structure, and preparation method and application thereof
JP3647758B2 (en) Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
JP3671531B2 (en) Lithium nickelate as positive electrode active material for lithium secondary battery and method for producing the same
WO2006126854A1 (en) Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
JP4769998B2 (en) Method for producing lithium manganese composite oxide
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JPH02183963A (en) Manufacture of positive electrode for nonaqueous secondary battery
JP2002313335A (en) Lithium manganese composite oxide for use in positive electrode active material of lithium secondary battery and its manufacturing method
JPH10316432A (en) Production of nickel oxyhydroxide and nonaqueous electrolytic battery
JPH0644970A (en) Nonaqueous electrolyte lithium battery
JPH09110431A (en) Production of lithium-manganese oxide based on limno2
KR20200086276A (en) Cathode material
JPH05242889A (en) Manufacture of positive electrode active material for non-aqueous electrolyte secondary battery
JPH0393163A (en) Nonaqueous system secondary battery
JPH11233112A (en) Preparation of lithium manganate compound for lithium ion secondary battery
JPH0722020A (en) Manufacture of lithium-manganese composite oxide and application thereof
JP4678452B2 (en) Method for producing lithium manganese composite oxide for positive electrode active material of lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees