JPH11233112A - Preparation of lithium manganate compound for lithium ion secondary battery - Google Patents

Preparation of lithium manganate compound for lithium ion secondary battery

Info

Publication number
JPH11233112A
JPH11233112A JP10037040A JP3704098A JPH11233112A JP H11233112 A JPH11233112 A JP H11233112A JP 10037040 A JP10037040 A JP 10037040A JP 3704098 A JP3704098 A JP 3704098A JP H11233112 A JPH11233112 A JP H11233112A
Authority
JP
Japan
Prior art keywords
lithium manganate
lithium
ion secondary
producing
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10037040A
Other languages
Japanese (ja)
Inventor
Takeshi Sakurai
健 桜井
Tadashi Sugihara
忠 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10037040A priority Critical patent/JPH11233112A/en
Publication of JPH11233112A publication Critical patent/JPH11233112A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To satisfactorily exhibit all the properties such as a charge.discharge characteristic of high capacity in the cases where a lithium manganate compound is used as an positive electrode material for a lithium ion secondary battery. SOLUTION: This method comprises combination of a manganese oxyhydroxide preparing process where water is added to MnSo4 hydrate to be adjusted to 0.08-0.8 mol/l of aqueous solution, the resuting mixture is heated to 10-80 deg.C, hydrogen peroxide is dropped to it to be stirred vigorously, aqueous ammonia is added thereafter, the resulting mixture is still standed after stirred, and where a precipitate is washed after filtration to prepare manganese oxyhydroxide dried by 20-40 deg.C of air and pulverized (150 μm or less), and a lithium manganate preparing process where the manganese oxyhydroxide is mixed with lithium hydroxide at 30-60 of mixing ratio to conduct hydrothermal reaction at 140-300 deg.C, and where filtration-washing-drying under vacuum is carried out to prepare lithium manganate. A process for heat-treating the lithium manganate under atmosphere of 100-200 deg.C is preferably combined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、リチウムイオン
二次電池の正極材料として利用されるマンガン酸リチウ
ム化合物の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lithium manganate compound used as a positive electrode material of a lithium ion secondary battery.

【0002】[0002]

【従来の技術】一般に、オキシ水酸化マンガン即ち、γ
型オキシ水酸化マンガンの製造法はK.Matsuk
i,et.al.( Electrochemica Acta.31(1986)13)
で知られている。また、γ型オキシ水酸化マンガンと水
酸化リチウムとからマンガン酸リチウムを製造すること
は田淵論文(Solid.stat.ionics,89(1996)53)で公知で
ある。マンガン酸リチウム化合物はリチウムイオン二次
電池の正極材料とリチウムを吸蔵、放出することができ
る炭素材料等の負極材料とを組合せて高電圧、高エネル
ギー密度のリチウムイオン二次電池の開発が進められて
いる。リチウムイオン二次電池用正極材料のマンガン酸
リチウム化合物はLiOH・H2Oからなる粉末とγ―
MnOOHからなる粉末を450℃において窒素雰囲気
中焼成してLiMnO2を作成する方法も知られてい
る。しかし、これらの粉末を用いて高容量のLiMnO
2を得るためにはLiOH・H2O粉末とγ―MnOOH
粉末の均一混合物を焼成前に形成している必要がある。
均一にリチウム化された材料を得るためには焼成前にこ
れらの混合物の均一性が不十分であると望ましくない化
合物が形成されたり、未反応物が不純物として残る可能
性があり、これらによって正極材料の電気化学的活性度
が低下し、充・放電容量等の特性が低下していた。した
がって、特にリチウムイオン二次電池の正極材料として
用いるのに適したLiMnO2等化合物の開発が盛んに
行われ、例えば特開平8―241716号公報に記載さ
れる方法は、すなわちγ―MnOOH等の水酸化物やオ
キシ水酸化物とLiOH等のアルカリとの反応を用いた
正極活物質の製造工程を簡素化するとともに、前記水酸
化物やオキシ水酸化物のアルカリ化の反応効率を高め、
均一な組成を有して高容量な正極活物質が得られる方法
が提案されている。
2. Description of the Related Art Generally, manganese oxyhydroxide, that is, γ
A method for producing manganese oxyhydroxide is described in K. Matsuk
i, et. al. (Electrochemica Acta.31 (1986) 13)
Is known for. The production of lithium manganate from γ-type manganese oxyhydroxide and lithium hydroxide is known from Tabuchi's dissertation (Solid.stat.ionics, 89 (1996) 53). For lithium manganate compounds, the development of high-voltage, high-energy-density lithium-ion secondary batteries is being promoted by combining positive electrode materials for lithium-ion secondary batteries and negative electrode materials such as carbon materials capable of occluding and releasing lithium. ing. The lithium manganate compound of the positive electrode material for lithium ion secondary batteries is composed of a powder of LiOH · H 2 O and γ-
A method is also known in which a powder made of MnOOH is fired at 450 ° C. in a nitrogen atmosphere to produce LiMnO 2 . However, using these powders, high capacity LiMnO
In order to obtain 2 , LiOH · H 2 O powder and γ-MnOOH
A homogeneous mixture of powders must be formed prior to firing.
Insufficient homogeneity of these mixtures prior to firing to obtain a uniformly lithiated material can result in the formation of undesirable compounds or unreacted materials remaining as impurities, The electrochemical activity of the material was reduced, and characteristics such as charge / discharge capacity were reduced. Therefore, development of compounds such as LiMnO 2 particularly suitable for use as a cathode material of a lithium ion secondary battery has been actively conducted. For example, the method described in JP-A-8-241716 discloses a method of While simplifying the manufacturing process of the positive electrode active material using the reaction of hydroxides and oxyhydroxides with alkalis such as LiOH, the reaction efficiency of alkalizing the hydroxides and oxyhydroxides is increased,
A method has been proposed in which a positive electrode active material having a uniform composition and a high capacity can be obtained.

【0003】[0003]

【発明が解決しようとする課題】しかし、すでに提案さ
れているいずれの方法で製造されたマンガン酸リチウム
化合物もリチウムイオン二次電池用の正極材料として用
いる場合に高容量の充・放電特性等の性質をすべて満足
して具備するものはなく、より一層の開発が望まれてい
るのが現状である。
However, lithium manganate compounds produced by any of the methods already proposed have high capacity charge-discharge characteristics when used as a positive electrode material for lithium ion secondary batteries. Nothing satisfies all of the properties, and further development is currently desired.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、特にリチウムイオン二次電池用
正極材料として用いるのに適したマンガン酸リチウム化
合物の製造方法を開発すべく研究を行った結果、原料と
して使用するオキシ水酸化マンガンはγ型以外のオキシ
水酸化マンガンが混入しても水熱条件下での合成と雰囲
気中熱処理による酸素量調整の工程とを組合わせて製造
すれば、実用上十分な性能を発揮出来る粉末を製造する
ことが出来るという知見を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, research was conducted to develop a method for producing a lithium manganate compound particularly suitable for use as a cathode material for a lithium ion secondary battery. As a result, manganese oxyhydroxide used as a raw material was γ-type. Even if manganese oxyhydroxide other than manganese oxyhydroxide is mixed, if it is manufactured by combining the synthesis under hydrothermal conditions and the process of adjusting the amount of oxygen by heat treatment in the atmosphere, it is necessary to produce a powder that can demonstrate practically sufficient performance. I learned that I can do it.

【0005】この発明は上記の知見に基づいてなされた
ものであって、この発明のリチウムイオン二次電池用マ
ンガン酸リチウム化合物の製造法は、MnSO4水和物
に水を加えて0.08〜0.8mol/lの水溶液に調
整して、10〜80℃に加熱し、過酸化水素を滴下して
激しく攪拌後、アンモニア水を加えて更に、攪拌後静
置、濾過後澱物の洗浄を行い、20〜40℃の温風乾燥
―粉砕(150ミクロン以下)のオキシ水酸化マンガンを製
造する工程とオキシ水酸化マンガンと水酸化リチウムの
混合比を30〜60で混合して140〜300℃の水熱
条件下で反応を行い、濾過―洗浄―減圧の中で乾燥する
マンガン酸リチウムを製造する工程の組,合わせからな
ることを特徴とするリチウムイオン二次電池用マンガン
酸リチウム化合物の製造法である。
The present invention has been made on the basis of the above-mentioned findings, and a method for producing a lithium manganate compound for a lithium ion secondary battery according to the present invention comprises adding MnSO 4 hydrate to water by adding 0.08 wt. After adjusting to an aqueous solution of ~ 0.8 mol / l, heating to 10 ~ 80 ° C, adding hydrogen peroxide dropwise, stirring vigorously, adding aqueous ammonia, further stirring, leaving still, filtering and washing the precipitate And a step of producing manganese oxyhydroxide of 20-40 ° C. hot air drying-pulverization (150 μm or less) and mixing the manganese oxyhydroxide and lithium hydroxide at a mixing ratio of 30-60 to 140-300 A lithium manganate compound for a lithium ion secondary battery, comprising a combination and combination of steps of producing a lithium manganate that is reacted under hydrothermal conditions at a temperature of 400 ° C., and dried under a reduced pressure of filtration-washing-reduction. Manufacture Is the law.

【0006】また、更に高い電池特性を得るためには、
MnSO4水和物に水を加えて0.08〜0.8mol
/1の水溶液に調整して、10〜80℃に加熱し、過酸
化水素を滴下して激しく攪拌後、アンモニア水を加えて
更に、攪拌後静置、濾過後澱物の洗浄を行い、20〜4
0℃の温風乾燥―粉砕(150ミクロン以下)のオキシ水酸
化マンガンを製造する工程とオキシ水酸化マンガンと水
酸化リチウムの混合比を30〜60で混合して140〜
300℃の水熱条件下で反応を行い、濾過―洗浄―減圧
の中で乾燥するマンガン酸リチウムを製造する工程と更
に、必要に応じてマンガン酸リチウムを100〜200
℃の雰囲気中で熱処理する工程の組合せからなることを
特徴とするリチウムイオン二次電池用マンガン酸リチウ
ム化合物の製造法である。
In order to obtain higher battery characteristics,
Add water to MnSO 4 hydrate and add 0.08 to 0.8 mol
/ 1 aqueous solution, heated to 10 to 80 ° C, added dropwise with hydrogen peroxide, stirred vigorously, added aqueous ammonia, further stirred and allowed to stand, filtered, washed the precipitate, ~ 4
Hot air drying at 0 ° C.—a process for producing crushed (150 μm or less) manganese oxyhydroxide and a mixing ratio of manganese oxyhydroxide and lithium hydroxide of 30 to 60 and 140 to
The reaction is carried out under hydrothermal conditions of 300 ° C., and a step of producing lithium manganate which is filtered, washed and dried under reduced pressure.
A method for producing a lithium manganate compound for a lithium ion secondary battery, comprising a combination of steps of performing a heat treatment in an atmosphere at a temperature of ° C.

【0007】つぎに、この発明のリチウムイオン二次電
池用マンガン酸リチウム化合物の製造法において、優れ
た電池特性、即ち、充放電容量を得るためののマンガン
酸リチウム化合物を製造するには先ず硫酸マンガン()の
水溶液に過酸化水素水とアンモニア水を加えて生成する
γ―MnO(OH)を脱水して得られる。そのγ―Mn
OOHと水酸化リチウムを反応させてマンガン酸リチウ
ム化合物とするために、それぞれの工程の製造条件を下
記の通りに限定した、その理由を以下に説明する。
Next, in the method for producing a lithium manganate compound for a lithium ion secondary battery according to the present invention, in order to produce a lithium manganate compound for obtaining excellent battery characteristics, that is, a charge / discharge capacity, first, sulfuric acid is used. Γ-MnO (OH) produced by adding aqueous hydrogen peroxide and aqueous ammonia to an aqueous solution of manganese () is obtained by dehydration. Its γ-Mn
In order to react OOH and lithium hydroxide to form a lithium manganate compound, the production conditions in each step were limited as follows, and the reason will be described below.

【0008】(a) MnOOHの製造工程 MnSO4水和物にH2Oを加えて調整するが0.01m
ol/l未満では収率が低下するようになり好ましくな
く、一方0.8mol/lを越えると不均一な沈澱物が
形成され反応に支障が生じることから、その許容範囲を
0.01〜0.8mol/lと定めた。
(A) Production step of MnOOH Adjustment is made by adding H 2 O to MnSO 4 hydrate.
If the amount is less than 0.8 mol / l, the yield is unfavorably decreased. On the other hand, if the amount exceeds 0.8 mol / l, a heterogeneous precipitate is formed to hinder the reaction. 0.8 mol / l.

【0009】MnSO4水和物の加熱温度は10℃未満
では合成反応が促進されず好ましくなく、一方、80℃
を越えると反応は促進されるが過酸化水素等の添加物の
挿入に危険が生じることから、その加熱温度を10℃〜
80℃と定めた。好ましくは、30〜60℃と定めた。
If the heating temperature of MnSO 4 hydrate is less than 10 ° C., the synthesis reaction is not accelerated, which is not preferable.
If the heating temperature exceeds 10 ° C., the reaction is accelerated, but the insertion of additives such as hydrogen peroxide may be dangerous.
It was determined to be 80 ° C. Preferably, it was set to 30 to 60 ° C.

【0010】MnOOHの温風乾燥温度は20℃未満で
は十分に乾燥が出来ず、40℃を越えるとMnOOH構
造が崩れ始めることから、その温風乾燥温度を20〜4
0℃と定めた。
If the hot air drying temperature of MnOOH is less than 20 ° C., drying cannot be sufficiently performed, and if it exceeds 40 ° C., the MnOOH structure starts to collapse.
It was determined to be 0 ° C.

【0011】(b)マンガン酸リチウムの製造工程 MnOOHとLiOH・H2Oの混合比の許容範囲は3
0未満ではLiMnO2への転化が起こらず、一方、6
0を越えるとLiMnO2の生成効果の向上が見られず
変わらないことから、その混合比を30〜60と定め
た。
(B) Production process of lithium manganate The allowable range of the mixing ratio of MnOOH and LiOH.H 2 O is 3
If it is less than 0, conversion to LiMnO 2 does not occur.
If it exceeds 0, the effect of producing LiMnO 2 is not improved and does not change. Therefore, the mixing ratio is set to 30 to 60.

【0012】MnOOHとLiOH・H2Oの水熱条件
下での反応温度が140℃未満では反応が進まず、一
方、300℃を越えると臨界状態に達するので運転が不
可能となることから、その反応温度を0〜300℃と定
めた。
If the reaction temperature of MnOOH and LiOH.H 2 O under hydrothermal conditions is lower than 140 ° C., the reaction does not proceed. On the other hand, if it exceeds 300 ° C., a critical state is reached, so that operation becomes impossible. The reaction temperature was determined to be 0-300C.

【0013】(c)マンガン酸リチウムの熱処理工程 LiMnO2の熱処理は必要に応じて行うものであるが
熱処理温度は100℃未満では酸素量調整が困難とな
り、一方、200℃を越えるとLiMnO2の構造が崩
れるようになることから。その熱処理温度範囲を100
〜200℃と定めた。
[0013] (c) heat treatment step LiMnO 2 annealing heat treatment temperature but is performed as required by the lithium manganate becomes difficult oxygen-amount adjustment is less than 100 ° C., whereas, of LiMnO 2 exceeds 200 ° C. Because the structure starts to collapse. The heat treatment temperature range is 100
200200 ° C.

【0014】[0014]

【実施例】つぎに、この発明のリチウムイオン二次電池
用マンガン酸リチウム化合物の製造法の実施例により具
体的に説明する。通常の化学反応装置を用い、本発明製
造法1〜8、比較製造法1〜7のそれぞれ工程について
表1に示される処理条件により調整し、本発明製造法1
〜8のMnOOHの製造工程では硫酸マンガン5水和物
の水溶液濃度(mol/l)を0.01〜0.8mol/lと
変化し、また、硫酸マンガン5水和物水溶液容積(l)は
一定の1(比較製造法も同一)とし、溶液温度(℃)を10
〜80℃と変化し、つぎに、過酸化水素(ml)は4〜25
0mlの範囲で滴下し、希釈アンモニア水(l)0.1〜
8lとし、その時のアンモニア水の希釈量(倍)を一定の
80倍(比較製造法も同一)とし、沈澱洗浄水量(l)は
0.3〜60lで行った。一方、比較製造法1〜7は上
記のそれぞれの条件の範囲から少なくとも一つは外れて
いる。つぎに、本発明製造法1〜8のマンガン酸リチウ
ムの製造工程ではMnOOHとLiOH・H2Oの混合
比を30〜60とし、LiOH−水和物の純度(%)は9
9%(比較製造法も同一)と一定とし、水熱条件の温度
(℃)は140〜300℃、時間(hr)は2〜30hrと変
化し、洗浄後のpHは9(比較製造法も同一)の一定とし
た。一方、比較製造法1〜7は上記のそれぞれの範囲から
少なくとも一つは外れているものである。さらに、本発
明製造法1〜8のマンガン酸リチウムの熱処理工程では熱
処理条件の雰囲気を窒素または酸素とし、熱処理温度範
囲を100〜200℃とした。一方、比較製造法1〜7
の熱処理雰囲気を酸素、窒素または無しとした。
Next, the method for producing a lithium manganate compound for a lithium ion secondary battery according to the present invention will be described in detail with reference to examples. Using an ordinary chemical reaction apparatus, each step of the production methods 1 to 8 of the present invention and the comparative production methods 1 to 7 was adjusted according to the processing conditions shown in Table 1, and the production method of the present invention
In the production process of MnOOH of ~ 8, the aqueous solution concentration (mol / l) of manganese sulfate pentahydrate was changed from 0.01 to 0.8 mol / l, and the volume (l) of the aqueous solution of manganese sulfate pentahydrate was Constant 1 (same for the comparative production method) and solution temperature (° C) of 10
8080 ° C., then hydrogen peroxide (ml) was 4-25
0 ml, and diluted ammonia water (l) 0.1 ~
The amount was 8 liters, the dilution amount (times) of the ammonia water at that time was a constant 80 times (the comparative production method was the same), and the precipitation washing water amount (l) was 0.3 to 60 liters. On the other hand, at least one of the comparative production methods 1 to 7 is out of the range of each of the above conditions. Next, in the production steps of lithium manganate of production methods 1 to 8 of the present invention, the mixing ratio of MnOOH and LiOH.H 2 O was set to 30 to 60, and the purity (%) of LiOH-hydrate was 9%.
9% (same for comparative manufacturing method)
The temperature (° C.) varied from 140 to 300 ° C., the time (hr) varied from 2 to 30 hours, and the pH after washing was kept constant at 9 (the same applies to the comparative production method). On the other hand, at least one of the comparative production methods 1 to 7 is out of the respective ranges described above. Furthermore, in the heat treatment step of lithium manganate of the production methods 1 to 8 of the present invention, the atmosphere of the heat treatment conditions was nitrogen or oxygen, and the heat treatment temperature range was 100 to 200 ° C. On the other hand, comparative production methods 1 to 7
The heat treatment atmosphere was oxygen, nitrogen or none.

【0015】この発明のマンガン酸リチウム化合物をリ
チウムイオン二次電池の正極とし、通常の充・放電試験
機を用いて初期充電容量(Ah/kg)と20サイクル後充電
容量(Ah/kg)を測定してマンガン酸リチウム化合物製品
の評価を行い、その結果を表1に示した。
Using the lithium manganate compound of the present invention as the positive electrode of a lithium ion secondary battery, the initial charge capacity (Ah / kg) and the charge capacity after 20 cycles (Ah / kg) are measured using a normal charge / discharge tester. The lithium manganate compound product was measured and evaluated, and the results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】第1表に示される結果から、本発明リチ
ウムイオン二次電池用マンガン酸リチウム化合物の製造
法1〜8のマンガン酸リチウム化合物をリチウムイオン
二次電池の正極材料として用いてなる蓄電池は、いずれ
も高容量であり、かつ従来マンガン酸リチウム化合物を
正極材料とした蓄電池に比して充・放電サイクルを繰返
した場合の容量低下が著しく小さいという好ましい結果
を示すのに対して、比較製造法1〜7のマンガン酸リチ
ウム化合物を正極材料として用いてなる蓄電池に見られ
るように、蓄電池の充・放電容量の点で十分満足する性
能を発揮しないことが明らかである。上述のように、こ
の発明のマンガン酸リチウム化合物は特にリチウムイオ
ン二次電池の正極材料として用いた場合に、前記蓄電池
の長いサイクル寿命に亘って大きな充・放電容量が確保
されるようになるほか、コスト低減に寄与するなど工業
上有用な特性を有するのである。
As can be seen from the results shown in Table 1, the lithium manganate compounds of the methods 1 to 8 of the present invention for producing lithium manganese compounds for lithium ion secondary batteries were used as the positive electrode material of lithium ion secondary batteries. While the storage batteries have high capacity, and show a favorable result that the capacity decrease when the charge / discharge cycle is repeated is remarkably small compared to a storage battery using a conventional lithium manganate compound as a positive electrode material, As is apparent from the storage batteries using the lithium manganate compounds of Comparative Production Methods 1 to 7 as positive electrode materials, it is apparent that the storage batteries do not exhibit sufficiently satisfactory performance in terms of charge / discharge capacity. As described above, especially when the lithium manganate compound of the present invention is used as a positive electrode material of a lithium ion secondary battery, a large charge / discharge capacity can be ensured over a long cycle life of the storage battery. It has industrially useful characteristics such as contributing to cost reduction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオン二次電池用マンガン酸リ
チウム化合物の製造法において、MnSO4水和物に水
を加えて0.08〜0.8mol/lの水溶液に調整し
て、10〜80℃に加熱し、過酸化水素を滴下して激し
く攪拌後、アンモニア水を加えて更に、攪拌後静置、濾
過後澱物の洗浄を行い、20〜40℃の温風乾燥―粉砕
(150ミクロン以下)のオキシ水酸化マンガンを製造する工程
とオキシ水酸化マンガンと水酸化リチウムの混合比を3
0〜60で混合して140〜300℃の水熱条件下で反
応を行い、濾過―洗浄―減圧の中で乾燥するマンガン酸
リチウムを製造する工程の組合せからなることを特徴と
するリチウムイオン二次電池用マンガン酸リチウム化合
物の製造法。
In a method for producing a lithium manganate compound for a lithium ion secondary battery, water is added to MnSO 4 hydrate to adjust to an aqueous solution of 0.08 to 0.8 mol / l, , Heated with hydrogen peroxide, stirred vigorously, added with ammonia water, further stirred, allowed to stand, filtered, washed the precipitate, dried with warm air at 20-40 ° C-crushed
(150 micron or less) manganese oxyhydroxide manufacturing process and a mixing ratio of manganese oxyhydroxide and lithium hydroxide of 3
A lithium ion mixture comprising a combination of steps of producing lithium manganate which is mixed at 0 to 60, reacted under a hydrothermal condition of 140 to 300 ° C., and dried under filtration, washing, and reduced pressure. For producing lithium manganate compounds for secondary batteries.
【請求項2】 リチウムイオン二次電池用マンガン酸リ
チウム化合物の製造法において、MnSO4水和物に水
を加えて0.08〜0.8mol/lの水溶液に調整し
て、10〜80℃に加熱し、過酸化水素を滴下して激し
く攪拌後、アンモニア水を加えて更に、攪拌後静置、濾
過後澱物の洗浄を行い、20〜40℃の温風乾燥―粉砕
(150ミクロン以下)のオキシ水酸化マンガンを製造する
工程とオキシ水酸化マンガンと水酸化リチウムの混合比
30〜60で混合して140〜300℃の水熱条件下で
反応を行い、濾過―洗浄―減圧の中で乾燥するマンガン
酸リチウムを製造する工程と更に、必要に応じてマンガ
ン酸リチウムを100〜200℃の雰囲気中で熱処理す
る工程の組合せからなることを特徴とするリチウムイオ
ン二次電池用マンガン酸リチウム化合物の製造法。
2. A method for producing a lithium manganate compound for a lithium ion secondary battery, wherein water is added to MnSO 4 hydrate to adjust to an aqueous solution of 0.08 to 0.8 mol / l, , Heated with hydrogen peroxide, stirred vigorously, added with ammonia water, further stirred, allowed to stand, filtered, washed the precipitate, dried with warm air at 20-40 ° C-crushed
(150 microns or less) Manufacture of manganese oxyhydroxide and a mixture of manganese oxyhydroxide and lithium hydroxide at a mixing ratio of 30 to 60, and react under hydrothermal conditions of 140 to 300 ° C., filtration and washing A lithium ion secondary battery comprising a combination of a step of producing lithium manganate which is dried under reduced pressure and, if necessary, a step of heat-treating lithium manganate in an atmosphere at 100 to 200 ° C. For producing lithium manganate compounds.
JP10037040A 1998-02-19 1998-02-19 Preparation of lithium manganate compound for lithium ion secondary battery Pending JPH11233112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10037040A JPH11233112A (en) 1998-02-19 1998-02-19 Preparation of lithium manganate compound for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10037040A JPH11233112A (en) 1998-02-19 1998-02-19 Preparation of lithium manganate compound for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH11233112A true JPH11233112A (en) 1999-08-27

Family

ID=12486506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10037040A Pending JPH11233112A (en) 1998-02-19 1998-02-19 Preparation of lithium manganate compound for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH11233112A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002654A (en) * 2001-06-21 2003-01-08 Naoaki Kumagai Method for producing layered lithium manganese complex oxide and lithium secondary battery
CN102386394A (en) * 2011-11-04 2012-03-21 上海空间电源研究所 Preparation method for lithium manganese nickel oxide served as high voltage lithium ion anode material
JP2014002849A (en) * 2012-06-15 2014-01-09 Toyota Motor Corp Lithium manganese-containing oxide and method for producing the same, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN112357975A (en) * 2020-09-30 2021-02-12 宜宾光原锂电材料有限公司 Preparation method of hollow ternary cathode material precursor and prepared ternary cathode material precursor
CN115028201A (en) * 2022-05-23 2022-09-09 荆门市格林美新材料有限公司 Preparation method and application of spherical MnOOH

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002654A (en) * 2001-06-21 2003-01-08 Naoaki Kumagai Method for producing layered lithium manganese complex oxide and lithium secondary battery
CN102386394A (en) * 2011-11-04 2012-03-21 上海空间电源研究所 Preparation method for lithium manganese nickel oxide served as high voltage lithium ion anode material
JP2014002849A (en) * 2012-06-15 2014-01-09 Toyota Motor Corp Lithium manganese-containing oxide and method for producing the same, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN112357975A (en) * 2020-09-30 2021-02-12 宜宾光原锂电材料有限公司 Preparation method of hollow ternary cathode material precursor and prepared ternary cathode material precursor
CN112357975B (en) * 2020-09-30 2021-09-07 宜宾光原锂电材料有限公司 Preparation method of hollow ternary cathode material precursor and prepared ternary cathode material precursor
CN115028201A (en) * 2022-05-23 2022-09-09 荆门市格林美新材料有限公司 Preparation method and application of spherical MnOOH
CN115028201B (en) * 2022-05-23 2023-11-21 荆门市格林美新材料有限公司 Spherical MnOOH preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR100822012B1 (en) Cathode active materials for lithium batteries, Method of preparing thereof and lithium secondary batteries comprising same
US6071489A (en) Methods of preparing cathode active materials for lithium secondary battery
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
WO2007094644A1 (en) Preparation method of lithium-metal composite oxides
WO2007094645A1 (en) Lithium-metal composite oxides and electrochemical device using the same
KR20050121727A (en) Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
WO2007048283A1 (en) A process for preparing a positive electrode material for lithium ion battery
JP3702353B2 (en) Method for producing positive electrode active material for lithium battery and lithium battery
JPH08130013A (en) Manufacture of lim3+o2 or limn2o4, and lini3+o2 for secondary battery positive electrode material
US20060188780A1 (en) Lithium-nickel-manganese composite oxide, processes for producing the same, and use of the same
JP2000515478A (en) Synthesis of lithium nickel cobalt dioxide
JPH07142065A (en) Manufacture of active material for lithium secondary battery
JP2002060225A (en) Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate
KR100765970B1 (en) Manganese complex oxides by co-precipitation method and preparation method of the same, and spinel type cathode active material for lithium secondary batteries using thereby and preparation method of the same
JPH10316431A (en) Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery
JPH08277118A (en) Preparation of lithium interlayer compound
JP3461800B2 (en) Lithium manganese nickel composite oxide and method for producing the same
US10033032B1 (en) Preparation method for positive electrode material for secondary battery
WO2018169004A1 (en) Nickel-manganese-based composite oxide and method for producing same
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
US6899860B2 (en) Process for producing lithium manganate and lithium battery using the lithium manganate
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
WO2012127796A1 (en) Process for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
JPH11233112A (en) Preparation of lithium manganate compound for lithium ion secondary battery
KR102221418B1 (en) Lithium composite oxide precursor, process for producing the same, and lithium complex oxide prepared using the same