JPS6310466A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS6310466A
JPS6310466A JP61155262A JP15526286A JPS6310466A JP S6310466 A JPS6310466 A JP S6310466A JP 61155262 A JP61155262 A JP 61155262A JP 15526286 A JP15526286 A JP 15526286A JP S6310466 A JPS6310466 A JP S6310466A
Authority
JP
Japan
Prior art keywords
positive electrode
binder
silicone
acrylic copolymer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61155262A
Other languages
Japanese (ja)
Inventor
Mitsunori Hara
原 満紀
Seiji Morita
誠二 森田
Koji Hirai
浩二 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61155262A priority Critical patent/JPS6310466A/en
Publication of JPS6310466A publication Critical patent/JPS6310466A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent deterioration in battery performance and to increase working efficiency in production by using silicone-acrylic copolymer as a binder of a positive electrode. CONSTITUTION:Silicone-acrylic copolymer is used as a binder of a positive electrode. Preferable mixing amount of the copolymer to the positive electrode is 0.5-3.0wt%. Since the binder contains silicone, decomposition temperature is high, and at a high temperature of 300 deg.C or more, film forming capability of the binder is not lost. Therefore, high temperature treatment of the positive electrode is made possible, moisture in the positive electrode is sufficiently removed, and deterioration in battery performance caused by residual moisture can be retarded. Even when the binder is used alone, sufficient mechanical strength is obtained in a very thin electrode. Therefore, since a thickening agent such as polyvinyl alcohol is not necessary, heat treatment process for removing the thickening agent is eliminated, and working efficiency is increased.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は非水電解液電池に係り、特に正極の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION A) Field of Industrial Application The present invention relates to non-aqueous electrolyte batteries, and particularly relates to improvements in positive electrodes.

(切 従来の技術 この種電池の正極は、金属の酸化物、硫化物或いは、ハ
ロゲン化物などの活物質に導電剤及び結着剤を加えた混
合物を熱処理して作成されている。
(BACKGROUND ART) The positive electrode of this type of battery is made by heat-treating a mixture of an active material such as a metal oxide, sulfide, or halide, to which a conductive agent and a binder are added.

ここで結着剤としては耐電解液性は勿論のこと、水分除
去工程における加熱処理に耐え得るものであることが必
要であり、この観点より例えば特公昭48−25568
号公報に開示されているフッ素樹脂が一般的に用いられ
ている。
Here, the binder must not only have electrolytic solution resistance but also be able to withstand heat treatment in the water removal process.
The fluororesin disclosed in the above publication is generally used.

しかしながら、フッ素樹脂を用いる場合には正極の機械
的強度を実用に供しつる程度に保持させるために正極に
対して10〜20重鼠%のように多量に用いなければな
らず、多量の結着剤の使用により正極の吸液性の低下や
活物質の放電利用率の低下を招き、又単位体積当りの活
物質Ikが減少し、電池の放電容量の低下を来たすとい
う欠点がある。
However, when using fluororesin, in order to maintain the mechanical strength of the positive electrode to a practical level, it must be used in a large amount, such as 10 to 20% by weight, based on the positive electrode, and a large amount of binding The use of such agents causes a decrease in the liquid absorption of the positive electrode and a decrease in the discharge utilization rate of the active material, and also has the disadvantage that the active material Ik per unit volume decreases, resulting in a decrease in the discharge capacity of the battery.

このような欠点を改善するために、結着剤の添加かを削
減する代わりに正極の外周をステンレス缶で補強したり
、或いは特開昭59−214159号公報、特開昭59
−230257号公報に開示されているように正極の片
面若しくは内面に金部などの多孔性導電体を配置して補
強することが提案されているが、これらの方法では極板
成型時の工数アップ、発電要素以外の部品(内借など)
を電池内に組み入れることによる電池内有効体積の減少
を招くことになる。
In order to improve such drawbacks, instead of reducing the amount of binder added, the outer periphery of the positive electrode is reinforced with a stainless steel can, or Japanese Patent Application Laid-Open No. 59-214159,
As disclosed in Japanese Patent No. 230257, it has been proposed to strengthen the positive electrode by placing a porous conductor such as gold on one side or the inner surface of the positive electrode, but these methods increase the number of man-hours required for molding the electrode plate. , parts other than power generation elements (rented etc.)
Incorporating this into the battery results in a decrease in the effective volume within the battery.

又、特開昭59−189559号公報においてはフッ素
樹脂結着剤とポリビニールアルコールなどの粘性剤とを
併用することが提案されているが、この方法では正極合
剤の混合工程や正極の加熱処理工程が複雑で工数が多(
、しかも得られた極板はフッ素樹脂のみを使用した極板
より強度は向上するものの充分とは云えず、特に厚み2
m+以下の電池に用いる極板のように極薄形極板を本方
法で作成した場合には組立時に極板の割れ、欠落が生じ
るという欠点がある。更に、フッ素樹脂結着剤を用いた
正極合剤は流動性に乏しく、そのため正極合剤を秤量す
る際の精度が悪く、極板製造時における作業性、均一性
に難点がある。
Furthermore, in JP-A-59-189559, it is proposed to use a fluororesin binder and a viscous agent such as polyvinyl alcohol in combination, but this method does not require the mixing process of the positive electrode mixture or the heating of the positive electrode. The processing process is complicated and requires a lot of man-hours (
Moreover, although the strength of the obtained electrode plate is improved compared to the electrode plate using only fluororesin, it cannot be said to be sufficient, especially when the thickness is 2.
When an extremely thin electrode plate, such as an electrode plate used in a battery of m+ or less, is produced by this method, there is a drawback that the electrode plate may be cracked or missing during assembly. Furthermore, a positive electrode mixture using a fluororesin binder has poor fluidity, resulting in poor accuracy when weighing the positive electrode mixture, and problems with workability and uniformity during electrode plate manufacture.

そこでフッ素樹脂に代わるものも種々提案されている。Therefore, various alternatives to fluororesins have been proposed.

例えばポリアクリル酸ソーダの添加(特開昭57−69
666号公報)、シリケート系又はホスフェート系耐熱
性無機接着剤の添加(特開昭58−147964号公報
)、ポリイミド系樹脂前駆物質の有機溶剤溶液の添加(
特開昭58−147965号公報)或いはポリアクリル
酸ナトるがいずれも電池特性或いは製造上の問題があり
、且つ極板の強度も極薄形では不充分であった。
For example, addition of sodium polyacrylate (JP-A-57-69)
666), addition of a silicate-based or phosphate-based heat-resistant inorganic adhesive (JP-A-58-147964), addition of an organic solvent solution of a polyimide resin precursor (
(Japanese Unexamined Patent Publication No. 58-147965) or sodium polyacrylic acid, both of them have problems in battery characteristics or manufacturing, and the strength of the electrode plate is insufficient even if it is extremely thin.

ej  発明が解決しようとする問題点前述せる従来の
結着剤による電池特性の低下、作業上の問題などを解決
しようとするものである。
ej Problems to be Solved by the Invention The invention attempts to solve the aforementioned problems such as deterioration of battery characteristics caused by conventional binders and operational problems.

に) 問題点を解決するための手段 本発明は正極の結着剤としてシリコン・アクリル共重合
樹脂を用いることを特徴とする。
B) Means for Solving the Problems The present invention is characterized in that a silicone-acrylic copolymer resin is used as a binder for the positive electrode.

シリコン・アクリル共重合樹脂の添加量としては正極に
対して0.5〜3.0重量%の範囲が好ましい。
The amount of silicone-acrylic copolymer resin added is preferably in the range of 0.5 to 3.0% by weight based on the positive electrode.

(ホ)作用 本発明による結着剤はシリコンを含有し分解温度が高い
ので300℃以上の高温においても結着剤の造膜作用は
進行し分解することがない。
(E) Function Since the binder according to the present invention contains silicon and has a high decomposition temperature, the film-forming action of the binder proceeds even at high temperatures of 300° C. or higher, and the binder does not decompose.

そのため正極の高温熱処理が可能となり、正極中の水分
を充分に除去でき、残存水分による電池特性の劣化を抑
制しうる。
Therefore, high-temperature heat treatment of the positive electrode is possible, moisture in the positive electrode can be sufficiently removed, and deterioration of battery characteristics due to residual moisture can be suppressed.

又、本発明による結着剤は単独で使用しても極薄形極板
において充分な機械的強度が得られるため、ポリビニル
アルコールなどの粘−1,主剤が不要となり、その結果
粘性剤除去のための熱処理工程が削除でき作業性が向上
する。
In addition, even when the binder of the present invention is used alone, sufficient mechanical strength can be obtained in ultra-thin electrode plates, so a viscous agent such as polyvinyl alcohol is not required, and as a result, it is easy to remove the viscous agent. The heat treatment process for this process can be eliminated, improving work efficiency.

更に本発明による結着剤は高温中においても熱的に安定
な膜を形成し、非水電解液電池で大きな問題となる結着
剤の分解溶出を因とする電池性能の劣化が抑えられる。
Furthermore, the binder according to the present invention forms a thermally stable film even at high temperatures, and deterioration of battery performance due to decomposition and elution of the binder, which is a major problem in non-aqueous electrolyte batteries, can be suppressed.

(へ)実施例 以下本発明の一実施例について詳述する。(f) Example An embodiment of the present invention will be described in detail below.

活物質として二酸化マンガン粉末、導電剤としΔ てのグラファイト結着剤としてのシリコン・アクリル共
重合樹脂エマルジ9ンを88.5 : 10 : 1.
5の割合で混合して正極合剤とし、この合剤に対して純
水を50重区%加え、混練した後、90℃で約10時間
乾燥する。乾燥後粉砕し32メツシユパスさせたものを
加圧成形したのち、この成形体を真空下において270
℃で120分間熱処理して正極とする。正極寸法は直径
16.3%φ、厚み0.57%である。
Manganese dioxide powder was used as an active material, graphite was used as a conductive agent, and silicone-acrylic copolymer resin emulsion was used as a binder in a ratio of 88.5:10:1.
5% of pure water was added to this mixture, kneaded, and dried at 90° C. for about 10 hours. After drying, the product was pulverized and subjected to 32 mesh passes, and then pressure molded.
A positive electrode was prepared by heat treatment at ℃ for 120 minutes. The dimensions of the positive electrode are 16.3% in diameter and 0.57% in thickness.

負極はリチウム板をアルゴン置換されたドライボックス
中でローラーにより所定厚みに圧延し、これを直径11
.8%φの寸法に打抜いたものである。
The negative electrode is made by rolling a lithium plate to a predetermined thickness with a roller in an argon-substituted dry box.
.. It is punched to a size of 8%φ.

又、電解液としてはプロピレンカーボネートと1.2ジ
メトキシエタンとの混合溶媒に過塩素酸リチウムを溶解
したものを用い、セバレータトシテポリプロピレン不織
布を用いて径20.0%φ、厚み16.0%のボタン型
非水電解液電池を作成した。
In addition, as an electrolytic solution, lithium perchlorate was dissolved in a mixed solvent of propylene carbonate and 1.2 dimethoxyethane, and a polypropylene nonwoven fabric of Sebareta Toshite was used, with a diameter of 20.0%φ and a thickness of 16.0%. A button-type non-aqueous electrolyte battery was created.

第1図は結着剤としてのシリコン・アクリル共重合樹脂
の添加量と正極極板強度との関係を示す。
FIG. 1 shows the relationship between the amount of silicone-acrylic copolymer resin added as a binder and the strength of the positive electrode plate.

尚、ここで極板強度とは第2図に示すように金型(1)
の径小孔部(2)に連通ずる径大孔部(3)に正極(4
)を載置し、パンチ(5)で正極を加圧し正極が割れた
時の荷重を示す。
Note that the plate strength here refers to the strength of the mold (1) as shown in Figure 2.
The positive electrode (4) is connected to the large diameter hole (3) which communicates with the small diameter hole (2) of the
) is placed and the positive electrode is pressurized with a punch (5), and the load is shown when the positive electrode breaks.

第1図より明らかなようにシリコン・アクリル共重合樹
脂の添7+tlluが0.5重量%以上において極板強
度が100yを越えているのがわかる。因みに特開昭5
9−189559号公報による従来の正極では80j程
度であるっ 一方、!311fflはシリコン・アクリル共重合樹脂
の添加量と電池の放電時間との関係を示す。尚、放電条
件は温度23°C1負荷12にΩ、放電終止電圧′Lo
vとした 第3図から明らかなようにシリコン・アクリル共重合樹
脂の添加量が3.0重量%以上になると放電時間が短か
(なる傾向が大きくなる。これは結着剤の増加に伴なう
活物質量の減少及び結着剤の造膜作用により電極中への
電解液の浸透性が低下するためと考えられる。
As is clear from FIG. 1, the electrode plate strength exceeds 100y when the silicone-acrylic copolymer resin additive 7+tllu is 0.5% by weight or more. By the way, Japanese Patent Publication No. 5
In the conventional positive electrode according to Publication No. 9-189559, it is about 80j, whereas! 311ffl shows the relationship between the amount of silicone-acrylic copolymer resin added and the battery discharge time. The discharge conditions are temperature 23°C, load 12, Ω, and discharge end voltage 'Lo.
As is clear from Figure 3, when the amount of silicone-acrylic copolymer resin added is 3.0% by weight or more, the discharge time becomes shorter (the tendency for it to become shorter becomes greater). This is thought to be because the permeability of the electrolyte into the electrode decreases due to the decrease in the amount of active material and the film-forming action of the binder.

第1図及び第3図からシリコン・アクリル共重合樹脂の
添加量としては0.5〜3.0重量%が好ましいことが
わかる。
It can be seen from FIGS. 1 and 3 that the amount of silicone-acrylic copolymer resin added is preferably 0.5 to 3.0% by weight.

下表は実施例による本発明電池(A)と、正極の結着剤
として特開昭59−189559号公報で開示されてい
るようにフッ素樹脂とポリビニルアルコ−ルとを併用し
て用いることを除いて他は実施例と同様の従来電池(B
)とを温度60℃、相対湿度90%で保存した時の電池
特性を比較したものである。
The table below shows the battery (A) of the present invention according to an example, and the use of a fluororesin and polyvinyl alcohol in combination as a binder for the positive electrode as disclosed in JP-A-59-189559. A conventional battery (B
) and the battery characteristics when stored at a temperature of 60° C. and a relative humidity of 90%.

表 又、第4図は本発明電池(A)と従来電池(B)とを温
度23℃、12にΩ定抵抗で放電した時の特性比較図を
示し、第41211より本発明電池(A)は従来′1池
(B)に比して放電容量は同程度であるが放電末期(こ
おける内部抵抗は減じられているのがわかる。
Table 4 also shows a characteristic comparison diagram when the present invention battery (A) and the conventional battery (B) are discharged at a temperature of 23°C and a constant resistance of 12Ω. It can be seen that although the discharge capacity is about the same as that of the conventional '1 battery (B), the internal resistance at the final stage of discharge is reduced.

(ト)発明の効果 上述した如(、非水電解液電池の正極の結着剤としてシ
リコン・アクリル共重合樹脂を用いることにより、 閾 正極合剤の流動性が優れるため製造時の作業性が向
上する。
(g) Effects of the invention As mentioned above, by using a silicone-acrylic copolymer resin as a binder for the positive electrode of a non-aqueous electrolyte battery, the flowability of the threshold positive electrode mixture is excellent, resulting in improved workability during manufacturing. improves.

lb)  少量の結着剤で極板強度が高められるので放
電容量の増大が計れると共に極薄形極板を作成するのに
有益である。
lb) Since the strength of the electrode plate can be increased with a small amount of binder, it is possible to increase the discharge capacity, and it is also useful for producing ultra-thin electrode plates.

(C1高温においても安定であるため、分解溶出がなく
電池性能、特lこ放電末期の内部抵抗の上昇が抑制しつ
る。
(C1 is stable even at high temperatures, so there is no decomposition and elution, improving battery performance, especially suppressing the increase in internal resistance at the end of discharge.

などの種々の効果を奏するものであり、その工業的価値
は極めて大であるう
It has various effects such as, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、シリコン・アクリル共重合樹脂の添加量と正
極極板強度との関係を示す図、第2図は正極極板強度測
定装置の概略断面図、第3図はシリコン・アクリル共重
合樹脂の添加量と放電時間の関係を示す図、第4図は本
発μにより得た正極板を用いた電池(A)と従来法によ
り得た正極板を用いた電池(B)との12にΩ定抵抗で
の放電特性比較図である。 (1)・・・金型、(2)・・・径小孔部、(3)・・
・径大孔部、(4)・・・正極、(5)・・・パンチ。
Figure 1 is a diagram showing the relationship between the amount of silicone/acrylic copolymer resin added and the strength of the positive electrode plate, Figure 2 is a schematic cross-sectional view of the positive electrode plate strength measuring device, and Figure 3 is a diagram showing the relationship between the amount of silicone/acrylic copolymer resin added and the strength of the positive electrode plate. Figure 4 shows the relationship between the amount of resin added and the discharge time. This is a comparison diagram of discharge characteristics at a constant Ω resistance. (1)...Mold, (2)...Small diameter hole, (3)...
・Large diameter hole, (4)...Positive electrode, (5)...Punch.

Claims (2)

【特許請求の範囲】[Claims] (1)リチウム、ナトリウムなどの軽金属を活物質とす
る負極と、金属の酸化物、硫化物或いはハロゲン化物な
どを活物質とする正極と、非水電解液とを備え、正極の
結着剤としてシリコン・アクリル共重合樹脂を用いたこ
とを特徴とする非水電解液電池。
(1) Comprising a negative electrode using a light metal such as lithium or sodium as an active material, a positive electrode using a metal oxide, sulfide, or halide as an active material, and a non-aqueous electrolyte, which is used as a binder for the positive electrode. A non-aqueous electrolyte battery characterized by using silicone-acrylic copolymer resin.
(2)前記シリコン・アクリル共重合樹脂の添加量が、
正極に対して0.5〜3.0重量%である特許請求の範
囲第(1)項記載の非水電解液電池。
(2) The amount of the silicone-acrylic copolymer resin added is
The nonaqueous electrolyte battery according to claim (1), wherein the amount is 0.5 to 3.0% by weight based on the positive electrode.
JP61155262A 1986-07-02 1986-07-02 Nonaqueous electrolyte battery Pending JPS6310466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155262A JPS6310466A (en) 1986-07-02 1986-07-02 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155262A JPS6310466A (en) 1986-07-02 1986-07-02 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS6310466A true JPS6310466A (en) 1988-01-18

Family

ID=15602069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155262A Pending JPS6310466A (en) 1986-07-02 1986-07-02 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS6310466A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
EP2978057A1 (en) * 2014-07-24 2016-01-27 Toyota Jidosha Kabushiki Kaisha Cathode for fuel cell
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent
EP2978057A1 (en) * 2014-07-24 2016-01-27 Toyota Jidosha Kabushiki Kaisha Cathode for fuel cell

Similar Documents

Publication Publication Date Title
WO1998040923A1 (en) Nonaqueous electrolyte battery and charging method therefor
JPS6310466A (en) Nonaqueous electrolyte battery
JP3654005B2 (en) Method for producing positive electrode plate for lithium ion secondary battery
WO2020034875A1 (en) Sulfur-based positive electrode active material for use in solid-state battery, preparation for material, and applications thereof
JP2015088343A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JPS6116473A (en) Nonaqueous electrolyte battery
KR20040032421A (en) Method for manufacturing cathode electrode for lithium secondary battery by using vanadium oxide
JP2016110717A (en) Method of manufacturing positive electrode active material
JP4803867B2 (en) Method for producing lithium manganate for positive electrode of lithium battery
JPS6146948B2 (en)
JPH04188560A (en) Manufacture of negative electrode for non-aqueous electrolyte secondary battery
JP6233252B2 (en) Method for producing solid electrolyte battery
JP2000208148A (en) Lithium ion secondary battery
JPS63226881A (en) Nonaqueous electrolyte cell
JPH01186557A (en) Nonaqueous electrolyte cell
JPS58220367A (en) Nonaqueous electrolyte battery
JPS6151749A (en) Nonaqueous electrolyte battery
JPH0317346B2 (en)
JP2022158053A (en) Manufacturing method of all-solid battery
JPS62168344A (en) Nonaqueous electrolyte battery
JPH11260353A (en) Manufacture of nonaqueous electrolyte secondary battery
JPS61107661A (en) Nonaqueous electrolyte battery
JPS6226552B2 (en)
JPS5853156A (en) Organic electrolyte battery