JPS62256715A - Production of chlorosilane - Google Patents

Production of chlorosilane

Info

Publication number
JPS62256715A
JPS62256715A JP9932586A JP9932586A JPS62256715A JP S62256715 A JPS62256715 A JP S62256715A JP 9932586 A JP9932586 A JP 9932586A JP 9932586 A JP9932586 A JP 9932586A JP S62256715 A JPS62256715 A JP S62256715A
Authority
JP
Japan
Prior art keywords
silicon
particles
chlorosilane
water
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9932586A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
洋 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP9932586A priority Critical patent/JPS62256715A/en
Publication of JPS62256715A publication Critical patent/JPS62256715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To improve the efficiency in the production of chlorosilanee by crushing silicon in water, and passing gaseous chlorine through the particles to enhance the contact efficiency between the silicon particles and gaseous chlorine. CONSTITUTION:Metallic silicon is charged in a mortar, etc., added with water, and crushed to 1mum-2mm mean particle diameter. The particles are packed in a reaction tube, etc., in a nonoxidizing atmosphere, and heated to evaporate and remove water. Gaseous chlorine is then supplied at 140-300 deg.C, hence chlorine reacts with silicon, and the silicon particles are chlorinated. The formation of by-products is reduced by this method, and chlorosilanes (SinCl2n+2, where n>=2) can be produced with high efficiency.

Description

【発明の詳細な説明】 く技術分野〉 本発明はシリコンを塩素化してクロルシランを近年、エ
レクトロニクス工業の発展に伴ない、多結晶シリコンあ
るいはアモルファスシリコン等の半導体用シリコンの需
要が急激に増大しておりクロルシランは、かかる半導体
用シリコンの製造原料として最近特にその重要性を増し
ている。
[Detailed Description of the Invention] Technical Field> The present invention is a method for producing chlorosilane by chlorinating silicon.In recent years, with the development of the electronics industry, the demand for silicon for semiconductors such as polycrystalline silicon or amorphous silicon has increased rapidly. Chlorosilane has recently become particularly important as a raw material for producing silicon for semiconductors.

クロルシランは、そのまま熱分解してエピタキシャルシ
リコンを製造する原料になる他、ゲルマニウムをドープ
して光フアイバー用のシリカ源と゛しても用いられる。
Chlorosilane can be used as a raw material for producing epitaxial silicon by thermal decomposition as it is, and can also be doped with germanium and used as a silica source for optical fibers.

クロルシランは、さらに還元して次式で表わされるシラ
ンに転換され、これを熱分解等して半導体用シリコンや
アモルファスシリコンが製造される0例えば、ジシラン
Si2H6を熱分解やグロー放電分解により分解してア
モルファスシリコン膜が製造される。この場合、基板上
に形成される+19の堆積速度は、モノシランSiH4
に比ベテ格段に大きく、かつ該シリコン膜は電気特性に
優れる等の利点があり、太陽電池用の半導体原料等とし
て今後の大幅な需要の増加が期待されている。
Chlorosilane is further reduced and converted to silane expressed by the following formula, which is then thermally decomposed to produce silicon for semiconductors or amorphous silicon. For example, disilane Si2H6 is decomposed by thermal decomposition or glow discharge decomposition. An amorphous silicon film is produced. In this case, the deposition rate of +19 formed on the substrate is monosilane SiH4
The silicon film has advantages such as excellent electrical properties, and is expected to see a significant increase in demand in the future as a semiconductor raw material for solar cells.

〈イy誓彷唐〉 従来、クロルシランは、金属珪素粒子あるいはカルシウ
ムシリコン、マグネシウムシリコンまたはフェロシリコ
ン等の珪化物粒子を加熱して塩素ガスを供給し、これら
シリコン粒子を塩素化して製造されている。
Traditionally, chlorosilane has been produced by heating metal silicon particles or silicide particles such as calcium silicon, magnesium silicon, or ferrosilicon, supplying chlorine gas, and chlorinating these silicon particles. .

ところで、カルシウムシリコンや、マグネシウムシリコ
ン等の珪化物を用いる上記従来の方法では、塩化カルシ
ウム、塩化マグネシウム等の固体の副生物が生成する問
題がある。また金属珪素を用いる方法では、塩素との反
応の際、固体の副生物は生成しないが、クロルシランの
生成率が原子基準で1%未満であり、珪化物粒子を用い
る方法に比べ、生成率が著しく低い問題がある。
By the way, the above-mentioned conventional methods using silicides such as calcium silicon and magnesium silicon have a problem in that solid by-products such as calcium chloride and magnesium chloride are produced. Furthermore, in the method using metallic silicon, no solid by-product is produced during the reaction with chlorine, but the production rate of chlorosilane is less than 1% on an atomic basis, which is lower than the method using silicide particles. There are significantly fewer problems.

く問題の解決手段〉 本発明者は、金属珪素粒子に塩素を通じる反応において
、クロルシランの生成率が低い原因は金属珪素粒子表面
が酸化被膜で覆われており、該酸化被膜により塩素ガス
と珪素粒子との接触が妨げられるためであることを見出
した。
Solution to the Problem> The present inventor has discovered that the reason for the low production rate of chlorosilane in a reaction in which chlorine is passed through metal silicon particles is that the surface of the metal silicon particles is covered with an oxide film, and the oxide film allows chlorine gas and silicon to It was found that this is because contact with particles is prevented.

本発明は、上記知見に基づき、珪素粒子の表面に酸化被
膜が生成するのを防止して、珪素粒子と塩素ガスとの接
触効率を高め、クロルシランの生r&率を向上させたも
のである。
Based on the above findings, the present invention prevents the formation of an oxide film on the surface of silicon particles, increases the contact efficiency between silicon particles and chlorine gas, and improves the rate of production of chlorosilane.

〈発明の構成〉 本発明によれば、珪素を水中で平均粒径1gm以上ない
し2mm以下に粉砕し、次に、140’0以上ないし3
00℃以下の温度下で該粒子に塩素ガスを通過させてク
ロルシラン(S 1nC12いc2L。
<Configuration of the Invention> According to the present invention, silicon is pulverized in water to an average particle size of 1 gm or more to 2 mm or less, and then
Chlorosilane (S1nC12C2L) was prepared by passing chlorine gas through the particles at a temperature below 00°C.

但し、n≧2)を製造することを特徴とするクロルシラ
ンの製造方法が提供される。
However, there is provided a method for producing chlorosilane characterized by producing n≧2).

またその好適な実施態様として、粉砕された珪素の粒径
が、50終m以上ないし500ILm以下であるクロル
シランの製造法、および、塩素ガスを通過させる際の温
度が160℃以上ないし260℃以下であるクロルシラ
ンの製造方法が提供される。
Further, as a preferred embodiment thereof, there is provided a method for producing chlorosilane in which the particle size of the pulverized silicon is 50 ILm or more and 500 ILm or less, and the temperature at which the chlorine gas is passed is 160°C or more and 260°C or less. A method of making a chlorosilane is provided.

本発明においては、珪素を水中で粉砕する。珪素単体と
しては金属珪素等が用いられる。また好ましい珪素の純
度は97%以上である。
In the present invention, silicon is ground in water. Metallic silicon or the like is used as the silicon element. Further, the preferred purity of silicon is 97% or more.

水中で粉砕することにより、粉砕中、非酸化性雰囲気に
保たれ、珪素粒子(以下シリコン粒子という)表面での
酸化被膜の形成が防止される。粉砕されたシリコン粒子
の平均粒径は1μm以上ないし2mm以下、更に好まし
くは50gm〜500gmであるのがよい、シリコン粒
子の粒径が1gm以下であると反応中に粉塵が発生する
ので好ましくない、また該粒子が2mmを超えると活性
に乏しくクロルシランの生成率が低下する。珪素を粉砕
した後、不活性ガス雰囲気あるいは真空雰囲気下で、粉
砕したシリコン粒子を加熱して水等を蒸発除去し、温度
を140℃〜300℃に上昇させた後、塩素ガスを供給
し、シリコン粒子を塩素化する。塩素ガスの供給量はシ
リコン粒子の量等によって異なるが、通常、シリコン5
0gに対し、塩素ガス流% ; 0 、03〜3 g/
win 、供給時間;1〜150時間であればよい、上
記塩素化の温度が140℃より低いと反応速度が遅く、
一方、該温度が300℃を超えるとクロルシランの生成
率が低下するので好ましくない、更に好適なルシランの
生成に伴なってS iCl aが生成するが、生成ガス
を蒸留することにより5izCJlr。
By pulverizing in water, a non-oxidizing atmosphere is maintained during the pulverization, and formation of an oxide film on the surfaces of silicon particles (hereinafter referred to as silicon particles) is prevented. The average particle size of the pulverized silicon particles is preferably 1 μm or more and 2 mm or less, more preferably 50 gm to 500 gm. If the particle size of the silicon particles is 1 gm or less, dust will be generated during the reaction, which is not preferable. Furthermore, if the particle size exceeds 2 mm, the activity will be poor and the production rate of chlorosilane will decrease. After pulverizing the silicon, the pulverized silicon particles are heated in an inert gas atmosphere or a vacuum atmosphere to evaporate and remove water, etc., and after raising the temperature to 140°C to 300°C, supplying chlorine gas, Chlorinate silicon particles. The amount of chlorine gas supplied varies depending on the amount of silicon particles, etc., but usually silicon 5
Chlorine gas flow% for 0g; 0, 03~3 g/
win, supply time: 1 to 150 hours is sufficient; if the temperature of the chlorination is lower than 140°C, the reaction rate is slow;
On the other hand, if the temperature exceeds 300° C., the production rate of chlorosilane decreases, which is undesirable.SiCl a is produced along with the production of more preferable lucilane, but 5izCJlr is produced by distilling the produced gas.

5i3Cu6等を容易に単離することができる。5i3Cu6 etc. can be easily isolated.

上記塩素化反応の後に生成ガスを捕集し、基型してクロ
ルシランを得る。
After the chlorination reaction, the generated gas is collected and converted into a base to obtain chlorosilane.

〈発明の効果〉 本発明の方法によれば、シリコン粒子が非酸化性雰囲気
下で粉砕されるので、該粒子表面に酸化物被膜が生成せ
ず、塩素ガスとシリコン粒子との接触効率が高まる結果
、クロルシランの生成率が大幅に向上する。因に、従来
の金属珪素を用いる方法ではクロルシランの生成率が原
子基準で1%未満であるが、本発明の方法によれば、該
生成率は30%以上であり、従来の方法に比べ格段に高
い生成率を達成することができる。
<Effects of the Invention> According to the method of the present invention, silicon particles are crushed in a non-oxidizing atmosphere, so no oxide film is formed on the surface of the particles, and the efficiency of contact between chlorine gas and silicon particles is increased. As a result, the production rate of chlorosilane is significantly improved. Incidentally, in the conventional method using metallic silicon, the production rate of chlorosilane is less than 1% on an atomic basis, but according to the method of the present invention, the production rate is 30% or more, which is significantly higher than the conventional method. High production rates can be achieved.

また本発明おいては、珪化マグネシウム、珪化カルシウ
ム等の珪化物を用いていないので、塩化マグネシウムや
塩化カルシウム等の固体副生物の生成が極めて少なく、
工業化を図るうえで有利で〈実施例および比較例〉 以下、本発明の実施例と比較例とを示す、尚、該実施例
は本発明の例示であり、未発、明を限定するものではな
い。
In addition, in the present invention, since silicides such as magnesium silicide and calcium silicide are not used, the generation of solid by-products such as magnesium chloride and calcium chloride is extremely small.
[Examples and Comparative Examples] Examples and Comparative Examples of the present invention are shown below. The Examples are illustrative of the present invention, and are not intended to limit the scope of the present invention. do not have.

実施例1 純度97.5%の金属シリコン50gを鉄乳鉢に装入し
て水を加え、平均粒径が300μmになるまで粉砕した
。引続き、窒素ガス雰囲気下で該金属シリコン粒子を内
径2cmφのガラス製反応管に充填し、300℃に加熱
して水を除去した後に200℃に降温し、塩素ガスを5
0m文/分の割合で供給し、20時間反応させた。生成
ガスを凝縮液として捕集したところ、5iCfL、*、
S i2 C16,S i3 CABの生成量は第1表
の通りであった。
Example 1 50 g of metallic silicon with a purity of 97.5% was placed in an iron mortar, water was added, and the material was ground until the average particle size became 300 μm. Subsequently, the metal silicon particles were filled into a glass reaction tube with an inner diameter of 2 cmφ under a nitrogen gas atmosphere, heated to 300°C to remove water, and then cooled to 200°C, and chlorine gas was added to the tube for 50 minutes.
It was supplied at a rate of 0 m/min and allowed to react for 20 hours. When the generated gas was collected as a condensate, 5iCfL, *,
The amounts of S i2 C16 and S i3 CAB produced were as shown in Table 1.

比較例1 金属シリコン1Kgを空気中で粉砕して平均粒径300
μmとした以外は実施例1と同様に塩素化反応を実施し
たが、クロルシランは実質的に生成しなかった。
Comparative Example 1 1 kg of metal silicon was crushed in air to obtain an average particle size of 300.
A chlorination reaction was carried out in the same manner as in Example 1 except that chlorosilane was not substantially produced.

実施例2〜4、比較例2 シリコン粒子の粒径を変えた以外は実施例1と同様にし
て塩素化反応を行なった。その結果を第2表に示す。
Examples 2 to 4, Comparative Example 2 A chlorination reaction was carried out in the same manner as in Example 1 except that the particle size of the silicon particles was changed. The results are shown in Table 2.

実施例5〜7、比較例3.4 塩素化反応の温度を変えた以外は実施例1と同様にして
塩素化反応を行なった。その結果を第3表に示す。
Examples 5 to 7, Comparative Example 3.4 A chlorination reaction was carried out in the same manner as in Example 1 except that the temperature of the chlorination reaction was changed. The results are shown in Table 3.

実施例8 実施例1と同様の塩素化反応を実施し、生成したガスを
蒸留してS iz CQb 、S i3 C1sを単離
した。収量は夫々81g、50gであった。
Example 8 A chlorination reaction similar to that in Example 1 was carried out, and the resulting gas was distilled to isolate S iz CQb and S i3 C1s. The yields were 81 g and 50 g, respectively.

またガスクロマトグラフによるこれらの純度はいずれも
99.999%以上であった。
Further, the purity of each of these as measured by gas chromatography was 99.999% or more.

第1表 実施例2      l     35゜23    
50    44.6 第3表
Table 1 Example 2 l 35°23
50 44.6 Table 3

Claims (3)

【特許請求の範囲】[Claims] (1)珪素を、水中で平均粒径1μm以上ないし2mm
以下に粉砕し、次に140℃以上ないし300℃以下の
温度下で該粒子に塩素ガスを通過させてクロルシラン(
SinCl_2_π_+_2但し、n≧2)を製造する
ことを特徴とするクロルシランの製造方法。
(1) Silicon in water with an average particle size of 1 μm or more to 2 mm
The particles are pulverized as follows, and then chlorine gas is passed through the particles at a temperature of 140°C or higher to 300°C or lower to produce chlorosilane (
A method for producing chlorosilane, characterized by producing SinCl_2_π_+_2, where n≧2).
(2)粉砕された珪素の粒径が、50μm以上ないし5
00μm以下である特許請求の範囲第1項の製造法。
(2) The particle size of the crushed silicon is 50 μm or more or 5 μm or more.
00 μm or less, the manufacturing method according to claim 1.
(3)塩素ガスを通過させる際の温度が160℃以上な
いし260℃以下である特許請求の範囲第1項の製造法
(3) The manufacturing method according to claim 1, wherein the temperature at which the chlorine gas is passed is from 160°C to 260°C.
JP9932586A 1986-05-01 1986-05-01 Production of chlorosilane Pending JPS62256715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9932586A JPS62256715A (en) 1986-05-01 1986-05-01 Production of chlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9932586A JPS62256715A (en) 1986-05-01 1986-05-01 Production of chlorosilane

Publications (1)

Publication Number Publication Date
JPS62256715A true JPS62256715A (en) 1987-11-09

Family

ID=14244482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9932586A Pending JPS62256715A (en) 1986-05-01 1986-05-01 Production of chlorosilane

Country Status (1)

Country Link
JP (1) JPS62256715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376340B1 (en) 1999-03-16 2002-04-23 Sony Corporation Methods for forming polycrystalline silicon film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376340B1 (en) 1999-03-16 2002-04-23 Sony Corporation Methods for forming polycrystalline silicon film

Similar Documents

Publication Publication Date Title
WO2009028725A1 (en) Method for producing silicon
EP0015422A1 (en) Method for producing powder of alpha-silicon nitride
JPH07277751A (en) Method for producing synthetic quartz glass member
JP2005514312A (en) Method for producing amorphous silicon and / or organohalogensilane obtained therefrom
US4861574A (en) Process for preparing chloropolysilanes
JPH0222004B2 (en)
JPS62256715A (en) Production of chlorosilane
JP2508798B2 (en) Method for producing hexachlorodisilane and octachlorotrisilane
JPS6389414A (en) Production of chloropolysilane
JPS62256714A (en) Production of chlorosilane
JP2660650B2 (en) Manufacturing method of α-type silicon carbide
JPS62143814A (en) Production of chlorosilane
JP3731096B2 (en) Boron dopant for semiconductor and method for producing the same
JPS6047204B2 (en) Method for manufacturing silicon nitride powder
JP2575495B2 (en) Boron diffusing agent and method for producing the same
JPS64326B2 (en)
JP2003095633A (en) Producing method for silicon
JP4446675B2 (en) Method for producing alkylsilane or alkylgermane
JPH01234317A (en) Production of silicon tetrachloride
JP3620909B2 (en) Process for producing silanes
JPS63129011A (en) Production of high-purity silicon
JP3806960B2 (en) Method for producing high-purity synthetic quartz powder and quartz glass molded body
JPS63107808A (en) Preparation of octachlorotrisilane
JPH0450263B2 (en)
JPH0343205B2 (en)