JPS6389414A - Production of chloropolysilane - Google Patents

Production of chloropolysilane

Info

Publication number
JPS6389414A
JPS6389414A JP23449186A JP23449186A JPS6389414A JP S6389414 A JPS6389414 A JP S6389414A JP 23449186 A JP23449186 A JP 23449186A JP 23449186 A JP23449186 A JP 23449186A JP S6389414 A JPS6389414 A JP S6389414A
Authority
JP
Japan
Prior art keywords
silicon
chloride
chloropolysilane
molten salt
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23449186A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
洋 池田
Makoto Tsunashima
綱島 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP23449186A priority Critical patent/JPS6389414A/en
Publication of JPS6389414A publication Critical patent/JPS6389414A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain chloropolysilane with high reaction efficiency without producing solid by-product and dust by chlorinating silicon particles in a specified inert liq. CONSTITUTION:The chloropolysilane (SinCl2n+2, wherein n>=2) is obtained by chlorinating this silicon particles having >=2mm mean particle size in the liq. which is inert to silicon and chlorine or to hydrogen chloride and chlorosilane. As the above-mentioned inert liq., the molten salt of zinc chloride and potassium chloride, the molten salt of zinc chloride and sodium chloride, the molten salt of zinc chloride, sodium chloride and potassium chloride, and then an organic fluoric compd. (e.g. perfluoropolyether oil), etc., are exemplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコンを塩素化してクロロポリシランを製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing chloropolysilane by chlorinating silicon.

近年、エレクトロニクス工業の発展に伴い、多結晶シリ
コンあるいはアモルファスシリコン等の半導体用シリコ
ンの需要が急激に増大して居り、クロロポリシランはこ
のような半導体シリコンの製造原料として最近特にその
重要性を増している。
In recent years, with the development of the electronics industry, the demand for semiconductor silicon such as polycrystalline silicon or amorphous silicon has increased rapidly, and chloropolysilane has recently become particularly important as a raw material for manufacturing such semiconductor silicon. There is.

クロロポリシランはそのまま熱分解して半導体シリコン
ウェハー上にエピタキシャルシリコンを成長させる事も
勿論出来、また、ゲルマニウムドープ率の高い光通信用
シリカ源としても用いられる。
Of course, chloropolysilane can be thermally decomposed as it is to grow epitaxial silicon on a semiconductor silicon wafer, and can also be used as a silica source for optical communications with a high germanium doping rate.

またクロロポリシランはさらに還元して次式(I)で表
わされるポリシランとし、 5lnHzn+z  (n≧2)        (I
)これを熱分解等して半導体用シリコンエピタキシャル
の原料やアモルファスシリコンの原料として使われてい
る。
In addition, chloropolysilane is further reduced to polysilane represented by the following formula (I), and 5lnHzn+z (n≧2) (I
) This is thermally decomposed and used as a raw material for silicon epitaxial semiconductors and amorphous silicon.

例えばジシランSi、H,は、熱分解、グロー放電分解
によりアモルファスシリコン膜を形成する場合、モノシ
ランSiH,に比較して、基板上へ形成される膜の堆積
速度がはるかに大きく、且つ、該膜は電気特性に優れて
いる等の利点があり、太陽電池用半導体の原料として今
後大幅な需要増加が期待されている。
For example, when disilane Si, H, is used to form an amorphous silicon film by thermal decomposition or glow discharge decomposition, the deposition rate of the film formed on the substrate is much higher than that of monosilane SiH. It has advantages such as excellent electrical properties, and demand is expected to increase significantly in the future as a raw material for semiconductors for solar cells.

〔従来の技術〕[Conventional technology]

従来クロロポリシランは、カルシウムシリコン、マグネ
シウムシリコン、あるいはフェロシリコン等、金属とシ
リコンとの合金またはシリコンの粒子を加熱して塩素ガ
スを送り込み塩素化反応によって得られている。
Conventionally, chloropolysilane has been obtained by heating an alloy of metal and silicon, such as calcium silicon, magnesium silicon, or ferrosilicon, or by a chlorination reaction by feeding chlorine gas into the silicon particles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来方法でクロロポリシランを製造する場合、塩化カル
シウム、塩化マグネシウム等の固体の副生物や未反応の
シリコンまたはケイ化物微粒子が粉塵となって生成物(
クロロポリシラン)凝縮液中に混入し、または途中配管
の閉塞の原因となる等、商用製造方法として粉塵の発生
しないかつシリコンと塩素の反応効率の高いクロロポリ
シランの製造方法が望まれている。
When producing chloropolysilane using the conventional method, solid by-products such as calcium chloride and magnesium chloride and unreacted silicon or silicide fine particles turn into dust and produce a product (
Chloropolysilane (chloropolysilane) can be mixed into condensate or cause blockage of pipes, etc. As a commercial production method, there is a need for a method for producing chloropolysilane that does not generate dust and has a high reaction efficiency between silicon and chlorine.

〔問題点の解決に係わる着眼点、知見〕本発明者はシリ
コンと塩素または塩化水素との反応による固体の副生物
や粉塵の発生しないクロロポリシランの製造方法を提供
す可く検討した結果、塩素化を塩素、シリコン、クロロ
シランに対して不活性な液体中で行わせる方法を見出し
本発明に到達した。
[Points of focus and knowledge related to solving the problem] The present inventor has investigated the possibility of providing a method for producing chloropolysilane that does not generate solid by-products or dust due to the reaction between silicon and chlorine or hydrogen chloride. The present invention was achieved by discovering a method for carrying out the chemical reaction in a liquid that is inert to chlorine, silicon, and chlorosilane.

〔問題を解決するための手段〕[Means to solve the problem]

即ち本発明によれば、シリコン粒子を塩素または塩化水
素、シリコン、クロロシランに対して不活性な液体中で
塩素化を行う事からなるクロロポリシラン(SinCQ
znヤまただしn≧2)の製造方法が提供される。
That is, according to the present invention, chloropolysilane (SinCQ) is produced by chlorinating silicon particles in a liquid inert to chlorine or hydrogen chloride, silicon, and chlorosilane.
Provided is a method for manufacturing zn(n≧2).

この方法によれば実質的に固体の副生物が生成されず、
また未反応のシリコンは塩素、塩化水素、クロロシラン
に対して不活性な液体中にとらえられたまま塩素化に供
される為、粉塵の発生が認められない。
This method produces virtually no solid by-products;
Further, since unreacted silicon is subjected to chlorination while being captured in a liquid that is inert to chlorine, hydrogen chloride, and chlorosilane, no dust is generated.

本発明における塩素、塩化水素、シリコン、クロロシラ
ンに対して不活性な液体とは、特に限定されないが1例
えば塩化亜鉛と塩化カリウムの溶融塩、塩化亜鉛と塩化
ナトリウムの溶融塩、塩化亜鉛と塩化ナトリウムと塩化
カリウムの溶融塩、ペルフルオロポリエーテル油、ペル
フルオロトリ低級アルキルアミン、等の有機フッ素化合
物が挙げられる。
In the present invention, the liquid inert to chlorine, hydrogen chloride, silicon, and chlorosilane is not particularly limited, but includes, for example, a molten salt of zinc chloride and potassium chloride, a molten salt of zinc chloride and sodium chloride, and a molten salt of zinc chloride and sodium chloride. and organic fluorine compounds such as molten salt of potassium chloride, perfluoropolyether oil, perfluorotri-lower alkylamine, and the like.

本発明方法にお、いて使用されるシリコン粒子は可及的
に高純度である方が固体副生物の生成量が少なく、純度
はこのことを考慮して決定される問題であるが97%以
上が望ましい。本発明においてシリコン粒子は平均粒径
2rrn以下が望ましく、塩素化は、140°C以上3
00℃以下で行う事が望ましい。
The higher the purity of the silicon particles used in the method of the present invention, the lower the amount of solid by-products produced, and the purity is determined by taking this into account, but is 97% or higher. is desirable. In the present invention, the silicon particles preferably have an average particle diameter of 2rrn or less, and the chlorination is carried out at a temperature of 140°C or higher and 3rrn.
It is desirable to carry out the test at a temperature below 00°C.

シリコン粒子の平均粒径が2mmより大きいと塩素との
接触効率が悪く、実用上不適である。また塩素化の温度
が140℃より低いと反応速度が遅すぎて不適当であり
、300℃を超えるとクロロポリシランの生成率が低下
し、やはり不適当である。尚、クロロポリシランの生成
に伴って5iCQ4が副生するが、蒸溜によって5i2
Cf1. 、 Si、CQ、等を容易に単離する事が出
来る。
If the average particle size of the silicon particles is larger than 2 mm, the contact efficiency with chlorine is poor and it is not suitable for practical use. Further, if the chlorination temperature is lower than 140°C, the reaction rate is too slow, which is unsuitable, and if it exceeds 300°C, the production rate of chloropolysilane decreases, which is also unsuitable. In addition, 5iCQ4 is produced as a by-product with the production of chloropolysilane, but 5i2 is produced by distillation.
Cf1. , Si, CQ, etc. can be easily isolated.

次に本発明を実施例によって具体的に説明するが、以下
の実施例は本発明の範囲を限定するものではない。
EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the following Examples do not limit the scope of the present invention.

〔実施例〕〔Example〕

実施例1 純度97.5%の平均粒径1μmのシリコンLogを、
塩化亜鉛60モル%、塩化ナトリウム20モル%、塩化
カリウム20モル%の組成である混合粉末100gと併
わせでガラス製反応容器に充填した。窒素ガスを流しな
がら203℃に加熱して溶融し、溶融塩中にシリコンを
良く分散させた後、塩素ガスを50mR/分の速度で導
入し4時間反応させた。生成物であるクロロポリシラン
及び副生物である5iCI24を凝縮液として捕集した
ところ5i(jl、、 Si、CF!、。
Example 1 Silicon Log with a purity of 97.5% and an average particle size of 1 μm,
A glass reaction vessel was filled with 100 g of mixed powder having a composition of 60 mol% zinc chloride, 20 mol% sodium chloride, and 20 mol% potassium chloride. After heating and melting at 203° C. while flowing nitrogen gas to disperse silicon well in the molten salt, chlorine gas was introduced at a rate of 50 mR/min and reacted for 4 hours. When the product chloropolysilane and the by-product 5iCI24 were collected as a condensate, 5i(jl,, Si, CF!,) was obtained.

Si、 CQ、の量はそれぞれ12gt 17gt l
1gであった。
The amounts of Si and CQ are 12gt and 17gt, respectively.
It was 1g.

この反応中粉塵の発生は認められなかった。No dust generation was observed during this reaction.

実施例2〜5 塩素に対して不活性な液体の種類と塩素化の反応温度を
変えた他は実施例1と同様の試験を行った。結果は表1
の通りである。
Examples 2 to 5 The same tests as in Example 1 were conducted except that the type of liquid inert to chlorine and the chlorination reaction temperature were changed. The results are in Table 1
It is as follows.

表1 実施例2  ZnC454%、 K(446%    
228    41.53K(:ff29%、 ZnC
Q、 71% 262  40.64 NaC140,
5%、 ZnCf1.59.5%262  44.1実
施例6〜8、比較例1 シリコンの粒径を変えた他は実施例1と同様の試験を行
った。結果は表2の通りである。
Table 1 Example 2 ZnC454%, K (446%
228 41.53K (:ff29%, ZnC
Q, 71% 262 40.64 NaC140,
5%, ZnCf1.59.5%262 44.1 Examples 6 to 8, Comparative Example 1 The same test as in Example 1 was conducted except that the silicon particle size was changed. The results are shown in Table 2.

表2 実施例6     10        39.57 
 100   43.1 8 2000   37.2 比較例1    2500        8.0実施
例9〜1工、比較例2〜3 塩素化反応の温度を変えた以外は実施例1と同様にして
塩素化反応を行った。結果は表3の通りである。
Table 2 Example 6 10 39.57
100 43.1 8 2000 37.2 Comparative Example 1 2500 8.0 Examples 9 to 1, Comparative Examples 2 to 3 The chlorination reaction was carried out in the same manner as in Example 1 except that the temperature of the chlorination reaction was changed. Ta. The results are shown in Table 3.

表3 実施例9   、 140       39.210
 220   46.3 11 300   44.7 比較例2   100        反応せず3  
 350        0.5実施例12 実施例1と同様の塩素化反応を実施し生成したガスを蒸
溜してSi、Cl2G、 Si、(jl、を単離した。
Table 3 Example 9, 140 39.210
220 46.3 11 300 44.7 Comparative example 2 100 No reaction 3
350 0.5 Example 12 A chlorination reaction similar to that in Example 1 was carried out, and the resulting gas was distilled to isolate Si, Cl2G, Si, (jl).

収量はそれぞれ16g、 9gであった6またガスクロ
マトグラフによるこれらの純度はいずれも99.999
%以上であった。
The yields were 16g and 9g, respectively6 and their purity by gas chromatography was 99.999.
% or more.

実施例13 平均粒径0.3μmのシリコン20gを塩化カリウム2
7.6 g、塩化ナトリウム21.4 g 、塩化亜鉛
151gと共に混合し、フラスコ中で窒素ガスでガス置
換した後240℃に加熱して溶融し、該溶融塩中に塩化
水素ガスを流量50mQ/分で5時間吹き込んだ。生成
気体は冷却して液化させガスクロマトグラフィーにより
その組成分析を行った。結果は表4の通りである。尚、
ガス吹き込みの際、実質上粉塵の発生は認めら汎なかっ
た。
Example 13 20 g of silicon with an average particle size of 0.3 μm was mixed with 20 g of potassium chloride.
7.6 g of sodium chloride, 21.4 g of sodium chloride, and 151 g of zinc chloride, and after replacing the gas with nitrogen gas in a flask, heated to 240°C and melted, hydrogen chloride gas was introduced into the molten salt at a flow rate of 50 mQ/ It blew for 5 hours in minutes. The produced gas was cooled and liquefied, and its composition was analyzed by gas chromatography. The results are shown in Table 4. still,
During gas blowing, virtually no dust was generated.

表4 SiCQ4Si2CQGSi、CD、。Table 4 SiCQ4Si2CQGSi, CD,.

Claims (1)

【特許請求の範囲】 1、平均粒径2m以下のシリコン粒子を用い、シリコン
と塩素または塩化水素とクロロシランに対して不活性な
液体中で、140℃ないし300℃の温度でシリコンの
塩素化反応を遂行することからなるクロロポリシラン(
Si_nCl_2_n_+_2ただしn≧2)の製造方
法。 2、特許請求の範囲第1項に記載の方法であって、シリ
コンと塩素とクロロシランに対して不活性な液体が、塩
化亜鉛と塩化カリウムの溶融塩、塩化亜鉛と塩化ナトリ
ウムの溶融塩、または塩化亜鉛と塩化ナトリウムと塩化
カリウムの溶融塩のいずれかである方法。 3、特許請求の範囲第1項に記載の方法であってシリコ
ンと塩素または塩化水素とクロロシランに対して不活性
な液体が有機フッ素化合物である方法。 4、特許請求の範囲第3項に記載の方法であって、有機
フッ素化合物がペルフルオロポリエーテル油である方法
[Claims] 1. Chlorination reaction of silicon at a temperature of 140°C to 300°C in a liquid inert to silicon and chlorine or hydrogen chloride and chlorosilane using silicon particles with an average particle size of 2 m or less Chloropolysilane (
A method for producing Si_nCl_2_n_+_2 (where n≧2). 2. The method according to claim 1, wherein the liquid inert to silicon, chlorine, and chlorosilane is a molten salt of zinc chloride and potassium chloride, a molten salt of zinc chloride and sodium chloride, or The method is one of molten salts of zinc chloride, sodium chloride and potassium chloride. 3. The method according to claim 1, wherein the liquid inert to silicon and chlorine or hydrogen chloride and chlorosilane is an organic fluorine compound. 4. The method according to claim 3, wherein the organic fluorine compound is perfluoropolyether oil.
JP23449186A 1986-10-03 1986-10-03 Production of chloropolysilane Pending JPS6389414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23449186A JPS6389414A (en) 1986-10-03 1986-10-03 Production of chloropolysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23449186A JPS6389414A (en) 1986-10-03 1986-10-03 Production of chloropolysilane

Publications (1)

Publication Number Publication Date
JPS6389414A true JPS6389414A (en) 1988-04-20

Family

ID=16971859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23449186A Pending JPS6389414A (en) 1986-10-03 1986-10-03 Production of chloropolysilane

Country Status (1)

Country Link
JP (1) JPS6389414A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315099B1 (en) 1997-01-29 2001-11-13 Toyota Jidosha Kabushiki Kaisha Driving force transmission system
JP2011520762A (en) * 2008-05-27 2011-07-21 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Halogenated polysilane and plasma chemical treatment for producing the same
JP2011523926A (en) * 2008-05-27 2011-08-25 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Halogenated polysilane and heat treatment for its production
JP2013529591A (en) * 2010-07-02 2013-07-22 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Medium chain length polysilane and method for producing the same
JP2013533198A (en) * 2010-06-30 2013-08-22 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Storage material and method for obtaining H-silane therefrom
US10319977B2 (en) 2014-03-12 2019-06-11 Kabushiki Kaisha Toyota Jidoshokki Fastening system with jig restriction flange

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315099B1 (en) 1997-01-29 2001-11-13 Toyota Jidosha Kabushiki Kaisha Driving force transmission system
US6510932B2 (en) 1997-01-29 2003-01-28 Toyota Jidosha Kabushiki Kaisha Driving force transmission system
JP2011520762A (en) * 2008-05-27 2011-07-21 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Halogenated polysilane and plasma chemical treatment for producing the same
JP2011523926A (en) * 2008-05-27 2011-08-25 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Halogenated polysilane and heat treatment for its production
US9617391B2 (en) 2008-05-27 2017-04-11 Nagarjuna Fertilizers And Chemicals Limited Halogenated polysilane and thermal process for producing the same
US9701795B2 (en) 2008-05-27 2017-07-11 Nagarjuna Fertilizers And Chemicals Limited. Halogenated polysilane and plasma-chemical process for producing the same
JP2013533198A (en) * 2010-06-30 2013-08-22 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Storage material and method for obtaining H-silane therefrom
US9034291B2 (en) 2010-06-30 2015-05-19 Spawnt Private S.A.R.L. Storage material and method for obtaining H-silanes therefrom
JP2013529591A (en) * 2010-07-02 2013-07-22 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Medium chain length polysilane and method for producing the same
US10319977B2 (en) 2014-03-12 2019-06-11 Kabushiki Kaisha Toyota Jidoshokki Fastening system with jig restriction flange

Similar Documents

Publication Publication Date Title
US7732012B2 (en) Method for manufacturing polycrystalline silicon, and polycrystalline silicon for solar cells manufactured by the method
JP5311930B2 (en) Method for producing silicon
RU2451635C2 (en) Method of producing highly pure elementary silicon
JPS63159300A (en) Production of silicon carbide whisker
US20100266762A1 (en) Processes and an apparatus for manufacturing high purity polysilicon
JPH0264006A (en) Production of solar silicon
JPS6389414A (en) Production of chloropolysilane
CN103998375B (en) High-purity chloro is for the manufacture method of polysilane
JP2001220126A (en) Crystalline synthetic silica powder and glass compact using the same
JP2001220157A (en) Amorphous synthetic silica powder and glass compact using the same
JPS63233007A (en) Production of chloropolysilane
JP2007055891A (en) Method for manufacturing polycrystalline silicon
JP2508798B2 (en) Method for producing hexachlorodisilane and octachlorotrisilane
US3016291A (en) Pure silicon by hydrogen reduction
JP2008007395A (en) Process for production of polycrystalline silicon
JPS62143814A (en) Production of chlorosilane
JPS6111885B2 (en)
RU2519460C1 (en) Production of silicon with the use of aluminium subchloride
CN1327434A (en) Method for the production of single isotope silicon Si-28
JPS59207830A (en) Production of silicon chloride
JPS62256715A (en) Production of chlorosilane
JPS62256714A (en) Production of chlorosilane
JP4446675B2 (en) Method for producing alkylsilane or alkylgermane
KR820000396B1 (en) Production method of silicon for photo-voltaic devices
JPS60180909A (en) Manufacture of silicon hydride