JP4446675B2 - Method for producing alkylsilane or alkylgermane - Google Patents

Method for producing alkylsilane or alkylgermane Download PDF

Info

Publication number
JP4446675B2
JP4446675B2 JP2003103255A JP2003103255A JP4446675B2 JP 4446675 B2 JP4446675 B2 JP 4446675B2 JP 2003103255 A JP2003103255 A JP 2003103255A JP 2003103255 A JP2003103255 A JP 2003103255A JP 4446675 B2 JP4446675 B2 JP 4446675B2
Authority
JP
Japan
Prior art keywords
reaction
alkylsilane
solvent
producing
halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003103255A
Other languages
Japanese (ja)
Other versions
JP2004307399A (en
Inventor
毅 小川
満也 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003103255A priority Critical patent/JP4446675B2/en
Publication of JP2004307399A publication Critical patent/JP2004307399A/en
Application granted granted Critical
Publication of JP4446675B2 publication Critical patent/JP4446675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイス製造におけるCVD成膜材料として有用な一般式RnSiH4-nまたはRnGeH4-n(ただし、RはC1〜C3の低級アルキル基を表す。)で表されるアルキルシランあるいはアルキルゲルマンの製造法に関するものである。
【0002】
【従来の技術】
アルキルシランおよびアルキルゲルマンは、半導体デバイス製造におけるCVD成膜材料として有用な材料ガスとして注目されている。
【0003】
一般に、アルキルシランあるいはアルキルゲルマンの合成法は、
▲1▼:RnSiX4-nあるいはRnGeX4-nを水素化アルミニウムリチウム(LiAlH4)、水素化リチウム(LiH)、水素化ナトリウム(NaH)等の金属水素化物を作用させて還元する方法
例 2(CH3)2GeCl2 + LiAlH4 → 2(CH3)2GeH2 + LiCl + AlCl3
▲2▼:HnSiX4-nあるいはHnGeX4-nをジアルキル亜鉛(R2Zn)やグリニャール試薬を作用させてアルキル化する方法
例 2SiH3Cl + (CH3)2Zn → 2CH3SiH3 + ZnCl2
▲3▼:SiH4やGeH4にアルキルハライド(RX)やオレフィンを作用させてアルキル化する方法
例 SiH4 + CH3I → CH3SiH3 + HI
等がある。
【0004】
このうち、アルキルシランあるいはアルキルゲルマンの製造には、原料が安価に入手できる▲1▼の金属水素化物を用いる方法が一般的である。
【0005】
例えば、トリメチルシリルクロライド((CH33SiCl)とLiAlH4とをジメトキシエタン(DME)の溶媒中で反応させることにより(CH33SiHを合成する方法が記載されている(非特許文献1)。また、ハロゲンを含有する珪素またはゲルマニウムの化合物とLiHとをテトラヒドロフラン(THF)中で反応させることにより、珪素またはゲルマニウムの水素化物を製造する方法が開示されている(特許文献1)。
【0006】
以上の例のように、金属水素化物を用いる方法▲1▼では、有機溶媒中で反応させるのが一般的である。しかしながら、有機溶媒を用いた反応においては、生成物と有機溶媒を分離する必要があり、精製後にも微量の有機溶媒は残留するという問題点があった。
【0007】
溶媒を用いない合成法としては、175〜350℃の反応温度でNaHを用いた有機ハロゲン化シランの還元方法が開示されている(特許文献2)。しかしながら、NaHによる有機ハロゲン化シランの水素化反応は、非常に遅く、また反応速度を高めるために温度を上げると水素が大量に副生するという問題点があった。また、NaHは空気中で容易に発火し、取り扱いが非常に困難である。
【0008】
【特許文献1】
特開平2−221110号公報
【特許文献2】
米国特許3099672号公報
【非特許文献1】
J.Amer.Chem.Soc.,83,1916(1961)
【0009】
【発明が解決しようとする課題】
本発明は、有機溶媒等が残留することなく、また安全で収率の高い金属水素化物を用いることで、高純度のアルキルシランあるいはアルキルゲルマンを生産性よく製造することを目的としている。
【0010】
本発明者らは、鋭意検討の結果、水素化リチウム(LiH)あるいは水素化カルシウム(CaH2)を無溶媒下、100℃超600℃未満の温度範囲でアルキルシリルハライドあるいはアルキルゲルミルハライドと反応させることにより、アルキルシランあるいはアルキルゲルマンが収率よく得られることを見出し、本発明に至ったものである。
【0011】
すなわち、本発明は、一般式(1)
nMX4-n ・・・・(1)
(ただし、RはC1〜C3の低級アルキル基、Xはハロゲン元素、MはSi、またはGe、nは1、2、3をそれぞれ表す。)
で表される化合物(アルキルシリルハライドまたはアルキルゲルミルハライド)を無溶媒下で還元して、一般式(2)
nMH4-n ・・・・(2)
(ただし、RはC1〜C3の低級アルキル基、MはSi、またはGe、nは1、2
、3をそれぞれ表す。)
で表される化合物(アルキルシランまたはアルキルゲルマン)を製造するに際して、一般式(1)で表される化合物と、水素化リチウム、または水素化カルシウムとを100℃超600℃未満の温度範囲で無溶媒反応させることを特徴とするアルキルシランまたはアルキルゲルマンの製造方法を提供するものである。
【0012】
本発明によれば、有機溶媒を用いないため、有機溶媒由来の不純物が混入することがない。また、使用する金属水素化物の選択は、無溶媒反応を効率的に行う上で最も重要であるが、本発明者らは鋭意検討した結果、LiHおよびCaH2が無溶媒反応では優れた水素化剤となることを見出した。
【0013】
すなわち、LiHおよびCaH2においては、空気中で容易に発火するようなこともなく安全であり、反応剤であるアルキルシリルハライドあるいはアルキルゲルミルハライドと反応する際にも大量の副生水素が生じることもなく、収率が格段に高くなる。また、高温において比較的安定であり、水素を可逆的に吸収放出する性質のために暴走反応を起こしにくい利点がある。NaHやLiAlH4においては、NaHが420℃、LiAlH4が125℃でそれぞれ不可逆的に分解して水素を発生する。このため、NaHやLiAlH4等を無溶媒で反応させると、副生水素を大量に発生し収率低下を引き起こす。また、反応熱による暴走反応が生じやすい。
【0014】
【発明の実施の形態】
本発明において、使用可能な金属水素化物は、LiHおよびCaH2であるが、水素化能力は、LiHの方がより高い。反応剤であるアルキルシリルハライドあるいはアルキルゲルミルハライドが高温で分解し易い場合には、反応性の高いLiHを用い、より低温で反応させることが好ましい。また、生産性、収率の面でも、LiHは反応速度が大きいので好ましい。金属水素化物の形状は、塊状、粉末状のいずれを用いても良いが、表面積が大きい粉末状のものが、反応速度が大きく好ましい。
【0015】
反応剤のアルキルシリルハライドあるいはアルキルゲルミルハライドとしては、一般式(1)RnMX4-n(ただし、RはC1〜C3の低級アルキル基、Xはハロゲン元素、MはSi、またはGe、nは1、2、3をそれぞれ表す。)で表されるハライド化合物が使用できる。低級アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、i−プロピル基等であり、これらが混在する例えばメチルエチルシリルハライド等も使用できる。ハロゲン元素としては、ヨウ素、臭素、塩素、フッ素等が使用できるが、安価に入手できる塩素化物が好適に使用できる。
【0016】
本発明において、反応温度は、反応剤の種類に応じて、100℃超600℃未満の範囲で適宜選択する。100℃以下では、水素化剤の活性が低く反応が進行しない。また、600℃以上では、反応剤のSi−C結合やGe−C結合の切断が生じて収率が低下するため好ましくない。例えば、トリメチルシリルクロライド((CH33SiCl)とCaH2との反応においては、400〜500℃の反応温度が好ましく、ジメチルシリルクロライド((CH32SiCl2)とLiHとの反応においては、300〜400℃が好ましい。また、トリメチルゲルミルクロライド((CH33GeCl)とLiHとの反応においては、200〜300℃が好ましい。
【0017】
反応形式としては、固体の金属水素化物と気体あるいは液体の反応剤との反応となるが、溶媒を用いない本発明においては、高温で安全に反応が可能な固−気反応が好ましい。
【0018】
【実施例】
以下、本発明を実施例により詳細に説明するが、本発明はかかる実施例に限定されるものではない。
【0019】
実施例1
φ25mm×600mmのステンレス製反応器に、LiHを0.1g仕込んだ。反応器を真空状態とした後、反応器温度を500℃に昇温し、(CH33SiClを22KPa、ガス状で導入した。導入して5min後の生成物を捕集し、FT−IR、GCで分析した結果、88%の収率でトリメチルシラン((CH33SiH)が得られた。
【0020】
実施例2
反応温度を400℃とし、反応剤として(CH32SiCl2を13KPa導入した以外は実施例1と同様の方法で反応させた。生成物は、ジメチルシラン((CH32SiH2)であり、収率58%であった。
【0021】
実施例3
反応温度を300℃とし、反応剤として(CH33GeClを4KPa導入した以外は実施例1と同様の方法で反応させた。生成物は、トリメチルゲルマン((CH33GeH)であり、収率51%であった。
【0022】
実施例4
金属水素化物としてCaH2を0.3g仕込み、反応温度を500℃とした以外は実施例1と同様の方法で反応させた。生成物は、(CH33SiHであり、収率60%であった。
【0023】
実施例1〜4のいずれの反応においても100℃以下では水素化反応が生じなかった。また、生成物に混入する不純物としては、原料、メタンおよび微量の水素のみであり、不要な溶媒の混入が避けられた。
【0024】
比較例1
金属水素化物としてLiAlH4を0.3g仕込み、反応温度を120℃とした以外は実施例1と同様の方法で反応させた。反応剤の導入とともに反応器内部圧力が急上昇し、生成物を分析した結果、(CH33SiHが生成していたが、生成物の50vol%が水素であった。
【0025】
比較例2
金属水素化物としてNaHを0.5g仕込み、反応温度を400℃とした以外は実施例1と同様の方法で反応させた。5min後の生成物中の(CH33SiH濃度は、2.5vol%であり、反応温度を500℃に上げると、反応器内部圧力が急上昇し、生成物を分析した結果、生成物の30vol%が水素であった。
【0026】
【発明の効果】
本発明によれば、無溶媒反応であるため有機溶媒等が残留することなく、高純度のアルキルシランあるいはアルキルゲルマンを生産性よく安全に製造できる。
[0001]
BACKGROUND OF THE INVENTION
Table In the present invention, useful general formula as CVD film forming material in a semiconductor device manufacturing R n SiH 4-n or R n GeH 4-n (wherein, R represents a lower alkyl group of C 1 ~C 3.) The present invention relates to a method for producing alkyl silane or alkyl germane.
[0002]
[Prior art]
Alkyl silane and alkyl germane are attracting attention as material gases useful as CVD film forming materials in semiconductor device manufacturing.
[0003]
In general, the synthesis method of alkylsilane or alkylgerman is
(1): Reduction of R n SiX 4-n or R n GeX 4-n by the action of metal hydrides such as lithium aluminum hydride (LiAlH 4 ), lithium hydride (LiH), sodium hydride (NaH) Example 2 (CH 3 ) 2 GeCl 2 + LiAlH 4 → 2 (CH 3 ) 2 GeH 2 + LiCl + AlCl 3
( 2 ): Example of a method of alkylating H n SiX 4-n or H n GeX 4-n by reacting with dialkylzinc (R 2 Zn) or Grignard reagent 2SiH 3 Cl + (CH 3 ) 2 Zn → 2CH 3 SiH 3 + ZnCl 2
(3): Example of alkylation by allowing alkyl halide (RX) or olefin to act on SiH 4 or GeH 4 SiH 4 + CH 3 I → CH 3 SiH 3 + HI
Etc.
[0004]
Among these, the production of alkylsilane or alkylgermane is generally performed by using the metal hydride (1) whose raw materials are available at a low cost.
[0005]
For example, a method of synthesizing (CH 3 ) 3 SiH by reacting trimethylsilyl chloride ((CH 3 ) 3 SiCl) and LiAlH 4 in a solvent of dimethoxyethane (DME) is described (Non-patent Document 1). ). Also disclosed is a method for producing a hydride of silicon or germanium by reacting a halogen-containing silicon or germanium compound with LiH in tetrahydrofuran (THF) (Patent Document 1).
[0006]
As in the above example, in the method (1) using a metal hydride, the reaction is generally carried out in an organic solvent. However, in the reaction using an organic solvent, it is necessary to separate the product and the organic solvent, and there is a problem that a trace amount of the organic solvent remains even after purification.
[0007]
As a synthesis method without using a solvent, an organic halogenated silane reduction method using NaH at a reaction temperature of 175 to 350 ° C. is disclosed (Patent Document 2). However, the hydrogenation reaction of organohalogenated silane with NaH is very slow, and there is a problem that a large amount of hydrogen is produced as a by-product when the temperature is raised to increase the reaction rate. NaH easily ignites in the air and is very difficult to handle.
[0008]
[Patent Document 1]
JP-A-2-221110 [Patent Document 2]
US Pat. No. 3,099,672 [Non-Patent Document 1]
J. et al. Amer. Chem. Soc. , 83, 1916 (1961)
[0009]
[Problems to be solved by the invention]
An object of the present invention is to produce a high-purity alkylsilane or alkylgermane with high productivity by using a metal hydride that is safe and has a high yield without leaving an organic solvent or the like.
[0010]
As a result of intensive studies, the present inventors have reacted lithium hydride (LiH) or calcium hydride (CaH 2 ) with alkylsilyl halide or alkylgermyl halide in the temperature range of more than 100 ° C. and less than 600 ° C. without solvent. As a result, it was found that alkylsilane or alkylgermane can be obtained with good yield, and the present invention has been achieved.
[0011]
That is, the present invention relates to the general formula (1)
R n MX 4-n (1)
(However, R represents a C 1 -C 3 lower alkyl group, X represents a halogen element, M represents Si or Ge, and n represents 1, 2, 3 respectively.)
A compound represented by the formula (alkylsilyl halide or alkylgermyl halide) is reduced in the absence of a solvent to obtain a compound represented by the general formula (2)
R n MH 4-n (2)
(Where R is a C 1 -C 3 lower alkyl group, M is Si or Ge, n is 1, 2
3 respectively. )
In producing a compound represented by the (alkylsilane or alkyl germane), the general formula (1) and a compound represented by lithium hydride or calcium hydride and free at the temperature range below 100 ° C. Ultra 600 ° C. and The present invention provides a method for producing an alkylsilane or an alkylgermane characterized by reacting with a solvent .
[0012]
According to the present invention, since no organic solvent is used, impurities derived from the organic solvent are not mixed. In addition, the selection of the metal hydride to be used is the most important in efficiently carrying out the solvent-free reaction. However, as a result of intensive investigations by the present inventors, LiH and CaH 2 have excellent hydrogenation in the solvent-free reaction. It was found that it becomes an agent.
[0013]
That is, LiH and CaH 2 are safe without being easily ignited in the air, and a large amount of by-product hydrogen is generated when reacting with the alkylsilyl halide or alkylgermyl halide as the reactant. In fact, the yield is much higher. In addition, it is relatively stable at high temperatures and has the advantage of not causing runaway reaction due to the property of reversibly absorbing and releasing hydrogen. In NaH and LiAlH 4 , NaH decomposes irreversibly at 420 ° C. and LiAlH 4 at 125 ° C. to generate hydrogen. For this reason, when NaH, LiAlH 4 or the like is reacted without a solvent, a large amount of by-product hydrogen is generated, resulting in a decrease in yield. In addition, runaway reaction due to heat of reaction is likely to occur.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, usable metal hydrides are LiH and CaH 2 , but the hydrogenation capacity is higher in LiH. When the alkylsilyl halide or alkylgermyl halide, which is a reactive agent, is easily decomposed at a high temperature, it is preferable to use a highly reactive LiH and react at a lower temperature. In terms of productivity and yield, LiH is preferable because of its high reaction rate. The metal hydride may be in the form of a lump or powder, but a powder having a large surface area is preferable because of its high reaction rate.
[0015]
As the alkylsilyl halide or alkylgermyl halide as the reactant, general formula (1) R n MX 4-n (where R is a lower alkyl group of C 1 to C 3 , X is a halogen element, M is Si, or Ge, n represents 1, 2, and 3, respectively)). Specific examples of the lower alkyl group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and the like. For example, methylethylsilyl halide and the like in which these are mixed can be used. As the halogen element, iodine, bromine, chlorine, fluorine and the like can be used, but a chlorinated material which can be obtained at low cost can be preferably used.
[0016]
In the present invention, the reaction temperature is appropriately selected in the range of more than 100 ° C. and less than 600 ° C. according to the kind of the reactant. Below 100 ° C, the activity of the hydrogenating agent is low and the reaction does not proceed. Moreover, when the temperature is 600 ° C. or higher, the yield is reduced because the Si—C bond or Ge—C bond of the reactant is broken, which is not preferable. For example, in the reaction between trimethylsilyl chloride ((CH 3 ) 3 SiCl) and CaH 2 , a reaction temperature of 400 to 500 ° C. is preferable, and in the reaction between dimethylsilyl chloride ((CH 3 ) 2 SiCl 2 ) and LiH. 300 to 400 ° C is preferable. Further, in the reaction of trimethylgermyl chloride ((CH 3 ) 3 GeCl) and LiH, 200 to 300 ° C. is preferable.
[0017]
The reaction mode is a reaction between a solid metal hydride and a gas or liquid reactant. In the present invention in which no solvent is used, a solid-gas reaction that can be reacted safely at a high temperature is preferable.
[0018]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this Example.
[0019]
Example 1
0.1 g of LiH was charged into a stainless steel reactor having a diameter of 25 mm × 600 mm. After the reactor was evacuated, the reactor temperature was raised to 500 ° C., and (CH 3 ) 3 SiCl was introduced in a gaseous state at 22 KPa. The product after introduction for 5 minutes was collected and analyzed by FT-IR and GC. As a result, trimethylsilane ((CH 3 ) 3 SiH) was obtained in a yield of 88%.
[0020]
Example 2
The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was 400 ° C. and 13 KPa of (CH 3 ) 2 SiCl 2 was introduced as a reactant. The product was dimethylsilane ((CH 3 ) 2 SiH 2 ), and the yield was 58%.
[0021]
Example 3
The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 300 ° C. and 4 KPa of (CH 3 ) 3 GeCl was introduced as a reactant. The product was trimethylgermane ((CH 3 ) 3 GeH) and the yield was 51%.
[0022]
Example 4
The reaction was conducted in the same manner as in Example 1 except that 0.3 g of CaH 2 was added as a metal hydride and the reaction temperature was 500 ° C. The product was (CH 3 ) 3 SiH and the yield was 60%.
[0023]
In any of the reactions of Examples 1 to 4, no hydrogenation reaction occurred at 100 ° C. or lower. Moreover, the impurities mixed into the product were only the raw material, methane and a trace amount of hydrogen, and unnecessary solvent contamination was avoided.
[0024]
Comparative Example 1
The reaction was conducted in the same manner as in Example 1 except that 0.3 g of LiAlH 4 was added as a metal hydride and the reaction temperature was 120 ° C. As the reaction agent was introduced, the internal pressure of the reactor increased rapidly and the product was analyzed. As a result, (CH 3 ) 3 SiH was produced, but 50 vol% of the product was hydrogen.
[0025]
Comparative Example 2
The reaction was conducted in the same manner as in Example 1 except that 0.5 g of NaH was added as a metal hydride and the reaction temperature was 400 ° C. The (CH 3 ) 3 SiH concentration in the product after 5 min was 2.5 vol%, and when the reaction temperature was raised to 500 ° C., the internal pressure of the reactor rose rapidly, and the product was analyzed. 30 vol% was hydrogen.
[0026]
【The invention's effect】
According to the present invention, a high-purity alkylsilane or alkylgermane can be safely produced with high productivity without any organic solvent remaining because it is a solventless reaction.

Claims (1)

一般式(1)
nMX4-n ・・・・(1)
(ただし、RはC1〜C3の低級アルキル基、Xはハロゲン元素、MはSi、またはGe、nは1、2、3をそれぞれ表す。)
で表される化合物(アルキルシリルハライドまたはアルキルゲルミルハライド)を無溶媒下で還元して、一般式(2)
nMH4-n ・・・・(2)
(ただし、RはC1〜C3の低級アルキル基、MはSi、またはGe、nは1、2、3をそれぞれ表す。)
で表される化合物(アルキルシランまたはアルキルゲルマン)を製造するに際して、一般式(1)で表される化合物と、水素化リチウム、または水素化カルシウムとを100℃超600℃未満の温度範囲で無溶媒反応させることを特徴とするアルキルシランまたはアルキルゲルマンの製造方法。
General formula (1)
R n MX 4-n (1)
(However, R represents a C 1 -C 3 lower alkyl group, X represents a halogen element, M represents Si or Ge, and n represents 1, 2, 3 respectively.)
A compound represented by the formula (alkylsilyl halide or alkylgermyl halide) is reduced in the absence of a solvent to obtain a compound represented by the general formula (2)
R n MH 4-n (2)
(Wherein, R represents a lower alkyl group of C 1 ~C 3, M represents each Si, or Ge, n is 1, 2, and 3.)
In producing a compound represented by the (alkylsilane or alkyl germane), the general formula (1) and a compound represented by lithium hydride or calcium hydride and free at the temperature range below 100 ° C. Ultra 600 ° C. and A method for producing an alkylsilane or alkylgerman, characterized by reacting with a solvent .
JP2003103255A 2003-04-07 2003-04-07 Method for producing alkylsilane or alkylgermane Expired - Fee Related JP4446675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103255A JP4446675B2 (en) 2003-04-07 2003-04-07 Method for producing alkylsilane or alkylgermane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103255A JP4446675B2 (en) 2003-04-07 2003-04-07 Method for producing alkylsilane or alkylgermane

Publications (2)

Publication Number Publication Date
JP2004307399A JP2004307399A (en) 2004-11-04
JP4446675B2 true JP4446675B2 (en) 2010-04-07

Family

ID=33466460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103255A Expired - Fee Related JP4446675B2 (en) 2003-04-07 2003-04-07 Method for producing alkylsilane or alkylgermane

Country Status (1)

Country Link
JP (1) JP4446675B2 (en)

Also Published As

Publication number Publication date
JP2004307399A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
KR900005183B1 (en) Preparation of amine alanes
KR101362903B1 (en) Aminosilanes and methods for making same
JP2012533511A (en) Production of silane from alloys of silicon and alkaline earth metals or from alkaline earth metal silicides
JPH0553727B2 (en)
US2900225A (en) Process for the production of sih2cl2
EP0283905B1 (en) Process for preparing chloropolysilanes
JP4446675B2 (en) Method for producing alkylsilane or alkylgermane
US7265235B2 (en) Method for producing halosilanes by impinging microwave energy
US4814155A (en) Method of selective reduction of polyhalosilanes with alkyltin hydrides
JP2001226382A (en) Method for producing organohalosilane
JP2508798B2 (en) Method for producing hexachlorodisilane and octachlorotrisilane
JP3658901B2 (en) Method for producing alkoxysilane
CN112839904A (en) Synthesis of trichlorosilane from tetrachlorosilane and hydrosilane
JP5294537B2 (en) Method for producing tri (secondary alkyl) silane compound
CA1310469C (en) Method of selective reduction of halodisilanes with alkyltin hydrides
WO1984002332A1 (en) Process for production of silane
JPS6389414A (en) Production of chloropolysilane
JP2015535802A (en) Monosilane production method using trialkoxysilane
CN112745343B (en) Industrial synthesis method of triethoxy chlorosilane
JPS60255612A (en) Production of silicon hydride
JPS60260418A (en) Manufacture of silicon hydride
JPH0480847B2 (en)
Itoh et al. Preparation of vinylsilane from monosilane and vinyl chloride
JPS63195107A (en) Production of silane
JP2523123B2 (en) Silane gas manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees