JPS62143814A - Production of chlorosilane - Google Patents

Production of chlorosilane

Info

Publication number
JPS62143814A
JPS62143814A JP28302485A JP28302485A JPS62143814A JP S62143814 A JPS62143814 A JP S62143814A JP 28302485 A JP28302485 A JP 28302485A JP 28302485 A JP28302485 A JP 28302485A JP S62143814 A JPS62143814 A JP S62143814A
Authority
JP
Japan
Prior art keywords
silicon
chlorosilane
particles
products
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28302485A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
洋 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP28302485A priority Critical patent/JPS62143814A/en
Publication of JPS62143814A publication Critical patent/JPS62143814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce chloropolysilane in high yield without forming solid by- products, by pulverizing silicon particles in an inert organic solvent and chlorinating the pulverized particles at a high temperature. CONSTITUTION:Silicon particles, preferably having 50mu-2mm average particle diameter are pulverized in an inert organic solvent, e.g. dodecane or trichloroethylene, etc., and the pulverized particles are then chlorinated at a high temperature, preferably 140-300 deg.C to produce the aimed chloropolysilane [SinCl2n+2 (n is >=3)]. According to this method, the polychlorosilane can be produced without forming by-products as in a conventional case where an alloy of a metal with silicon is subjected to chlorination reaction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコンを塩素化してポリクロロシランを製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing polychlorosilane by chlorinating silicon.

近年、エレクトロニクス工業の発展に伴い、多結晶シリ
コンあるいはアモルファスシリコン等の半導体用シリコ
ンの需要が急激に増大・して居り、ポリクロロシランは
、かかる半導体シリコンの製造原料として最近特にその
重要性を増している。
In recent years, with the development of the electronics industry, the demand for semiconductor silicon such as polycrystalline silicon or amorphous silicon has increased rapidly, and polychlorosilane has recently become particularly important as a raw material for manufacturing such semiconductor silicon. There is.

ポリクロロシランはそのまま熱分解してエピタキシャル
シリコン等とする事も勿論出来るが、ゲルマニウムドー
プ率の高い光通信用シリカ源としても用いられる。また
クロロシランはさらに還元して(JT)式で表わされる
シランとし、5inHzn+z    (n≧:3) 
    (II)これを熱分解等して半導体用シリコン
やアモルファスシリコンを製造する事が普通である。例
えばジシラン、5i2IIG は、熱分解、グロー放電
分解によりアモルファスシリコン膜を形成する場合、モ
ノシラン、5il14に比較して、基板上へ形成される
1漠の堆積速度がはるかに大きく、且つ、該膜は電気特
性に優れている等の利点があり、太陽電池用半導体の原
料として今後大幅な需要増加が期待されている。
Of course, polychlorosilane can be thermally decomposed as it is to produce epitaxial silicon or the like, but it is also used as a silica source for optical communications with a high germanium doping rate. In addition, chlorosilane is further reduced to silane expressed by the formula (JT), and 5inHzn+z (n≧:3)
(II) This is usually thermally decomposed to produce silicon for semiconductors or amorphous silicon. For example, when disilane, 5i2IIG, is used to form an amorphous silicon film by thermal decomposition or glow discharge decomposition, the rate of deposition on the substrate is much higher than that of monosilane, 5il14, and the film is It has advantages such as excellent electrical properties, and demand is expected to increase significantly in the future as a raw material for semiconductors for solar cells.

〔従来の技術〕[Conventional technology]

従来クロロポリシランは、カルシウムシリコン、マグネ
シウムシリコン、あるいはフェロシリコン等金属とシリ
コンとの合金またはシリコンの粒子を加熱して塩素ガス
を送り込み塩素化反応によって得られている。
Conventionally, chloropolysilane has been obtained through a chlorination reaction by heating an alloy of metal and silicon such as calcium silicon, magnesium silicon, or ferrosilicon, or silicon particles and feeding chlorine gas.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来方法でクロロシランを製造する場合、塩化カルシウ
ム、塩化マグネシウム等の固体の副生物が生成する為、
商用製造方法として固体の副生物が発生しない方法が望
まれている。
When producing chlorosilane using conventional methods, solid by-products such as calcium chloride and magnesium chloride are produced.
A commercial manufacturing method that does not generate solid by-products is desired.

また、シリコン粒と塩素との反応では固体の副生物の発
生は認められないが1合金を用いた方法に比ベグロロシ
ランの生成率がシリコン原子基準で1%未満と著しく低
くここに問題がある。
Furthermore, although no solid by-products are observed in the reaction between silicon particles and chlorine, the production rate of veglorosilane is extremely low at less than 1% based on silicon atoms compared to the method using 1 alloy, which is a problem.

〔問題点の解決に係わる着眼点、知見〕本発明者はシリ
コンと塩素の反応に依る固体の副生物が生成せず、かつ
、収率の高いクロロポリシランの製造方法を提供す可く
検討した結果、シリコンの表面は非常に速かに酸化され
るために一般にシリコン表面は酸化皮膜で覆われており
、且つ酸化皮膜が一旦生成すると反応性に乏しくなる為
にシリコンと塩素との反応に於いてクロロシランの収率
が著しく低い事を見出し本発明に到達した。
[Points of focus and knowledge related to solving the problem] The present inventor has studied the possibility of providing a method for producing chloropolysilane that does not generate solid by-products due to the reaction between silicon and chlorine and has a high yield. As a result, the surface of silicon is oxidized very quickly, so the silicon surface is generally covered with an oxide film, and once the oxide film is formed, it becomes less reactive, so it is difficult to react with silicon and chlorine. The present invention was achieved by discovering that the yield of chlorosilane was extremely low.

〔発明の構成〕[Structure of the invention]

本発明によれば、シリコン粒子を不活性有機溶媒中で粉
砕し、該粉砕粒子を高温で塩素化することからなるクロ
ロシラン(SinC1z n+zただしn≧3)の製造
方法が提供される。
According to the present invention, there is provided a method for producing chlorosilane (SinC1z n+z, where n≧3), which comprises pulverizing silicon particles in an inert organic solvent and chlorinating the pulverized particles at high temperature.

この方法によれば従来より低温で反応させて高収率でク
ロロシランを得ることができる。これは不活性溶媒を用
いた粉砕の為、シリコン粒の表面が酸化される事なく常
に新しい面が保持され活性が高くなるからである。
According to this method, chlorosilane can be obtained in a higher yield by reacting at a lower temperature than conventionally. This is because the surface of the silicon grains is not oxidized and always maintains a new surface due to the grinding using an inert solvent, which increases the activity.

本発明に依り従来シリコン原子基準で1%未満のクロロ
シラン回収率が、30%以上に向上された。
According to the present invention, the recovery rate of chlorosilane, which was conventionally less than 1% based on silicon atoms, has been improved to more than 30%.

本発明の方法において使用されるシリコンは可及的に高
純度である方が固形副生物の生成量が少ない。純度はこ
のことを考慮して決定される問題であるが、97%以上
が望ましい。
The higher the purity of the silicon used in the method of the present invention, the less solid by-products will be produced. Purity is a matter to be determined taking this into account, but 97% or more is desirable.

本発明方法において、シリコン粒の平均粒径は50μm
以上2mm以下が望ましく、塩素化は140℃以上30
0℃以下で行なう事が望ましい。シリコン粒の平均粒径
が211II11より大きいと活性に乏しくクロロシラ
ンの生成率が下がり、好ましくな(,50μmより小さ
いと反応中に粉塵が発生しやはり好ましくない。また、
塩素化の温度が140℃より低いと反応速度が遅すぎて
不適当であり、300℃を超えるとクロロシランの生成
率が低下しやはり不適当である。
In the method of the present invention, the average particle size of silicon particles is 50 μm.
2mm or less, and chlorination is 140℃ or more and 30℃ or more.
It is desirable to carry out the process at a temperature below 0°C. If the average particle size of the silicon particles is larger than 211II11, the activity will be poor and the production rate of chlorosilane will decrease, which is preferable. If it is smaller than 50 μm, dust will be generated during the reaction, which is also not preferable.
If the chlorination temperature is lower than 140°C, the reaction rate is too slow, which is unsuitable; if it exceeds 300°C, the production rate of chlorosilane decreases, which is also unsuitable.

本発明における不活性有機溶媒とはシリコンと反応しな
い溶媒であって特に限定はしないが粉砕過程での蒸発が
少なく、且つ塩素化反応の前に該シリコン粒との分離を
行う為に成る程度の蒸気圧を持っている事が必要である
、との観点からドデカン、ノナン、オクタン、トルエン
等の不活性な炭化水素や四塩化炭素、テトラクロロエチ
レン。
In the present invention, the inert organic solvent is a solvent that does not react with silicon, and is not particularly limited, but has a low evaporation rate during the pulverization process, and is a solvent that does not react with silicon particles, and is a solvent that does not react with silicon. Inert hydrocarbons such as dodecane, nonane, octane, and toluene, as well as carbon tetrachloride and tetrachloroethylene, are required to have high vapor pressure.

トリクロロエチレンのような塩素化炭化水素が挙げられ
る。
Chlorinated hydrocarbons such as trichlorethylene may be mentioned.

〔発明の効果〕〔Effect of the invention〕

本発明に依り、カルシウムとシリコンの合金の塩素化反
応等の際には避けられなかった固□体の副生物の発生が
なく、また合金を調整する工程も省く事が可能である、
シリコンの塩素化反応に依りクロロシランを高収率で得
る事ができる。
According to the present invention, there is no generation of solid by-products that are unavoidable during chlorination reactions of calcium and silicon alloys, and it is also possible to omit the process of adjusting the alloy.
Chlorosilane can be obtained in high yield through the chlorination reaction of silicon.

次に本発明を実施例によってより具体的に説明するが、
以下の実施例は本発明の範囲を限定するものではない。
Next, the present invention will be explained more specifically by examples.
The following examples are not intended to limit the scope of the invention.

〔実施例〕〔Example〕

実施例1゜ 純度97.5%のシリコン50gにドデカン50mQを
加え鉄乳鉢を用いて平均粒径が300μmになるまで粉
砕を行い内径2cmのガラス製反応管に充填した。
Example 1 50 mQ of dodecane was added to 50 g of silicon with a purity of 97.5%, and the mixture was ground using an iron mortar until the average particle size became 300 μm, and the mixture was filled into a glass reaction tube with an inner diameter of 2 cm.

300℃に加熱して残存しているドデカンを除去した後
200℃に降温、塩素ガスを50mQ/分の速度で導入
し20時間反応させた。生成物を凝縮液として捕集し、
ガスクロマトグラフにより分析したところ5iC14,
Si、C1,t Si、C1,の量はそれぞれ61g、
 82g。
After heating to 300°C to remove remaining dodecane, the temperature was lowered to 200°C, chlorine gas was introduced at a rate of 50 mQ/min, and the reaction was carried out for 20 hours. collecting the product as a condensate;
When analyzed by gas chromatography, 5iC14,
Si, C1,t The amount of Si, C1, is 61g each,
82g.

55gであった。It was 55g.

実施例2゜ 同じシリコン1kgにトルエン1.2Mを加え平均粒径
が400μIになるまで粉砕を行い内径1Oalのガラ
ス製反応管に充填した。250℃に加熱して残存してい
るトルエンを除去した後、200℃に降温、塩素ガスを
1.30 /分の速度で導入し20時間反応させた。生
成物を凝縮液として捕集し、ガスクロマトグラフにより
分析したところ5iC14,SL、C1,。
Example 2 1.2 M of toluene was added to 1 kg of the same silicon, and the mixture was pulverized until the average particle size became 400 μI, and the mixture was filled into a glass reaction tube with an inner diameter of 1 Oal. After heating to 250°C to remove remaining toluene, the temperature was lowered to 200°C, chlorine gas was introduced at a rate of 1.30/min, and the reaction was carried out for 20 hours. The product was collected as a condensate and analyzed by gas chromatography to give 5iC14,SL,C1.

5i3C111の量はそれぞれ1.3kg、 1.5k
g、 1.1kgであった・ 比較例1 同じシリコン1kgを空気中で粉砕して平均粒径300
μmとした以外は、実施例1と同様に塩素化反応を実施
したが、クロロシランは実質的に生成しなかった。
The amount of 5i3C111 is 1.3kg and 1.5k, respectively.
Comparative Example 1 1 kg of the same silicon was crushed in air to obtain an average particle size of 300 g.
A chlorination reaction was carried out in the same manner as in Example 1 except that chlorosilane was not substantially produced.

実施例3〜5.参考例1゜ シリコン粒子の粒径を変えた他は実施例1と同様の試験
を行った。結果は表1の通りである。
Examples 3-5. Reference Example 1° The same test as in Example 1 was conducted except that the particle size of the silicon particles was changed. The results are shown in Table 1.

表1 実施例6〜8.比較例1〜2 塩素化反応の温度を変えた他は実施例1と同様の試験を
行った。結果は表2の通りである。
Table 1 Examples 6-8. Comparative Examples 1-2 The same test as in Example 1 was conducted except that the temperature of the chlorination reaction was changed. The results are shown in Table 2.

実施例9 ドデカンのかわりにトリクロロエチレンを使用して実施
例1を繰り返した。
Example 9 Example 1 was repeated using trichlorethylene instead of dodecane.

5iC14,5i2C1,、5i3CI、の収量はそれ
ぞれ569.749,499 であった。
The yields of 5iC14, 5i2C1, and 5i3CI were 569.749,499, respectively.

実施例10 ドデカンのかわりに四塩化炭素を使用して実施例1を繰
り返した。
Example 10 Example 1 was repeated using carbon tetrachloride in place of dodecane.

5iC1,、Si、C1,、Si、C1゜の収量はそれ
ぞれ589.72g、46.!7であった。
The yields of 5iC1, Si, C1, Si, and C1° were 589.72g and 46.9g, respectively. ! It was 7.

Claims (1)

【特許請求の範囲】 1、シリコン粒子を不活性有機溶媒中で粉砕し、該粉砕
粒子を高温で塩素化することからなるクロロシラン(S
i_nCl_2_n_+_2ただしn≧3)の製造方法
。 2、不活性有機溶媒が、ドデカン、ノナン、オクタン、
トルエン、四塩化炭素、テトラクロロエチレン、トリク
ロロエチレンからなる群から選ばれる少なくとも1物質
である特許請求の範囲第1項に記載の方法。 3、シリコン粒子の平均粒径が50μm以上2mm以下
である特許請求の範囲第1項に記載の方法。 4、シリコン粒子の平均粒径が200μm以上800μ
m以下である特許請求の範囲第3項に記載の方法。 5、塩素化の反応温度が140℃以上300℃以下であ
る特許請求の範囲第1項に記載の方法。 6、塩素化の反応温度が160℃以上260℃以下であ
る特許請求の範囲第5項に記載の方法。
[Claims] 1. Chlorosilane (S
A method for producing i_nCl_2_n_+_2 (where n≧3). 2. The inert organic solvent is dodecane, nonane, octane,
The method according to claim 1, wherein the material is at least one substance selected from the group consisting of toluene, carbon tetrachloride, tetrachlorethylene, and trichloroethylene. 3. The method according to claim 1, wherein the silicon particles have an average particle size of 50 μm or more and 2 mm or less. 4. The average particle size of silicon particles is 200 μm or more and 800 μm.
4. The method according to claim 3, which is less than or equal to m. 5. The method according to claim 1, wherein the chlorination reaction temperature is 140°C or higher and 300°C or lower. 6. The method according to claim 5, wherein the chlorination reaction temperature is 160°C or higher and 260°C or lower.
JP28302485A 1985-12-18 1985-12-18 Production of chlorosilane Pending JPS62143814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28302485A JPS62143814A (en) 1985-12-18 1985-12-18 Production of chlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28302485A JPS62143814A (en) 1985-12-18 1985-12-18 Production of chlorosilane

Publications (1)

Publication Number Publication Date
JPS62143814A true JPS62143814A (en) 1987-06-27

Family

ID=17660234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28302485A Pending JPS62143814A (en) 1985-12-18 1985-12-18 Production of chlorosilane

Country Status (1)

Country Link
JP (1) JPS62143814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8147656B2 (en) 2005-05-25 2012-04-03 Spawnt Private S.A.R.L. Method for the production of silicon from silyl halides
US8177943B2 (en) 2006-09-14 2012-05-15 Spawnt Private S.A.R.L. Solid polysilane mixtures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8147656B2 (en) 2005-05-25 2012-04-03 Spawnt Private S.A.R.L. Method for the production of silicon from silyl halides
US9382122B2 (en) 2005-05-25 2016-07-05 Spawnt Private S.À.R.L. Method for the production of silicon from silyl halides
US8177943B2 (en) 2006-09-14 2012-05-15 Spawnt Private S.A.R.L. Solid polysilane mixtures

Similar Documents

Publication Publication Date Title
US3012861A (en) Production of silicon
US20100061911A1 (en) METHOD TO CONVERT SILICON POWDER TO HIGH PURITY POLYSILICON THROUGH INTERMEDIATE SiF4
CA1228220A (en) Process for the production of silicon
EP0063272B1 (en) Synthesis of silicon nitride
RU2451635C2 (en) Method of producing highly pure elementary silicon
US7056484B2 (en) Method for producing trichlorosilane
CN105236363A (en) Method for preparing micrometer/nanometer spherical silicon nitride powder
US2773745A (en) Process for the production of pure silicon in a coarse crystalline form
JPH06144822A (en) Production of highly pure fine silicon particle and production of highly pure polycrystalline silicon using the same particle
US4861574A (en) Process for preparing chloropolysilanes
JPS62143814A (en) Production of chlorosilane
KR20200100144A (en) Silicon granules for trichlorosilane production and related manufacturing methods
JPS6389414A (en) Production of chloropolysilane
JP2660650B2 (en) Manufacturing method of α-type silicon carbide
JP2001039708A (en) High purity metal silicon and its production
JP6337389B2 (en) Method for producing silicon carbide powder
JP2508798B2 (en) Method for producing hexachlorodisilane and octachlorotrisilane
US11198613B2 (en) Process for producing chlorosilanes using a catalyst selected from the group of Co, Mo, W
JPS62256715A (en) Production of chlorosilane
JPH0357047B2 (en)
JPS62256714A (en) Production of chlorosilane
JP2000044223A (en) Production of silicon carbide
JPH0470251B2 (en)
JPS59207830A (en) Production of silicon chloride
RU2519460C1 (en) Production of silicon with the use of aluminium subchloride