JP2575495B2 - Boron diffusing agent and method for producing the same - Google Patents

Boron diffusing agent and method for producing the same

Info

Publication number
JP2575495B2
JP2575495B2 JP1139617A JP13961789A JP2575495B2 JP 2575495 B2 JP2575495 B2 JP 2575495B2 JP 1139617 A JP1139617 A JP 1139617A JP 13961789 A JP13961789 A JP 13961789A JP 2575495 B2 JP2575495 B2 JP 2575495B2
Authority
JP
Japan
Prior art keywords
boron
orientation
boron nitride
degree
diffusing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1139617A
Other languages
Japanese (ja)
Other versions
JPH034523A (en
Inventor
敦雄 川田
芳宏 久保田
今朝治 原田
賢治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1139617A priority Critical patent/JP2575495B2/en
Publication of JPH034523A publication Critical patent/JPH034523A/en
Application granted granted Critical
Publication of JP2575495B2 publication Critical patent/JP2575495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はほう素拡散剤、特には半導体基板にドープ剤
としてのほう素を拡散させるために有用とされるほう素
拡散剤およびその製造方法に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a boron diffusing agent, particularly to a boron diffusing agent useful for diffusing boron as a dopant into a semiconductor substrate, and a method for producing the same. Things.

[従来の技術] 従来、シリコン、ゲルマニウムなどの半導体基板をP
型とするためのドープ剤としてほう素化合物を使用する
ことは公知とされており、このほう素化合物としては窒
化ほう素の焼結体が汎用されている。
[Prior art] Conventionally, semiconductor substrates such as silicon and germanium
It is known that a boron compound is used as a dopant for forming a mold, and a sintered body of boron nitride is widely used as the boron compound.

しかし、この窒化ほう素には不純物が多く、特に焼結
バインダーが残存していて、結晶欠陥の発生があるとい
うことから、これについては化学気相蒸着法(以下CVD
法と略記する)によって合成される熱分解窒化ほう素を
用いる方法も提案されており(特開昭62−101026号公報
参照)、これによれば高純度の熱分解窒化ほう素が得ら
れることから目的とする半導体の転位や結晶の格子欠陥
を大巾に減少させることができるとされている。
However, this boron nitride has many impurities, especially a sintered binder, and crystal defects are generated.
A method using pyrolytic boron nitride synthesized by the above method has also been proposed (see JP-A-62-101026). According to this method, high-purity pyrolytic boron nitride can be obtained. It is stated that dislocations and lattice defects in crystals of a target semiconductor can be greatly reduced.

[発明が解決しようとする課題] しかし、この熱分解窒化ほう素はこれをほう素拡散剤
として使用するときにはこの表面を予じめ酸化処理する
ことが不可欠とされるのにも拘わらず、このCVD法で得
られた窒化ほう素は窒化ほう素の焼結体にくらべて酸化
速度が小さく、したがって酸化処理時間が長くなるとい
う工業的な欠点がある。
[Problems to be Solved by the Invention] However, this pyrolytic boron nitride is required to be oxidized in advance when the surface is used as a boron diffusing agent. Boron nitride obtained by the CVD method has an industrial disadvantage that the oxidation rate is lower than that of a sintered body of boron nitride, and thus the oxidation treatment time is longer.

[課題を解決するための手段] 本発明はこのような不利を解決した窒化ほう素系のほ
う素拡散剤およびその製造方法に関するものであり、こ
れは配向度が3.5以下である熱分解窒化ほう素からなる
ことを特徴とするほう素拡散剤、およびハロゲン化ほう
素、アンモニアおよび少量の配向を乱すための第3成分
とをCVD法で反応させることを特徴とするほう素拡散剤
の製造方法に関するものである。
[Means for Solving the Problems] The present invention relates to a boron nitride-based boron diffusing agent which solves such disadvantages and a method for producing the same, which comprises a pyrolytic nitride having an orientation degree of 3.5 or less. A method for producing a boron diffusing agent, characterized by reacting a boron diffusing agent comprising boron and a boron halide, ammonia and a small amount of a third component for disturbing the orientation by a CVD method. It is about.

すなわち、本発明者らは特に酸化速度の大きい熱分解
窒化ほう素からなるほう素拡散剤を開発すべく種々検討
した。六方晶窒化ほう素は酸化反応に対して異方性をも
っており、(100)面の酸化速度が(002)面の酸化速度
よりも10倍以上大きい。しかし、CVD法で得られた熱分
解窒化ほう素はその堆積面が(002)面に平行に配向し
ているために、この(002)面の配向を乱すことによっ
て酸化速度の大きい(100)面がその表面に現われるよ
うにすればよいということを見出し、このためにはCVD
法による熱分解窒化ほう素の合成時にハロゲン化ほう素
とアンモニアとの反応系にこの窒化ほう素の配向を乱す
第3成分を添加すれば酸化速度の大きい熱分解窒化ほう
素を得ることができることを確認し、この配向度と酸化
速度との関係について研究を進めて本発明を完成させ
た。
That is, the present inventors have made various studies to develop a boron diffusing agent composed of pyrolytic boron nitride having a particularly high oxidation rate. Hexagonal boron nitride has anisotropy to the oxidation reaction, and the oxidation rate of the (100) plane is more than 10 times higher than that of the (002) plane. However, since the pyrolytic boron nitride obtained by the CVD method has its deposition surface oriented parallel to the (002) plane, the oxidation rate is high by disturbing the orientation of the (002) plane (100). Have found that the surface only needs to appear on the surface,
By adding a third component that disturbs the orientation of boron nitride to the reaction system of boron halide and ammonia during the synthesis of pyrolytic boron nitride by the method, pyrolytic boron nitride with a high oxidation rate can be obtained. Was confirmed, and the present invention was completed by conducting research on the relationship between the degree of orientation and the oxidation rate.

以下にこれをさらに詳述する。 This will be described in more detail below.

[作 用] 本発明のほう素拡散剤は配向度が3.5以下である窒化
ほう素からなるものであるが、この窒化ほう素はCVD法
で作られた熱分解窒化ほう素とされる。
[Operation] The boron diffusing agent of the present invention is composed of boron nitride having a degree of orientation of 3.5 or less, and this boron nitride is pyrolytic boron nitride produced by a CVD method.

このCVD法による熱分解窒化ほう素の製造は例えばシ
ックス ナインの高純度の三塩化ほう素とファイブ ナ
インの高純度のアンモニアとを3〜30トールの減圧とし
た系内に、三塩化ほう素を2〜20/分で、またアンモ
ニアを8〜80/分の速度で供給し、1,600〜2,000℃に
加熱して三塩化ほう素とアンモニアとを反応させ、生成
した窒化ほう素を基板上に蒸着させるという方法で行え
ばよく、この際基板の形状を半導体ウエーハと同じ大き
さの円板とすればここに得られる熱分解窒化ほう素を半
導体ウエーハと同じ大きさの円板として得ることができ
る。
In the production of pyrolytic boron nitride by this CVD method, for example, boron trichloride is introduced into a system in which high purity boron trichloride of Six Nine and high purity ammonia of Five Nine are reduced in pressure to 3 to 30 Torr. At a rate of 2 to 20 / min and ammonia at a rate of 8 to 80 / min, heat to 1600 to 2,000 ° C to react boron trichloride and ammonia and deposit the generated boron nitride on the substrate In this case, if the shape of the substrate is a disk having the same size as the semiconductor wafer, the pyrolytic boron nitride obtained here can be obtained as a disk having the same size as the semiconductor wafer. .

しかし、このようにして得られた窒化ほう素は堆積面
での(002)面と(100)面のX線回折強度比を、粉末状
にして配向の効果をキャンセルしたものの(002)面と
(100)面のX線回折強度比で割って補正した値(以下
これを配向度という)で示すと6.5以上となり、(002)
面の多いものとなるので酸化速度の小さいものになる
が、このハロゲン化ほう素とアンモニアとの反応系にこ
の配向度を乱す第3成分として四塩化けい素、四フッ化
けい素などのハロゲン化シラン、テトラメトキシシラ
ン、テトラエトキシシランなどのアルコキシシラン、ト
リメトキシボロン、トリエトキシボロンなどのアルコキ
シボロンを添加すると、この配向度が3.5以下となって
(100)面の多いものとなり酸化速度の大きいものにな
ることが確認された。
However, the boron nitride obtained in this manner has a powder-like X-ray diffraction intensity ratio between the (002) plane and the (100) plane on the deposition surface, and the orientation effect is canceled. The value corrected by dividing by the X-ray diffraction intensity ratio of the (100) plane (hereinafter referred to as the degree of orientation) is 6.5 or more, and is (002)
Although the oxidation rate is low because of the large number of surfaces, the third component that disturbs the degree of orientation in the reaction system between the boron halide and ammonia is a halogen such as silicon tetrachloride or silicon tetrafluoride. When alkoxysilanes such as silane, tetramethoxysilane and tetraethoxysilane, and alkoxyborons such as trimethoxyboron and triethoxyboron are added, the degree of orientation becomes 3.5 or less, and the number of (100) planes increases, and the oxidation rate decreases. It was confirmed that it would be large.

また、この配向度と酸化速度についての実験を進めた
ところ、この両者の関係については第1図に示したとお
りの結果が得られ、これについては配向度の低いものほ
ど酸化速度が大きくなり、例えば配向度が6.5で(002)
面の多いものは酸化速度が1.2mg/cm2・hrと小さいが、
配向度が3.5となると酸化速度が1.8mg/cm2・hrとなり、
このものは配向度が6.5のものの50%以上も酸化速度が
早くなることが確認されたので、この配向度は3.5以下
とすべきであるとされた。
Further, when the experiment on the degree of orientation and the oxidation rate was advanced, the result shown in FIG. 1 was obtained as to the relationship between the two, and the lower the degree of orientation, the higher the oxidation rate. For example, if the degree of orientation is 6.5 (002)
While those with many faces oxidation rate is small and 1.2mg / cm 2 · hr,
The oxidation rate and the degree of orientation is 3.5 1.8mg / cm 2 · hr, and the
Since it was confirmed that the oxidation rate of this product was higher than that of those having a degree of orientation of at least 50%, it was determined that the degree of orientation should be 3.5 or less.

なお、前記のようにして作られた熱分解窒化ほう素の
酸化はこのものを酸素ガス中で高温に、例えば1,200℃
に加熱して行えばよいが、本発明の窒化ほう素は酸化速
度が大きいのでこの加熱処理は略々30分間で終了させる
ことができる。
Incidentally, the oxidation of the pyrolytic boron nitride produced as described above is carried out at a high temperature in oxygen gas, for example, at 1200 ° C.
However, since the boron nitride of the present invention has a high oxidation rate, this heat treatment can be completed in about 30 minutes.

このようにして酸化処理されたウエーハ状の窒化ほう
素を用いた半導体ウエーハのドーピング処理は、これを
石英管内に半導体ウエーハと交互に配置したのち、非酸
化性ガス、例えば窒素、アルゴン、ヘリウムなどの雰囲
気中で700〜1,300℃程度に加熱すればよく、これによれ
ばほう素拡散剤から遊離されたほう素によってP型にド
ープされた半導体基板を容易に得ることができる。
In the doping treatment of the semiconductor wafer using the wafer-shaped boron nitride oxidized in this manner, after alternately arranging the semiconductor wafer in a quartz tube and the non-oxidizing gas such as nitrogen, argon, helium, etc. Heating to about 700 to 1,300 ° C. in this atmosphere, whereby a P-type doped semiconductor substrate can be easily obtained with boron released from the boron diffusing agent.

[実施例] つぎに本発明の実施例をあげる。[Examples] Examples of the present invention will be described below.

実施例1 圧力が10トールに保たれているグラファイト製の反応
器中に、純度シックス・ナインの高純度三塩化ほう素を
5/分の供給速度で、また純度ファイブ・ナインの高
純度アンモニアを20/分の供給速度で、さらに四塩化
けい素を0.1/の供給速度で供給し、系内を2,000℃に
加熱して三塩化ほう素とアンモニアを反応させ、生成し
た窒化ほう素をカーボン製の直径100mmの円板状基板に
蒸着させて直径100mm、厚さ2mmの熱分解窒化ほう素の円
板を作ったところ、このものの配向度は2.5であり、こ
のものの表面を酸素ガス中で1,200℃で酸化したとこ
ろ、このものの酸化速度が2.1mg/cm2・hrであることか
らこの酸化処理は30分間で終了させることができた。
Example 1 In a graphite reactor maintained at a pressure of 10 Torr, high purity boron trichloride of Six Nine purity was supplied at a feed rate of 5 / min and high purity ammonia of Five Nine purity was added. At a feed rate of 20 / min, silicon tetrachloride is further fed at a feed rate of 0.1 /, and the system is heated to 2,000 ° C to react boron trichloride with ammonia. A 100 mm diameter, 2 mm thick pyrolytic boron nitride disc was deposited on a disc-shaped substrate with a diameter of 100 mm.The orientation of the disc was 2.5, and the surface of the disc was 1,200 mm in oxygen gas. When oxidized at ° C., the oxidation rate was 2.1 mg / cm 2 · hr, so that the oxidation treatment could be completed in 30 minutes.

実施例2 実施例1における四塩化けい素をテトラメトキシシラ
ンとしたほかは実施例1と同様に処理して熱分解窒化ほ
う素の円板を作ったところ、このものの配向度は2.5で
あり、1,200℃の酸素中における酸化速度は2.1mg/cm2
hrであった。
Example 2 A disk of pyrolytic boron nitride was prepared in the same manner as in Example 1 except that silicon tetrachloride in Example 1 was changed to tetramethoxysilane, and the disc had a degree of orientation of 2.5. The oxidation rate in oxygen at 1,200 ° C is 2.1 mg / cm 2
hr.

実施例3 実施例1における四塩化けい素をトリメトキシボロン
としたほかは実施例1と同様に処理して熱分解窒化ほう
素の円板を作ったところ、このものは配向度が1.3で、
このものの1,200℃における酸化速度は2.6mg/cm2・hrで
あった。
Example 3 A disk of pyrolytic boron nitride was prepared in the same manner as in Example 1 except that silicon tetrachloride in Example 1 was changed to trimethoxyboron.
Its oxidation rate at 1,200 ° C was 2.6 mg / cm 2 · hr.

実施例4 実施例1における三フッ化ほう素の供給速度を3/
分、四塩化けい素を四フッ化けい素とし、この供給速度
を0.03/分とし、器内圧力を5トール、反応温度を1,
950℃としたほかは実施例1と同様にして熱分解窒化ほ
う素の円板を作ったところ、このものは配向度が2.7で
あり、このものの1,200℃における酸化速度は2.0mg/cm2
・hrであった。
Example 4 The supply rate of boron trifluoride in Example 1 was 3 /
Min, silicon tetrachloride was used as silicon tetrafluoride, the feed rate was 0.03 / min, the internal pressure was 5 Torr, and the reaction temperature was 1,
When addition was 950 ° C. made a disc of pyrolytic boron nitride in the same manner as in Example 1, this product is the orientation degree 2.7, the oxidation rate at 1,200 ° C. for this compound 2.0 mg / cm 2
・ It was hr.

実施例5 前記した実施例4における四フッ化けい素0.03/分
をテトラエトキシシラン0.03/分としたほかは実施例
4と同様に処理して熱分解窒化ほう素の円板を作ったと
ころ、このものは配向度が3.5であり、このものの1,200
℃における酸化速度は1.8mg/cm2・hrであった。
Example 5 A disk of thermally decomposed boron nitride was prepared in the same manner as in Example 4 except that 0.03 / min of silicon tetrafluoride in Example 4 was changed to 0.03 / min of tetraethoxysilane. This has a degree of orientation of 3.5, and
The oxidation rate at ℃ was 1.8 mg / cm 2 · hr.

実施例6 前記した実施例4における四フッ化けい素0.03/分
をトリエトキシボロン0.03/分としたほか実施例4と
同様に処理して熱分解窒化ほう素の円板を作ったとこ
ろ、このものは配向度が2.2であり、このものの1,200℃
における酸化速度は2.1mg/cm2・hrであった。
Example 6 A disc of pyrolytic boron nitride was prepared by treating in the same manner as in Example 4 except that 0.03 / min of silicon tetrafluoride in Example 4 was changed to 0.03 / min of triethoxyboron. It has a degree of orientation of 2.2, which is 1200 ° C
The oxidation rate was 2.1 mg / cm 2 · hr.

比較例 実施例1における四塩化けい素を使用しないほかは実
施例1と同様に処理して熱分解窒化ほう素の円板を作っ
たところ、このものは配向度が6.5であるために1,200℃
における酸化速度は1.2mg/cm2・hrと小さいものであっ
た。
Comparative Example A disk of pyrolytic boron nitride was prepared in the same manner as in Example 1 except that silicon tetrachloride was not used, and this disk had a degree of orientation of 6.5.
The oxidation rate was as small as 1.2 mg / cm 2 · hr.

[発明の効果] 本発明のほう素拡散剤は配向度が3.5以下である熱分
解窒化ほう素からなるものであり、これはハロゲン化ほ
う素とアンモニアとを配向度を乱す第3成分の存在下で
CVD法により作られるのであるが、このものは配向度が
3.5以下であることから酸化速度が1.8mg/cm2・hr以上と
なり、従来公知のものにくらべて酸化速度が50%以上も
大きくなるので、半導体ウエーハのほう素ドーピング用
に有用とされるという工業的な有利性をもつものにな
る。
[Effect of the Invention] The boron diffusing agent of the present invention is composed of pyrolytic boron nitride having a degree of orientation of 3.5 or less, and the presence of a third component that disturbs the degree of orientation between boron halide and ammonia. Under
It is made by the CVD method.
Since the oxidation rate is 3.5 or less, the oxidation rate is 1.8 mg / cm 2 · hr or more, and the oxidation rate is 50% or more larger than conventionally known, so that it is useful for boron doping of semiconductor wafers. It has an industrial advantage.

【図面の簡単な説明】[Brief description of the drawings]

第1図はハロゲン化ほう素とアンモニアとのCVD反応に
よって得た熱分解窒化ほう素の配向度とこのものの1,20
0℃における酸化速度との関係グラフを示したものであ
る。
FIG. 1 shows the degree of orientation of pyrolytic boron nitride obtained by the CVD reaction of boron halide and ammonia, and its 1,20
FIG. 3 is a graph showing a relationship with an oxidation rate at 0 ° C. FIG.

フロントページの続き (72)発明者 伊藤 賢治 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社精密機能材料研究所内 (56)参考文献 特開 昭50−81777(JP,A)Continuation of the front page (72) Inventor Kenji Ito 2-13-1 Isobe, Annaka-shi, Gunma Prefecture Shin-Etsu Chemical Co., Ltd. Precision Functional Materials Research Laboratory (56) References JP 50-81777 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】配向度が3.5以下である熱分解窒化ほう素
からなることを特徴とするほう素拡散剤。
1. A boron diffusing agent comprising pyrolytic boron nitride having a degree of orientation of 3.5 or less.
【請求項2】ハロゲン化ほう素、アンモニアおよび少量
の配向を乱すための第3成分とを化学気相蒸着法で反応
させることを特徴とする請求項1に記載のほう素拡散剤
の製造方法。
2. The process for producing a boron diffusing agent according to claim 1, wherein the boron halide, ammonia and a small amount of a third component for disturbing the orientation are reacted by a chemical vapor deposition method. .
【請求項3】第3成分がハロゲン化シラン、アルコキシ
シランまたはアルコキシボロンである請求項2に記載の
ほう素拡散剤の製造方法。
3. The method according to claim 2, wherein the third component is a halogenated silane, an alkoxysilane or an alkoxyboron.
JP1139617A 1989-06-01 1989-06-01 Boron diffusing agent and method for producing the same Expired - Fee Related JP2575495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1139617A JP2575495B2 (en) 1989-06-01 1989-06-01 Boron diffusing agent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1139617A JP2575495B2 (en) 1989-06-01 1989-06-01 Boron diffusing agent and method for producing the same

Publications (2)

Publication Number Publication Date
JPH034523A JPH034523A (en) 1991-01-10
JP2575495B2 true JP2575495B2 (en) 1997-01-22

Family

ID=15249464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1139617A Expired - Fee Related JP2575495B2 (en) 1989-06-01 1989-06-01 Boron diffusing agent and method for producing the same

Country Status (1)

Country Link
JP (1) JP2575495B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161404A (en) * 2011-01-13 2015-12-16 日立化成株式会社 Composition for forming p-type diffusion layer, method of producing silicon substrate having p-type diffusion layer, method for producing photovoltaic cell , and photovoltaic cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5081777A (en) * 1973-11-22 1975-07-02

Also Published As

Publication number Publication date
JPH034523A (en) 1991-01-10

Similar Documents

Publication Publication Date Title
EP0935013B1 (en) SiC product and manufacturing method thereof
US11047041B2 (en) Method and system for preparing polycrystalline group III metal nitride
JP4922337B2 (en) Method for producing silicon nanostructure
US20130251615A1 (en) Polycrystalline group iii metal nitride with getter and method of making
JPH01162326A (en) Manufacture of beta-silicon carbide layer
EP0899358B1 (en) Silicon carbide fabrication
JPH0834189B2 (en) EPITAXIAL SEMICONDUCTOR WAFER HAVING LOW OXYGEN REGION WITH ADJUSTABLE EXPANSION AND METHOD OF MANUFACTURING THE SAME
JPH11199323A (en) Dummy wafer
CN101549869B (en) Method for preparing iron silicide nano wires
JP2575495B2 (en) Boron diffusing agent and method for producing the same
JPH0658891B2 (en) Thin film single crystal diamond substrate
JP2916580B2 (en) Epitaxially coated semiconductor wafer and method of manufacturing the same
US20140264388A1 (en) Low carbon group-iii nitride crystals
JPS621565B2 (en)
JPH029705A (en) Doping alloy of a high purity
JPS6226569B2 (en)
JPH0225018A (en) Manufacture of semiconductor device
JPS60169563A (en) Manufacture and device for telluride metal
CN101550592B (en) Method for preparing iron silicide nano wires
JP2520421B2 (en) Pyrolytic boron nitride plate
JPH02222136A (en) Boron diffusing agent
JPS60195008A (en) Production of silicon nitride powder
JPH0752721B2 (en) Jig for semiconductor wafer heat treatment
JP2000128694A (en) Production of epitaxial wafer
JPS62256715A (en) Production of chlorosilane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees