JPH0658891B2 - Thin film single crystal diamond substrate - Google Patents

Thin film single crystal diamond substrate

Info

Publication number
JPH0658891B2
JPH0658891B2 JP62058381A JP5838187A JPH0658891B2 JP H0658891 B2 JPH0658891 B2 JP H0658891B2 JP 62058381 A JP62058381 A JP 62058381A JP 5838187 A JP5838187 A JP 5838187A JP H0658891 B2 JPH0658891 B2 JP H0658891B2
Authority
JP
Japan
Prior art keywords
single crystal
diamond
substrate
thin film
crystal diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62058381A
Other languages
Japanese (ja)
Other versions
JPS63224225A (en
Inventor
直治 藤森
貴浩 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62058381A priority Critical patent/JPH0658891B2/en
Priority to US07/165,711 priority patent/US4863529A/en
Priority to DE8888103795T priority patent/DE3862326D1/en
Priority to EP88103795A priority patent/EP0282054B1/en
Publication of JPS63224225A publication Critical patent/JPS63224225A/en
Publication of JPH0658891B2 publication Critical patent/JPH0658891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ダイヤモンド半導体素子の製造に有用な単結
晶ダイヤモンドのエピタキシヤル成長層を有する基板に
関する。
Description: TECHNICAL FIELD The present invention relates to a substrate having an epitaxially grown layer of single crystal diamond, which is useful for manufacturing a diamond semiconductor device.

〔従来の技術〕[Conventional technology]

半導体素子を形成するための半導体材料は良好な単結晶
もしくは単結晶層であることが不可欠であり、特に現在
主流となつているプレナー型半導体素子においても基板
上への薄膜単結晶層の形成がその形成工程の第1歩とな
る。
It is essential that a semiconductor material for forming a semiconductor element is a good single crystal or a single crystal layer, and particularly in a planar type semiconductor element which is currently the mainstream, it is necessary to form a thin film single crystal layer on a substrate. This is the first step in the forming process.

かかる半導体材料として従来からシリコン等が主に利用
されてきたが、ダイヤモンドも半導体材料として特異な
性質を具えるため耐熱半導体、高出力パワートランジス
タ等の用途への応用が検討されている。
Silicon and the like have been mainly used as such a semiconductor material, but diamond is also considered to be a heat-resistant semiconductor, a high output power transistor, and the like because of its unique properties as a semiconductor material.

しかるに現在のところ、単結晶ダイヤモンドの工業的生
産は超高圧装置を用いて粒状のものが合成されるに留ま
つており、この合成ダイヤモンド粒から作成した基板は
面積が数mm角程度の大きさが限界である。従つて、この
単結晶ダイヤモンド基板は、大電流用の素子を形成する
ために大面積を要する場合や、ステツパーを用いて微細
加工を行なう集積回路の製造には利用できなかつた。
However, at present, the industrial production of single crystal diamond is limited to synthesizing granular ones using ultra-high pressure equipment, and the substrate made from this synthetic diamond grain has an area of several mm square. Is the limit. Therefore, this single crystal diamond substrate cannot be used in the case where a large area is required to form a device for a large current, or in the manufacture of an integrated circuit in which fine processing is performed using a stepper.

又、上記の合成ダイヤモンド単結晶はそれ自体高価であ
るため大量に安価な半導体素子を生産するうえでも利用
範囲が限定されていた。
Further, since the above synthetic diamond single crystal is expensive in itself, its range of use is limited even when a large amount of inexpensive semiconductor devices are produced.

一方最近になつて、メタンと水素の混合ガスをマイクロ
波プラズマや熱を利用して励起して反応させ、基板上に
ダイヤモンド薄膜を折出させる気相合成(CVD)法が
確立され、ダイヤモンド単結晶基板上にエピタキシヤル
成長した単結晶ダイヤモンド層の形成が確認されている
(Fujimori et al,Vacuum,vol36,99〜102,1986)。
On the other hand, recently, a gas phase synthesis (CVD) method has been established, in which a mixed gas of methane and hydrogen is excited by using microwave plasma or heat to cause a reaction, and a diamond thin film is projected on a substrate. The formation of a single crystal diamond layer epitaxially grown on a crystalline substrate has been confirmed (Fujimori et al, Vacuum, vol36, 99-102, 1986).

しかし、このCVD法においてもシリコン基板上には多
結晶ダイヤモンド層しか形成できず、単結晶ダイヤモン
ド層は上記の高圧法で合成した高価で小面積の単結晶ダ
イヤモンド基板上にしか形成できなかつたので、安価且
つ大面積の薄膜単結晶ダイヤモンド基板を提供するには
至つていない現状である。
However, even in this CVD method, only the polycrystalline diamond layer can be formed on the silicon substrate, and the single crystal diamond layer can be formed only on the expensive and small area single crystal diamond substrate synthesized by the above high pressure method. The present situation has not yet been to provide an inexpensive and large-area thin film single crystal diamond substrate.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は上記の事情に鑑み、単結晶シリコン基板上にダ
イヤモンドをエピタキシヤル成長させた安価で大面積の
薄膜単結晶ダイヤモンド基板を提供することを目的とす
る。
In view of the above circumstances, an object of the present invention is to provide an inexpensive and large-area thin film single crystal diamond substrate in which diamond is epitaxially grown on a single crystal silicon substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の薄膜単結晶ダイヤモンド基板は、単結晶シリコ
ン基板上に形成した単結晶炭化ケイ素中間層と、この単
結晶炭化ケイ素中間層上にエピタキシヤル成長させた単
結晶ダイヤモンド層とを有している。
The thin film single crystal diamond substrate of the present invention has a single crystal silicon carbide intermediate layer formed on a single crystal silicon substrate, and a single crystal diamond layer epitaxially grown on this single crystal silicon carbide intermediate layer. .

使用する単結晶シリコン基板は引き上げ法等の通常の方
法により製造したインゴツトから切り出した基板(ウエ
ハー)でよい。又、単結晶炭化ケイ素中間層及び単結晶
ダイヤモンド層は夫々公知のCVD法、イオンビーム蒸
着法等により形成することができる。
The single crystal silicon substrate used may be a substrate (wafer) cut out from an ingot manufactured by a usual method such as a pulling method. Further, the single crystal silicon carbide intermediate layer and the single crystal diamond layer can be formed by a known CVD method, ion beam deposition method or the like, respectively.

〔作用〕[Action]

ダイヤモンドの格子定数は 3.5667 Å及びシリコンの格
子定数は 5.4301 Åであり、結晶構造が大きく異なるの
でシリコン基板上に直接ダイヤモンドをエピタキシヤル
成長させることは困難である。
The lattice constant of diamond is 3.5667 Å and the lattice constant of silicon is 5.4301 Å, and it is difficult to epitaxially grow diamond directly on a silicon substrate because the crystal structures differ greatly.

そこで、本発明者等はシリコン基板上に中間層として格
子定数が 4.3596 Åの単結晶炭化ケイ素を介在させるこ
とにより、その上に単結晶ダイヤモンドをエピタキシヤ
ル成長させることに成功し、本発明に至つたものであ
る。
Therefore, the inventors of the present invention succeeded in epitaxially growing a single crystal diamond on the silicon substrate by interposing a single crystal silicon carbide having a lattice constant of 4.3596 Å as an intermediate layer on the silicon substrate. It is an ivy.

〔実施例〕〔Example〕

実施例1 直径2インチの単結晶Si基板の(111)面をCH中5
torr 1350℃で20分間炭化処理した後、基板温度1300℃
及び真空度2 torr でのSiHとCHのプラズマCVD
法により、膜厚2000Åの単結晶SiC中間層を形成した。
Example 1 A (111) plane of a single crystal Si substrate having a diameter of 2 inches was prepared by using 5 in CH 4.
torr 1350 ℃ After carbonizing for 20 minutes, substrate temperature 1300 ℃
And plasma CVD of SiH 4 and CH 4 at a vacuum of 2 torr
By the method, a single crystal SiC intermediate layer with a film thickness of 2000 Å was formed.

次に、この単結晶SiC中間層上に、マイクロ波プラズマ
CVD法により、基板温度900℃及び真空度30 torr で
0.5%CHを含むHを分解してダイヤモンド層を膜厚3
000Åに形成した。
Then, on the single crystal SiC intermediate layer, a substrate temperature of 900 ° C. and a vacuum degree of 30 torr were applied by a microwave plasma CVD method.
Thickness 3 diamond layer by decomposing of H 2 containing 0.5% CH 4
Formed to 000Å.

得られたダイヤモンド層を反射電子線回折により結晶状
態を観察したところ、スポツト状の回折点が認められ、
単結晶の(111)面であることが判つた。
When the crystal state of the obtained diamond layer was observed by backscattered electron diffraction, spot-like diffraction points were observed,
It was found to be the (111) plane of a single crystal.

実施例2 実施例1と同様にSi基板上に単結晶SiC中間層を形成し
た。次に、この単結晶SiC中間層上に、基板温度850℃及
び真空度30 torr で、タングステンフイラメントを2100
℃に加熱して0.5%のCHを含むHを励起して分解す
るCVD法により、ダイヤモンド層を膜厚500Åに形成
した。
Example 2 As in Example 1, a single crystal SiC intermediate layer was formed on a Si substrate. Then, a tungsten filament 2100 was formed on the single crystal SiC intermediate layer at a substrate temperature of 850 ° C. and a vacuum degree of 30 torr.
A diamond layer was formed to a film thickness of 500 Å by a CVD method in which H 2 containing 0.5% of CH 4 was excited and decomposed by heating at 0 ° C.

続いて、0.5%CHと0.0002%B2Hを含むHを同様に
励起し、分解してBドーピングしたダイヤモンド層を膜
厚1000Åに形成した。
Subsequently, H 2 containing 0.5% CH 4 and 0.0002% B 2 H 6 was similarly excited and decomposed to form a B-doped diamond layer with a film thickness of 1000 Å.

得られた最上層のダイヤモンド層を反射電子線回折によ
り結晶状態を観察したところ、スポツト状の回折点が認
められ、単結晶の(111)面であることが判つた。
When the crystal state of the obtained uppermost diamond layer was observed by reflection electron beam diffraction, spot-like diffraction points were observed, and it was found that it was a (111) plane of a single crystal.

又、最上層の単結晶ダイヤモンド層は、比抵抗が5×10
-1Ω・cmでホール効果の測定によりP型半導体であつ
て、キヤリヤ密度4×1016/cm3及びホール移動度310cm2
/V・secであることが確認された。
The uppermost single crystal diamond layer has a resistivity of 5 × 10 5.
It is a P-type semiconductor measured by Hall effect at -1 Ω · cm, and has a carrier density of 4 × 10 16 / cm 3 and Hall mobility of 310 cm 2.
It was confirmed to be / V ・ sec.

比較例 実施例1と同じ単結晶Si基板上に、単結晶SiC中間層を
形成することなく、実施例1と同様のマイクロ波プラズ
マCVD法によりダイヤモンド層を形成したが、結晶が
ばらばらに堆積するだけで薄膜が形成できなかつた。
Comparative Example A diamond layer was formed on the same single crystal Si substrate as in Example 1 without forming a single crystal SiC intermediate layer by the same microwave plasma CVD method as in Example 1, but crystals were deposited in pieces. A thin film could not be formed by itself.

又、同じ基板にダイヤモンド粉末(3000)で傷をつけ
てから、同様にダイヤモンド層を形成したところ、三角
形の結晶面が凹凸に存在する膜が得られ、この膜を電子
線回折により調べたところ多結晶であることが確認され
た。
In addition, when the same substrate was scratched with diamond powder ( # 3000) and then a diamond layer was formed in the same manner, a film having triangular crystal planes with irregularities was obtained, and this film was examined by electron diffraction. However, it was confirmed to be polycrystalline.

〔発明の効果〕〔The invention's effect〕

本発明によれば、シリコン基板上にダイヤモンドをエピ
タキシヤル成長させた、安価で大面積の薄膜単結晶ダイ
ヤモンド基板を提供することができる。
According to the present invention, it is possible to provide an inexpensive and large-area thin film single crystal diamond substrate in which diamond is epitaxially grown on a silicon substrate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】単結晶シリコン基板上に形成した単結晶炭
化ケイ素中間層と、この単結晶炭化ケイ素中間層上にエ
ピタキシヤル成長させた単結晶ダイヤモンド層とを有す
る薄膜単結晶ダイヤモンド基板。
1. A thin film single crystal diamond substrate having a single crystal silicon carbide intermediate layer formed on a single crystal silicon substrate and a single crystal diamond layer epitaxially grown on this single crystal silicon carbide intermediate layer.
JP62058381A 1987-03-12 1987-03-12 Thin film single crystal diamond substrate Expired - Lifetime JPH0658891B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62058381A JPH0658891B2 (en) 1987-03-12 1987-03-12 Thin film single crystal diamond substrate
US07/165,711 US4863529A (en) 1987-03-12 1988-03-08 Thin film single crystal diamond substrate
DE8888103795T DE3862326D1 (en) 1987-03-12 1988-03-10 THICK LAYER SINGLE CRYSTAL DIAMOND SUBSTRATE.
EP88103795A EP0282054B1 (en) 1987-03-12 1988-03-10 Thin film single crystal diamond substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62058381A JPH0658891B2 (en) 1987-03-12 1987-03-12 Thin film single crystal diamond substrate

Publications (2)

Publication Number Publication Date
JPS63224225A JPS63224225A (en) 1988-09-19
JPH0658891B2 true JPH0658891B2 (en) 1994-08-03

Family

ID=13082750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62058381A Expired - Lifetime JPH0658891B2 (en) 1987-03-12 1987-03-12 Thin film single crystal diamond substrate

Country Status (1)

Country Link
JP (1) JPH0658891B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299688A (en) * 1995-05-09 1996-11-19 Tomoaki Sugigami Pillow drying tool also used for pinching futon (mattress placed on the floor for use as bed)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263789A (en) * 1989-03-31 1990-10-26 Kanagawa Pref Gov Silicon substrate having diamond single crystalline film and its production
US5127983A (en) * 1989-05-22 1992-07-07 Sumitomo Electric Industries, Ltd. Method of producing single crystal of high-pressure phase material
JPH0462716A (en) * 1990-06-29 1992-02-27 Matsushita Electric Ind Co Ltd Crystalline carbonaceous thin-film and its deposition method
JP2617374B2 (en) * 1990-09-25 1997-06-04 株式会社半導体エネルギー研究所 Diamond thin film and its preparation method
US5499601A (en) * 1993-01-14 1996-03-19 Sumitomo Electric Industries, Ltd. Method for vapor phase synthesis of diamond
EP0689233B1 (en) * 1994-06-24 2008-10-15 Sumitomo Electric Industries, Limited Wafer and method of producing same
WO2006048957A1 (en) 2004-11-05 2006-05-11 Sumitomo Electric Industries, Ltd. Single-crystal diamond
JP5002982B2 (en) 2005-04-15 2012-08-15 住友電気工業株式会社 Method for producing single crystal diamond
JP6636239B2 (en) * 2014-08-29 2020-01-29 国立大学法人電気通信大学 Method for producing single crystal diamond, single crystal diamond, method for producing single crystal diamond substrate, single crystal diamond substrate and semiconductor device
JP6569605B2 (en) * 2016-06-22 2019-09-04 株式会社Sumco Manufacturing method of laminated substrate and laminated substrate
CN114318216B (en) * 2021-12-02 2023-11-14 中国科学院理化技术研究所 High-binding-force optical film of diamond crystal and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223095A (en) * 1986-03-24 1987-10-01 Asahi Chem Ind Co Ltd Production of diamond semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299688A (en) * 1995-05-09 1996-11-19 Tomoaki Sugigami Pillow drying tool also used for pinching futon (mattress placed on the floor for use as bed)

Also Published As

Publication number Publication date
JPS63224225A (en) 1988-09-19

Similar Documents

Publication Publication Date Title
EP0282054B1 (en) Thin film single crystal diamond substrate
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
JPH0658891B2 (en) Thin film single crystal diamond substrate
JPH0353277B2 (en)
JPH08310900A (en) Thin-film single crystal of nitride and its production
JPH06107494A (en) Vapor growth method for diamond
JPH0513342A (en) Semiconductur diamond
US5897705A (en) Process for the production of an epitaxially coated semiconductor wafer
JPS6270295A (en) Production of n-type semiconductive diamond film
JPH0666273B2 (en) Thin film single crystal diamond substrate
JP2798576B2 (en) Silicon film growth method
JPH04238895A (en) Diamond film and its production
JPS5840820A (en) Formation of silicon single crystal film
JPH04188717A (en) Diamond substrate and manufacture thereof
JP2633403B2 (en) Method for producing silicon carbide single crystal
JP3116403B2 (en) Method for manufacturing thin film transistor
JPH05102048A (en) Diamond substrate and its manufacture
JPH02199098A (en) Production of single crystal diamond
JPS6115150B2 (en)
JPS62132312A (en) Manufacture of semiconductor thin film
JPS6152119B2 (en)
JP2649221B2 (en) Deposition film formation method
JPH05102047A (en) Diamond substrate and its manufacture
JPH0777203B2 (en) Method for manufacturing sapphire substrate having silicon single crystal film
JPH0327515B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term